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A B S T R A C T

This paper explores predictors of juvenile tree mortality in a newly planted cohort in Worcester, MA, following
an episode of large-scale tree removal necessitated by an Asian Longhorned Beetle (Anoplophora glabripennis,
ALB) eradication program. Trees are increasingly seen as important providers of ecosystem services for urban
areas, including: climate moderation and thus reduction in heating/cooling costs; air and water filtration; carbon
uptake and storage; storm water runoff control; and cultural and aesthetic values. Many cities have initiated tree
planting programs to receive these benefits, typically seeking to complement existing urban forest. Conversely,
Worcester’s reforestation program was necessary to offset the loss of approximately 30,000 trees removed to
eradicate the invasive pest ALB. Since then, more than 30,000 juvenile trees have been planted to offset the loss,
creating the opportunity to study a highly dynamic urban forest. Tree planting effectiveness is contingent on
high survivorship rates, particularly during the establishment phase during the first five years after planting.
Using a large data set including biophysical and sociodemographic variables, this research uses Conditional
Inference Trees (CIT), a machine learning technique, to explore predictors of mortality. The most important
variables as determined by CIT were used to create a logistic regression to predict mortality. This analysis was
run for all trees, and for several subsets of the sample based on tree type and season and year of planting,
yielding twenty individual models. Results indicated that the following variables are important predictors of
mortality during establishment, in descending order: adjacent home/building age, proportion renter occupancy,
days since tree planted, tax parcel size, number of trees planted on property, and tax parcel value. Of these
variables, proportion renter occupancy and days since tree planted were most frequently found to be significant
in the logistic regression modeling.

1. Introduction

Urban trees are receiving increased recognition for the important
role they play in providing ecosystem services, including moderation of
Urban Heat Islands (UHI) and thus offsetting energy consumption for
cooling (Akbari, 2002; Donovan and Butry, 2009; McPherson and
Simpson, 2003; Pandit and Laband, 2010), air and water filtration (Jim
and Chen, 2008; Mcpherson et al., 1994; Nowak et al., 2014; Tratalos
et al., 2007), carbon uptake and storage (Nowak et al., 2013), storm
water runoff control (Xiao et al., 1998; Xiao and McPherson, 2002), and
cultural, aesthetic, and property values (Pandit et al., 2013). To attain
maximal ecosystem service benefits, and because the costs associated
with planting or replanting trees are large (McPherson, 1992), planting
success depends on low mortality rates over time so that mature

aggregate canopy and basal areas are maximized, thus yielding the
largest ecosystem service benefits (Ko et al., 2015a; McPherson et al.,
2011). Survival is particularly important during the establishment
phase of five years after planting, during which time mortality is gen-
erally highest (Miller and Miller, 1991; Richards, 1979; Roman et al.,
2014a; Shermana et al., 2016).

Urban forest management would benefit from a nuanced and com-
plete understanding of the predictors and causal agents of mortality
during the establishment phase, so as to enhance survivorship.
Biophysical causes of establishment-stage mortality include poor
staking and tying techniques leading to trunk girdling, and physical
damage from vandalism, vehicles and construction (Hauer et al., 1994;
Koeser et al., 2013); tree guard girdling; soil compaction (Coder, 2000;
Kozlowski, 1999) and water availability (Nielsen et al., 2007).
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Additionally, anthropogenic factors are often important in predicting
mortality, including land-use (Lu et al., 2010), socioeconomic status
and property values (Ko et al., 2015a; Nowak et al., 1990; Roman et al.,
2014b). These variables capture a complex set of direct and indirect
interactions between humans and trees, relating to potential main-
tenance, neglect, and overall stewardship potential. Tree stewardship
actions such as municipal or community irrigation strategies and tree
condition monitoring can promote tree survival (Boyce, 2010; Koeser
et al., 2014; Roman et al., 2015; Vogt et al., 2015). It is important to
understand the primary drivers and predictors of juvenile tree mor-
tality, so that they may be mitigated, therefore allowing the largest
possible cohort of trees to reach maturity with minimized initial in-
vestment in planting (McPherson, 1992; Richards, 1979). Using such
knowledge, urban land managers and private homeowners can max-
imize long-term ecosystem benefits from planting programs (Roman
et al., 2014b).

Previous studies have investigated urban forest mortality for juve-
nile and mature tree cohorts. For example, Nowak et al. (Nowak et al.,
2004) found differences in mortality based on tree size, health condi-
tion class (excellent, good, fair, poor, critical, dying, dead) species, and
land-use. Results indicated lowest mortality for trees in medium and
low density residential areas, while high mortality was found for trees
of small size, those previously rated with ‘poor’ condition, those in
transportation or commercial/industrial land-uses, and trees of parti-
cular species (in this case Morus alba and Ailanthus altissima). In a si-
milar study in Oakland, CA, Roman et al. (Roman et al., 2014a) cor-
roborated the results that mortality rates are higher for small trees,
particularly with poor foliage condition while also showing higher
mortality for trees planted in sidewalk or strips as opposed to sidewalk
cut-outs. Results from both of these studies are particularly relevant for
tree planting efforts that include an urban gradient from dense urban to
sparser residential land-uses, which represent an important contribu-
tion to overall urban canopy coverage (Nowak et al., 1996; O’Neil-
Dunne, 2010; Rogan, 2009). Additionally, the relationship between tree
condition and mortality is especially important in the context of juve-
nile trees, because it implies that foliage and trunk condition are sig-
nificant predictors of mortality for recently planted trees, relative to
larger, mature trees (Roman et al., 2014a). This reinforces the need to
provide adequate care and stewardship of juvenile trees to prevent their
mortality. While such stewardship requires an additional management
cost, this investment is justified by the additional ecosystem services
gained from mature trees (McPherson et al., 2011).

Roman and Scatena (2011) evaluated mortality rates and expected
lifespans of street trees using a meta-analysis of previous research plus
field data from Philadelphia, PA. Results indicated a wide range of
survivorship rates reported previously in the urban forestry literature,
with estimated annual survival rates typically between 80% and 99%,
although the authors noted that a small number of survivorship studies
have indicated much lower survival rates (e.g., Sklar and Ames, 1985;
Yang and McBride, 2003). Conversely, the majority of studies reviewed
by Roman and Scatena (75%) showed annual survivorship rates above
91%. This analysis did not investigate causes of mortality.

In contrast to street trees, Roman et al. (2014b) focused on trees
planted in single-family residential areas in Sacramento, CA, distributed
during a tree give-away program. The study found that 85% of the trees
were planted, with ∼70% survivorship after five years post-planting.
This study area was prone to unstable housing ownership during the
study period, leading to high housing turnover and thus increasing the
potential for lack of tree maintenance, particularly irrigation. As a
consequence, home ownership stability, a proxy for tree stewardship,
was found to be the most important variable for predicting survivorship
within the first five years of tree planting. Other important variables
were yard side (front yard, back yard), species water demand, season
planted, days since planting, and mature tree size. For these variables,
survival was increased for: front versus back yard location, decreasing
species water demand, planting during the wet season, less time since

planting, and smaller mature size. Neighborhood income was shown to
have inconsistent impacts on survival. The authors concluded that tree
care and climate-appropriate species selection were the most important
determinants of tree survivorship.

Koeser et al. (2014) calculated mortality rate and mortality factors
within the first two to five years for trees in public locations across 26
sites in Florida. Logistic regression was used to determine significant
factors of mortality, including irrigation status and species.

While there is a growing body of research concerning predictors of
mortality for urban forests, many of these studies have focused on trees
planted in publicly owned locations, such as parks, other green spaces,
and particularly street trees in planting strips, medians, or sidewalk cut-
outs. Knowledge from this research is very important, but it has typi-
cally excluded trees planted on private property, such as residential
yards, which constitute a substantial portion of the urban forest. For
example, Nowak et al. (1996) found that approximately 43–72% of
urban tree cover is located on residential land-use, with considerable
variation across forested, grassland, and desert ecoregions. These re-
sidential landscapes form an important and complex element of the
broader urban ecosystem (Cook et al., 2012). Because of this important
contribution to overall canopy coverage, and due to the potential en-
ergy savings seen by individual residents, it is important to extend
knowledge of the urban forest ecosystem to include yard trees.

This research examines the predictors of juvenile tree mortality
among a newly planted cohort of yard trees in Worcester, MA, using
data from three field campaigns, and a combination of Conditional
Inference Trees (CIT) and logistic regression modeling. The goal is to
determine the most relevant biophysical and socioeconomic variables
for predicting tree mortality, and to then quantify the changes to
mortality likelihood based on these variables. This information con-
tributes to the growing body of knowledge regarding juvenile tree
mortality in a wide range of urban ecosystems.

1.1. Study area

The study area centers on Worcester, MA, USA, and includes parts of
six adjacent towns. Worcester has a humid continental climate, with an
average daily high of 26 °C in July and 0 °C in January. Average annual
precipitation is 1220mm, as well as 163 cm of snow per season (www.
nws.noaa.gov 2015). The Worcester area is highly susceptible to
‘Noreaster’ storm events, which often produce strong winds and high
amounts of precipitation, thus contributing to the natural vegetation
disturbance regime. Worcester’s population of 183,000 makes it the
second largest city in New England after Boston, MA (US Census, 2010).
Of this population, approximately 55% lives in renter-occupied
housing. The city has a diverse industrial history, and is currently home
to prominent healthcare and biotechnical industries (Herwitz, 2001).
Worcester’s median household income is $45,932, which is sub-
stantially lower than the MA median of $66,866 (US Census, 2010). The
spatial distribution of wealth shows distinct clustering, with a low-in-
come cluster in the central business district. The five towns surrounding
Worcester have broadly similar sociodemographic characteristics, but
in general contain lower population densities and higher proportion of
rural land-uses. Worcester’s population density is 1947 persons/km2,
while the surrounding towns have only 547 persons/km2. These five
towns have a median household income of approximately $80,000. As
of 2008, Worcester had 17,113 street trees, providing roughly $2.4
million dollars of gross ecosystem service benefits, or $980,000 of net
benefits after subtracting maintenance and management (Freilicher
et al., 2008).

The study area was a regulation zone designated by the United
States Department of Agriculture (USDA) to control the spread of Asian
Longhorned Beetle (ALB; Anoplophora glabripennis) (Fig. 1). This reg-
ulation zone was established to prohibit unsanctioned movement of
wood or wood products originating within the area, and also served to
define the extent of the subsequent tree planting initiative. ALB is an
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invasive insect pest native to mainland China and the Korean Peninsula,
where it is considered a pest species, and has caused large economic
losses (Haack et al., 2010; Hu et al., 2009; Williams et al., 2004). ALB
has spread to port cities in North America and Europe via infested
wooden shipping pallets, and has subsequently become established in
several surrounding rural, peri-urban, and urban areas (Haack, 2006).
The pest is polyphagous and infests hardwood genera, including maple
(Acer), horse chestnut/buckeye (Aesculus), birch (Betula), willow
(Salix), and elm (Ulmus) with Acer spp. particularly vulnerable (Haack
et al., 2010; Hu et al., 2009; Santos and Bond, 2015). An established
ALB population was detected in Brooklyn, New York City, NY in 1996,
and other infestations have since been identified in Chicago, IL (1998),
Jersey City, NJ (2002), Toronto, Ontario (2003), Worcester, MA (2008),
Boston, MA (2010) (Dodds and Orwig, 2011), and most recently Bethel,
OH. Due to its wide host tolerance and its use of containerized shipping
as a dispersal vector, ALB has been listed as one of the 100 worst alien
invasive species (ISSG, 2013).

ALB was first detected in Worcester in 2008 near an industrial and
shipping district, suggesting transportation in infested shipping mate-
rials. Due to the large number of infested trees found during the initial
inspection, it has been estimated that the pest began infesting the area
at least a decade earlier (Danko et al., 2016). In an effort to curtail the
spread of ALB in Worcester, the United States Department of Agri-
culture Animal and Plant Health Inspection Service (USDA-APHIS) in-
spected over nine million trees in the greater Worcester area since

2008, and enacted a regulation zone in Worcester and the surrounding
towns, covering 166 km2 as of August 2009 (Haack et al., 2010; Santos
and Cole, 2012), and expanded to 285 km2 as of 2015 (Santos and
Bond, 2015). Within the regulation zone, unauthorized transport of
wood or wood products is not permitted (USDA-APHIS, 2008), due to
the potential unintentional transportation of ALB in firewood and other
wood products. Individual beetles tend to disperse less than 300m per
year by flying or walking, and typically infest new hosts in the im-
mediate vicinity of their natal tree, or else re-infest their natal tree
(Meng et al., 2015; Zhou et al., 1984). The beetles are capable of
moving up to 2000m per season when in search of suitable host trees,
with the vast majority of individuals moving less than 1000m (Haack
et al., 2010; Hu et al., 2009; Junbao et al., 1998; Smith et al., 2004).
The USDA quarantine area reflects this potential for movement, ex-
tending a buffer distance of at least 1.5 mi (2.4 km) from any known
ALB presence location (USDA-APHIS, 2008). In order to eradicate the
established ALB population, USDA-APHIS initiated a host tree removal
program in the Worcester ALB regulation zone, encompassing parts of
six towns: Auburn, Boylston, Holden, Shrewsbury, West Boylston, and
Worcester (Fig. 1). This program has focused on the removal of infested
trees and high-risk host trees, with 20,400 infested and 10,250 high-risk
trees removed between 2008 and 2012 (Santos and Cole, 2012).

A large-scale tree replanting program was initiated in spring 2010 to
aid the recovery from the ALB-related tree removals in the Worcester
area. This program consisted of a public/private partnership between

Fig. 1. Study area, showing recent tree plantings by the Massachusetts Department of Conservation and Recreation. The map also shows recent tree canopy loss caused by the Asian
Longhorned Beetle eradication program.
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the City of Worcester, the MA Department of Conservation and
Recreation (DCR), and non-profit Worcester Tree Initiative. The DCR
program, funded by a grant from the American Recovery and
Reinvestment Act of 2009, has emphasized replanting in private re-
sidences via a tree giveaway program (Santos and Bond, 2009), while
the City of Worcester has focused on replanting on public lands (i.e.,
street trees). To date, roughly 30,000 non-host trees have been re-
planted by these organizations combined (Danko et al., 2016; WTI,
2015). This paper analyzes trees planted by the DCR, which constitute
the majority of the full planting effort. These trees were planted by DCR
staff, professionally trained in arboriculture. This is in contrast to pre-
viously described tree giveaway programs, where residents were re-
sponsible for tree planting. Additionally, a large majority of plantings
(89%) occurred on private residential property, as opposed to city-
managed street trees. Selection of each tree and specific planting lo-
cation was determined by the arborists, in consultation with the home/
land-owner. While residents were able to select from a broad planting
list, the ultimate decision to plant was at the discretion of the arborist,
with considerations for site conditions and species. The number of trees
given to each resident was limited only by expert arborist opinion,
based on the property size and other site-specific considerations. The
average number of DCR-planted trees per property was 3.6, with a
maximum of 32 trees planted.

The most commonly planted species were Abies concolor (white fir),
Thuja occidentalis (American arborvitae), Cornus spp. (dogwood), Picea
pungens (Colorado spruce), and Prunus spp. (cherry). The number of
planted trees is roughly commensurate with the number removed due
to ALB eradication; however, the newly planted trees do not yet replace
the lost ecosystem services provided by those removed, as they are
juvenile individuals with much smaller diameter at breast height (DBH)
and stature. The replanting effort continues to date (as of August 2017),
with a strong emphasis on planting in residential areas, coupled with
homeowner education on tree maintenance best practices.

2. Data

2.1. Tree data

The core dataset for this study consisted of a sample of juvenile
trees, recently planted by staff of the MA DCR as part of the post-ALB
reforestation program. Data on each tree was recorded during planting,
yielding a geodatabase containing geographical coordinates, species,
homeowner/property manager address, date of planting, irrigation
status, nominal caliper-measured diameter, specific tree location notes,
and a unique identification number. Our study focused on trees planted
between 2010 and 2012: 15,743 trees in total. Of these, we collected a
simple random sample of 1895 unique trees. For this sample, each tree
was individually assessed for mortality status (alive, dead), overall
condition (excellent, good, fair, poor, critical, dead), yard side (front,
back, other), and land-use (residential, institutional, other). A principal
motivation of the DCR tree planting program was to recover lost canopy
over private residential properties, and therefore 89% of the trees in our
sample were planted in residential land-use areas.

2.2. Candidate mortality predictive variables

Twenty-one potential predictor variables were investigated for their
influence on mortality (Table 1), including both sociodemographic and
biophysical factors that have been proposed as drivers of mortality in
previous literature (Ko et al., 2015b; Lu et al., 2010; Roman et al.,
2014b). Some candidate variables were taken from the DCR tree da-
tabase described above, which contained basic tree properties and
planting site descriptions, including tree species, status of irrigation at
time of planting, and date of planting. Tree species were also grouped
into stature categories, captured by the Tree Type variable, which in-
cludes three categories: deciduous shade, ornamental shade, and

coniferous. The Tree Type definitions were provided by the MA DCR,
with the differentiation between ornamental and shade based on
average mature tree height. This variable was included specifically due
to interest from the DCR, based on institutional conjecture that Tree
Type may relate to mortality outcomes (Mat Cahill, personal commu-
nication). The distinction between shade and ornamental was based
partially on average mature tree size, with the ‘shade’ designation ty-
pically reserved for species with a mature height above 35 feet. How-
ever, the shade/ornamental distinction also took into consideration the
perceived tree value or use from the perspective of the residents, who
often preferred ‘ornamental’ species for their aesthetic appearance as
opposed to their capacity to provide shade (Mat Cahill, personal com-
munication; Nguyen et al., 2017). Previous research has found that
residents value tree aesthetics highly, and some residential planting
programs have shifted their species palette accordingly (Almas and
Conway, 2017; Locke and Baine, 2015; Nguyen et al., 2017). Therefore,
the Tree Type variable can be considered a hybrid of average biological
characteristics and also resident perceptions of tree utility.

Additional variables were selected from the MA Office of
Geographic Information archive (MassGIS, www.mass.gov), MA town
tax assessors, the U.S. Census, a high spatial resolution landcover map
of the area, and from the field sampling campaigns. This range of
variables was intended to capture a wide range of possible influences on
tree mortality, with particular emphasis on anthropogenic predictors of
mortality. Trees inherited attributes from polygon- and raster-based
data layers based on spatial intersection, yielding a dataset in which
individual trees were the units of analysis, rather than properties, tax
parcels, or land cover pixels.

Candidate variable selection was partially informed by previous
studies that have investigated drivers and predictors of urban tree
mortality (Table 1), and partially from site-specific knowledge and
communications from MA DCR staff. The variables measured by tax
parcel data – date of building construction, last property sale price and
date, and parcel size and value – were not found to have been com-
monly analyzed in the available literature, and therefore represent a
novel suite of useful information. The variable Years Since Built may
capture several unmeasured social/urban-environmental variables, of
which the most important for tree mortality is recent soil disturbance
from construction-induced soil compaction and soil quality, which
could negatively affect tree health and thus influence mortality (Hauer
et al., 1994). The study area contains a wide range of building con-
struction dates, and the geographic pattern of this variable is linked to
neighborhoods and housing developments (Fig. 2).

A summary of all numerical explanatory variables is shown in
Table 2. This table indicates the mean and standard deviation of each
variable, grouped by mortality status, which provides an initial quan-
titative description of the dataset, and also indicates statistical separ-
ability of the mean values between the live and dead groups.

To ensure that species type were not associated with geographical or
statistical clusters of any variable, the mean value of each variable was
calculated for each species, and was used to calculate the z-score re-
lative to the entire dataset. For example, the mean value of days since
sale for Colorado spruce was 5278, compared to the overall mean of
5503, yielding a z-score of −0.06 for this species and variable. This
process showed that only 1% of species/variable combinations had
mean values outside of the 95% confidence level, indicating a lack of
statistical clustering of the variables by species. The implication of this
is that species were planted across a representative range of all vari-
ables. Additionally, spatial overlay analysis did not detect spatial
clustering of any given species.

3. Methods

Predictors of juvenile tree mortality were determined using a three-
step process. First, mortality rates for the age cohorts and species were
calculated. This step was used to contextualize the exploratory and
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Fig. 2. Map series showing spatial distribution of four of the candidate predictor variables. This figure is provided to contextualize the study area.

Table 2
Explanatory variable summary, grouped by tree mortality status. The right-most column indicates statistical separability, based on a two-tailed t-test between the live and dead means.

Live (n= 1363) Dead (n= 505)

Explanatory Variable Mean SD Mean SD Significant Difference? (90% CLa)

Days Since Planted 1990.51 167.39 1981.36 147.29 No
Days Since Sale 5584.2 3588.72 5353.61 3436.58 No
Impervious Cover within 10m diameter 23.6 37.7 16.56 32.22 Yes
Last Sale Price 135040.32 194887.88 151891.62 294273.95 No
Medan Home Value 272146.22 64926.41 277720 78760.48 No
Median House Income 68842.81 19121.04 70238.45 20719.06 No
Number of Trees Planted 14.63 19.07 16.73 19.68 Yes
Parcel Size 3.53 30.21 1.86 5.93 Yes
Parcel Value 1046434.9 11389495 336406.93 560090.54 Yes
Population Density 1305.44 1090.68 1181.04 1074.3 Yes
Renter Proportion 0.25 0.2 0.23 0.2 No
Total Households 529.64 245.58 511.47 234.05 No
Total Population 1363.99 675.33 1343.52 664.63 No
Years Since Built 57.19 40.65 55.77 46.43 No

a Confidence Level.
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modeling steps. After basic data description, the next step was to
narrow the suite of candidate predictor variables down to a manageable
subset by estimating relative variable importance. This exploratory step
provided a small subset of predictor variables for use in modeling
mortality likelihood.

3.1. Mortality

We use the term ‘raw mortality’ to refer to the simple ratio between
the number of dead and total trees from a given planting season year.
Raw mortality rates for the study time period were calculated over the
entire dataset, and also for subsets of each species and each planting
season year. We also calculated annual mortality, defined by:

mannual = 1− (Nt/N0)1/t (1)

where N0 and Nt are population numbers at the beginning and end of
time interval t (Roman et al., 2016). In this study, N0 was the number of
trees planted during each season, and Nt was the number of trees alive
at the time of observation interval t. Note that mortality in the context
of urban forests includes both trees observed standing dead and those
that were removed (Roman et al., 2016). An overall annual mortality
rate was calculated by the average of annual mortality rates from each
planting season year.

3.2. Determining variable importance

For initial data exploration and description, and to contextualize
further analysis, Chi-squared tests for association and t-tests for separ-
ability of means were performed between candidate predictor variables
and mortality status. Chi-squared tests were used to determine the
statistical significance of individual categorical variables on tree mor-
tality, using a 90% confidence level. Mortality was tested against tree
placement (front/back yard), tree functional type, and planting season
year (Table 4). Additionally, t-tests were used to indicate significant
difference between numerical variable means, based on mortality status
(alive/dead), using a 90% confidence level (Table 2). Based on the
initial importance of planting season year and tree type, further in-
vestigations of mortality were conducted on twenty overlapping subsets

of the dataset, defined by unique combinations of these two categorical
variables. Therefore, twenty subsets of the overall dataset were created
using each combination of three ‘Tree Type’ values for all planting
seasons (all trees, conifer, deciduous shade, ornamental shade), and
each ‘Planting Season Year’ (fall 2010, spring 2011, fall 2011, spring
2012). This provided mortality information relevant to the overall da-
taset, as well as for age cohorts and tree stature groups.

The main analysis relied on a two-step approach. First, Conditional
Inference Trees (CIT) (Hothorn et al., 2006; Strobl et al., 2009, 2008)
were used to systematically explore each candidate variables’ influence
on mortality for various subsets of the population. CIT analysis is an
ensemble method for recursively partitioning predictor variables to
non-parametrically predict a response variable (Hothorn et al., 2006;
Strobl et al., 2009, 2008, 2007), similar to Random Forests (Breiman,
1999). This step provided lists of relevant variables to be used in the
second step: logistic regression to quantify the effects of each variable
on the probability of mortality. This two-step approach was used to
distill the large quantity of candidate variables into an appropriate
subset of variables to be used in logistic modeling, which provides in-
formation regarding specific changes in probabilities of mortality based
on changes in the explanatory variables. This process was also helpful
given that multiple subsets of the tree dataset were analyzed, based on
tree type and date of planting; the systematic exploration of the large
dataset with CIT facilitated rigorous logistic modeling for these subsets.

CIT analysis is capable of incorporating highly correlated and in-
teracting predictor variables (Strobl et al., 2007), producing robust
class predictions by randomizing both the observations and predictor
variables at each node. This method differs from ‘traditional’ Random
Forests in that it produces unbiased partition trees, which do not favor
continuous variables or categorical variables with many factor levels
(Hothorn et al., 2006; Strobl et al., 2007). The R ‘party’ package (Strobl
et al., 2009) was used to conduct CIT analysis. To ensure robust vari-
able importance rank, 10,000 conditional inference trees were gener-
ated for each model, and three variables were used for each split node.

The CIT output of primary interest was the rank of conditional
variable importance, which is a measure of the predictive power of each
variable that adjusts for correlations between predictor variables, and is
conditional in the sense of beta coefficients in regression models (Strobl
et al., 2008). The resulting variable importance scores were ranked and
displayed on dot charts such as Fig. 3, facilitating isolation of the most
important variables for inclusion in logistic regression modeling. For
almost all models, clear break points were found separating the im-
portant and unimportant variables, as shown in Fig. 3, indicated by the
red vertical line. For models without a clear break point, all variables
with mean decrease in accuracy scores above zero were used for logistic
modeling. CIT was conducted on the twenty subsets of the dataset de-
scribed above, yielding twenty CIT models, each with a ranking of
conditional variable importance.

Preliminary modeling determined that Genus and Species were
overwhelmingly the strongest predictors of tree mortality. Based on this
dominance in the mortality signal, and the fact that these variables
have a large number of factor levels, both were excluded in subsequent
CIT and logistic regression modeling. However, Species were grouped
by tree stature/functional group, represented by the Tree Type variable,
as described above.

3.3. Logistic regression of mortality

Logistic regressions were run for each subset of the data described
above, using the most important variables as determined by CIT for
each subset. This yields estimates of change in mortality odds ratio
based on changes in the predictor variables, which is an easily inter-
preted quantity. A 90% confidence level was used to determine statis-
tical significance of variables in the logistic regression models.
Reference level coding was used for categorical variables, meaning that
categorical variable values (i.e. factor levels) were compared against

Fig. 3. Example scree plot generated from CIT conditional variable importance. The red
line defines the inflection point, at which the mean decreases in accuracy become dis-
tinctly smaller with each variable. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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one another using the first value as a reference. Therefore, the number
of coefficients reported is one less than the number of distinct values
(factor levels). Odds ratios were calculated from the coefficients for
meaningful interpretations. In many cases the variables had a large
range in terms of their inherent units (e.g. Median Home Value is re-
ported in dollars), and so the results section below describes some of the
odds ratios in terms of a 1 unit change in the predictor.

4. Results

4.1. Tree mortality

The overall mortality of the most frequently planted species of trees
is presented in Table 3, which shows the number of observations and
the overall mortality rate for each. Several species showed extremely

high or low mortality rates; however, this is due to very small sample
sizes for less frequently planted species, and therefore should be in-
terpreted with caution. Notable highlights from Table 3 include low
mortality for Pinus strobus (3.03%, n= 33), while the very frequently
planted Abies concolor showed a much higher 42.48% mortality
(n= 266). Also, while Quercus palustris showed low mortality (7.41%),
other Quercus species fared much worse, with Quercus bicolor, rubra,
alba, and coccinea at 28.0%, 43.1%, 50.0%, and 53.85%, respectively.
The cumulative mortality rate for the entire dataset was 26.7%, and the
average annual mortality rate was 6.11% (Table 4). These two metrics
were calculated for each planting season year. Chi-squared analysis
revealed that trees planted in front yards had significantly lower mor-
tality than those planted in back yards, and that ornamental trees had
significantly lower mortality than shade and conifer trees (Table 4).
Also, this analysis indicated a significant difference in the mortality
rates by Planting Season Year.

4.2. Conditional inference tree variable importance

The candidate variables for mortality (Table 1) were selected with
CIT variable importance for each of the twenty data subsets defined
above and spanning 5 planting season by 4 tree type conditions. The
summary of variable importance for each of these subsets, representing
combinations of planting season and tree type, is shown in Table 5. For
the overall dataset, including all tree types and planting seasons, six
variables were selected based on the variable importance: Days Since
Tree Planted, Years Since Built, Number of Trees Planted, Proportion
Renter Occupancy, Tree Type, and, Median Household Income. Split-
ting the dataset up by tree type produced notably different groups of
important variables, as shown reading left to right in Table 5. For all
shade trees, six variables were selected, with some overlap: Days Since
Tree Planted, Impervious Cover within 10m, Yard Side, Last Sale Price,
Tax Parcel Size, and Median Home Value. Similarly, the subsets of all
conifer and all ornamental trees produced eight important variables
each, with some amount of overlap between variables, but with each
subset representing a unique suite of variables which best predicted
mortality.

Due to the large number of subsets analyzed, and the unique suite of
predictor variables determined with CIT for each, a summary table was
created in order to determine the most frequently selected variables
(Table 6). This table indicates the number of times each variable was
selected as important in any of the planting season/tree type subsets.
The most commonly selected variable was Years Since Built, referring to
the age of the structure whose property contains the tree in question;

Table 3
Summary of mortality by species.

Species Name Tree
Type

Total
Observations

Overall
Mortality
Rate (%)Latin Common

Styrax japonicus Japanese
Snowbell

O 1 100.00

Crataegus Hawthorn O 1 100.00
Styphnolobium

japonicum
Japanese
Pagoda

O 1 100.00

Pinus nigra Austrian Pine C 3 100.00
Abies balsamea Balsam Fir C 17 64.71
Quercus coccinea Scarlet Oak SD 13 53.85
Quercus alba White Oak SD 6 50.00
Nyssa sylvatica Blackgum SD 57 49.12
Liquidambar

styraciflua
Sweetgum SD 57 45.61

Quercus rubra Red Oak SD 58 43.10
Gingko biloba Gingko SD 21 42.86
Abies concolor White Fir C 266 42.48
Larix spp. Larch C 10 40.00
Abies fraseri Fraser Fir C 21 38.10
Fagus spp. Beech SD 38 34.21
Genus Hophornbeam O 28 32.14
Picea pungens Colorado Spruce C 121 31.40
Carpinus caroliniana Hornbeam SD 34 29.41
Amelanchier spp. Serviceberry O 111 28.83
Chionanthus

virginicus
Fringe Tree O 28 28.57

Quercus bicolor Swamp White
Oak

SD 25 28.00

Metasequoia spp. Dawn Redwood C 65 27.69
Picea omorika Serbian Spruce C 15 26.67
Stewartia

pseudocamellia
Japanese
Stewartia

O 20 25.00

Ostrya spp. Tulip SD 42 23.81
Cornus spp. Dogwood O 132 21.21
Juniperus spp. Juniper C 38 21.05
Picea abies Norway Spruce C 21 19.05
Gleditsia triacanthos Honey Locust SD 85 16.47
Halesia tetraptera Carolina

Silverbell
O 7 14.29

Malus spp. Crabapple O 52 13.46
Prunus spp. Cherry O 130 11.54
Thuja occidentalis American

Arborvitae
C 136 11.03

Tilia cordata Littleleaf Linden SD 59 10.17
Zelkova spp. Zelkova SD 20 10.00
Syringa reticulata Japanese Tree

Lilac
O 87 9.20

Quercus palustris Pin Oak SD 27 7.41
Pinus strobus White Pine C 33 3.03
Cladrastis kentukea Yellowwood SD 3 0.00
Oxydendrum

arboreum
Sourwood SD 1 0.00

Magnolia acuminata Cucumber
Magnolia

O 1 0.00

Pyrus calleryana Bradford Pear O 1 0.00

Table 4
Summary of mortality by planting season and tree type. Note that the total number of
trees used for mortality calculations was smaller than the total sample size (n= 1895)
due to several trees that could not be located.

Tree Type Alive Dead Overall
Mortality Rate

Chi2 P-
value

Conifer 501 223 30.8 <0.01
Ornamental 481 120 19.97
Shade 381 162 29.83

Yard Side Alive Dead
Back Yard 788 317 1105 <0.01
Front Yard 468 139 607
Other 107 49 156

Planting
Season

Alive Dead Annual
Mortality

Overall
Mortality

Fall 2010 241 60 4.35 19.93 <0.01
Spring 2011 589 210 5.92 26.28
Fall 2011 305 175 8.67 36.46
Spring 2012 228 60 4.56 20.83

Grand Total 1363 505 6.11 27.03
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Table 5
Variable importance as defined by CIT, calculated by mean decrease in accuracy. Results are shown for different planting seasons and for different tree type groups, as well as for all
conditions lumped together. Grey shading indicates that the variable was important, relative to other candidate variables, and was therefore included in logistic regression modeling.
Significance codes are as follows: ^= 0.1, *= 0.05, **= 0.001, and ***= less than 0.000. The sign of each coefficient indicates whether the variable increased (+) or decreased (−) the
probability of tree mortality, provided a one-unit increase in the given variable. For categorical explanatory variables, the significant category is indicated in parentheses. The coefficients
were converted into Odds Ratios (OR) to facilitate interpretation, since the odds ratios can be directly compared.
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this variable was selected in fourteen of the twenty CIT models. The
subsequent five most frequently selected variables predominantly re-
flected the characteristics of the property on which the tree was
planted, with only a single purely biophysical variable: Days Since Tree
Planted. In descending order, they were: Proportion Renter Occupancy,
Days Since Tree Planted, and Tax Parcel Size, Number of Trees Planted,
and Tax Parcel Value. This summary of variable selection con-
textualizes the following stage of the analysis, in which the selected
variables were used for logistic regression.

4.3. Logistic regression modeling of mortality

The variables deemed most important by CIT analysis of each data
subset were used as predictor variables in logistic regression models for
the same subset. The overall results of this process are shown in Table 5
and Table 6. In Table 5, grey cells indicate statistically significant
variables found from the CIT-determined important variables. For each
significant variable, the coefficient estimate and corresponding odds
ratio are reported.

The sign of each coefficient indicates whether the variable increased
(+) or decreased (−) the probability of tree mortality, provided a one-
unit increase in the given variable. For categorical explanatory vari-
ables, the significant category is indicated in parentheses. For the entire
dataset of all three tree types and all planting periods, the only sig-
nificant variable was Tree Type, with Ornamental trees significantly
less likely to die than shade or coniferous trees (p-value< .000). This
implies that, for the entire population of replanted trees, the odds of an
ornamental tree dying were approximately 50% less than the reference
group, which in this case is conifer by default.

Narrowing the data by Tree Type and planting date (represented by
seasons in the table) changed the group of CIT-selected variables found
to be important, and therefore led to different significant predictors of
mortality. However, the conifer subsets tended to retain the most im-
portant variables, as reflected by the larger number of rows under the
conifer heading in Table 5. For all deciduous shade trees, days since
planting, quantity of impervious cover surrounding the tree, and
median home value were all significant and positive, indicating that
these trees had increasing chances of mortality as they aged, were more
likely to die when planted beside higher quantities of impervious sur-
faces (e.g. sidewalks, driveways, buildings), and had higher mortality
when planted beside more expensive homes. Conifer trees showed re-
verse signs for the significant variables Days Since Tree Planted and

Imperious Cover within 10m2, and also showed a significant reduction
in mortality associated with higher proportion of renter occupancy.
With each additional 10m2 of impervious cover, conifer trees showed a
roughly 1% reduction in mortality odds, whereas shade trees showed a
roughly 2% increase.

Finally, ornamental trees showed five significant variables: Days
Since Tree Planted (+), Median Home Value (+), Tax Parcel Value
(+), Number of Trees Planted (+), and Last Sale Price (−). As with
deciduous shade trees, ornamental shade trees experienced a higher
probability of mortality as time since planting increased, unlike with
conifers, which saw the opposite tendency. Also like the shade category,
ornamental trees showed increased mortality risk with increasing
median home value. However, these trees showed lower probability of
mortality for higher values of Last Sale Price, indicating a potentially
more complex relationship. The other significant variables, Tax Parcel
Value, Number of Trees Planted, and Last Sale Price, were unique to
ornamental trees. The number of trees planted on the property was also
an important and significant variable predicting ornamental trees
mortality, with an approximately 2.7% increase in odds of mortality for
each additional tree planted.

The remaining models shown in Table 5 represent smaller subsets of
the data, as defined by the subheadings. Overall, the most frequently
significant variables were Proportion of Renter Occupancy and Days
Since Tree Planted, which were each significant in four models
(Table 6). Years Since Built and Tree Type (Ornamental) were the
second most frequently significant variables, appearing in three models
each, followed by Number of Trees Planted, Impervious Cover within
10m2, Median Household Income, and Total Households, each of which
appeared twice. The twenty data subsets varied substantially in vari-
ables associated with mortality, but using the summary tables it is
possible to identify the variables most important, overall, for predicting
juvenile tree mortality from this population.

5. Discussion

The overall annual mortality rate of 6.11% (Table 4) was slightly
higher than the range of 3.5–5.1% reported in a recent meta-analysis of
street tree mortality rates (Roman and Scatena, 2011). However, this
reported range is not directly comparable, since the populations studied
in the meta-analysis were specifically street trees, whereas the bulk of
trees studied here were planted in residential yards, often far from the
nearest street. Also, the Roman et al. analysis was not limited to

Table 6
Summary of most commonly important candidate variables, based on CIT conditional variable importance. The first column indicates the number of times the given variable was found to
be important by the CIT modeling. The subsequent three columns indicate the number of times that variable was significant in subsequent logistic modeling, and indicate the sign/
direction of the association with mortality.

Variable Count of Variable in all
Models

Count of Variable Significant in
Logit

Count of Negative Logistic Regression
Coefficient

Count of Positive Logistic Regression
Coefficient

Years Since Built 14 3 2 1
Proportion Renter Occupancy 9 4 3 1
Days Since Tree Planted 8 4 1 3
Tax Parcel Size 7 0 0 0
Number of Trees Planted 6 2 0 2
Tax Parcel Value 6 1 0 1
Impervious Cover within 10m 4 2 1 1
Days Since Parcel Sale 4 0 0 0
Last Sale Price 3 1 1 0
Median Household Income 3 2 2 0
Population Density 2 0 0 0
Total Households 2 2 1 1
Total Population 2 0 0 0
Median Home Value 1 1 1 0
Irrigation 1 0 0 0
Yard Side 0 0 0 0
Land Use 0 0 0 0
Tree Type (Ornamental) 3 3 2 1
Tree Type (Shade) 1 1 1 0
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juvenile trees, which are known to have higher mortality rates than
mature trees (Miller and Miller, 1991; Roman et al., 2014a; Shermana
et al., 2016). Therefore, the annual mortality rates presented here can
be viewed as roughly commensurate with previous findings and ex-
pectations, such as Roman et al. (Roman et al., 2014b), who showed a
6.6% annual mortality rate at five years after planting. Mortality was
higher for younger tree cohorts. While these data represent a relatively
short time period, the trend of decreasing annual mortality rate with
increased tree age conforms to the expectation that mortality falls as
juvenile trees become established (Roman et al., 2016). The fact that
the Days Since Planted variable was positively associated with mortality
risk seems contradictory to this finding,

Initial CIT models for the overall dataset including all trees and all
planting time periods indicated that the most important predictor of
mortality was tree species, a finding that is strengthened by the widely
varying mortality rates presented in Table 3. The dominance of tree
species on mortality was initially determined using Species and Genus
variables in CIT models, which gave overwhelming importance to these
two variables. The fact that species and genus are strong predictors of
mortality could be attributed to species-specific tolerances for various
environmental stressors (e.g., water, salt, heat), but it should be noted
that each tree was sited and planted by experienced arborists, so it is
unlikely that improper species site selection caused this large mortality
signal.

The strong prediction of mortality based on tree species was the
rationale for subdividing the data into structural/perceived-value
groups with the Tree Type variable. These broad groups based on tree
stature and resident perception were necessary because forty-nine
species were represented in the dataset, resulting in forty-nine factor
levels to incorporate as dummy variables in logistic regression, which
was deemed inappropriate. The Chi-squared analysis performed on Tree
Type versus mortality confirmed the statistical separability of the tree
stature groups.

An important finding from the overall dataset is that even when
species data are aggregated to the tree stature type (Tree Type), orna-
mental trees were shown to have significantly lower overall mortality
rate than shade and conifer trees, with rates of 21%, 29%, and 30%,
respectively. Ornamental trees also showed reduced mortality odds in
the overall logistic regression model, relative to conifer and shade trees.
This indicates that either the species in this group are hardier or better
suited to the study area environment and climate, or alternatively that
these trees received additional stewardship and care from homeowners.
Such stewardship has been shown to be the most important predictor of
juvenile tree mortality by previous studies (Koeser et al., 2014; Roman
et al., 2014b; Vogt et al., 2015). Additionally, a separate but related
study of homeowner maintenance practices in the Worcester tree
planting program is ongoing, and to date has found initial evidence that
homeowner irrigation and maintenance practices are variable and may
affect mortality (Rogan and Martin, 2017). This parallel study has also
confirmed that homeowner tree selection is biased towards ornamental
trees, which are valued for their appearance (Locke and Baine, 2015).
This value is demonstrated by the fact that ornamental trees are sta-
tistically more likely to be planted in the front yard, relative to the back
yard of residences, based on homeowner preferences (Martin and
Rogan, personal communication). Other residential yard tree programs
have similarly reported that participants favor ornamental trees
(Nguyen et al., 2017). While resident preferences are important in at-
taining active tree stewardship, the goal of the DCR reforestation pro-
gram is to regain as much canopy as possible, so as to offset the loss of
30,000+ mature shade trees. Therefore, the role of smaller ornamental
trees must be limited, as such trees do not have smaller potential for
ecosystem services provision. The DCR program’s planting lists have
been formulated to provide residents with a variety of options while
also attaining a biodiverse urban tree canopy, but nevertheless a con-
certed effort has been made at the individual level to encourage the
planting of shade trees rather than ornamental trees. Although the

planting list itself is not biased to smaller stature trees, it has become
evident that resident choices are (Mat Cahill, personal communication).

The mortality differences between tree stature classes are particu-
larly relevant in the context of long-term ecosystem services.
Ornamental may provide better initial resident satisfaction based on
aesthetic value, but their smaller mature stature implies lower overall
provision of evaporative cooling, air and water filtration, and water
runoff control than larger stature trees, represented by the ‘deciduous
shade’ and ‘conifer’ classes (McPherson, 1992; McPherson et al., 2011;
Nowak et al., 2008). The finding that shade trees died at a higher rate
implies either that larger numbers of such trees must be planted in
order to attain the same mature cohort size, or that additional stew-
ardship be given to shade trees to correct this imbalance. Findings from
yard tree survival studies in Sacramento have had mixed results with
regards to tree stature (Ko et al., 2015b; Roman et al., 2014b). This
suggests the need for more research into the relationship between tree
stature classes and functional groupings and mortality outcomes, par-
ticularly with respect to potential intersections with resident percep-
tions and values regarding different tree forms.

The age of homes (or other buildings) associated with newly planted
trees was found to be an important variable for the majority of the
twenty data subsets, indicating that this variable (Years Since Built)
likely contains valuable information for understanding tree mortality.
This variable showed no strong correlations with any other explanatory
variable (r < 0.3). Mortality was more often higher for trees located in
properties with more recently built homes.1 However, the variable was
only found to be significant in three of the subsequent logistic models,
so its overall contribution is unclear. The relevance of this variable to
tree health could be related to construction or landscaping-related soil
compaction and quality, both of which may be poorer in more recently
built housing stock (Coder, 2000; Kozlowski, 1999). The map of this
variable presented in Fig. 2 provides some geographic context. The city-
center, located in the southwestern portion of the map, shows pre-
dominantly older building/housing stock, while Burncoat and Green-
dale neighborhoods located towards the center of the map show more
intermediate building ages. Moving away from the city center towards
the edges of the map, building ages decrease, representing the expan-
sion of urban and residential zones. This figure also shows tree plant-
ings as red points, and clusters of plantings are apparent in neighbor-
hoods of different building ages. While the immediate interpretation of
Years Since Built may be unclear or indirect, it is likely to be an im-
portant consideration for future research, since it was empirically found
to be an important variable by the majority of models.

The importance of Number of Trees Planted (important six times,
significant two times; Table 6) is another interesting finding, and is
potentially linked to tree stewardship. For both models in which this
variable was found to be significant, it had a positive relationship with
mortality odds, meaning that the more trees a residence received, the
more likely a given tree was to die. This potentially implies a compe-
tition issue for either light and nutrients or a resident’s resources for
tree care. This is consistent with findings from a yard tree program in
Sacramento (Roman et al., 2014b), which similarly found that number
of trees planted per property was connected to higher mortality. Pro-
gram staff there suspected that the difficult physical work of taking care
of many trees was not feasible for some residents.

Including Years Since Built, four of the six most frequently CIT-se-
lected variables related to the resident property characteristics:
Proportion Renter Occupancy, Tax Parcel Size, and Tax Parcel Value.
These variables were included in the candidate list as proxies for so-
cioeconomic conditions and the built environment in which each tree

1 Many variables reported small increases in odds of mortality per unit change, but note
that this is an artifact of the large ranges of most variables relative to their unit size (e.g.,
Median Home Value is reported in dollars), and so small changes in predicted odds form a
one-unit change in the variable should be considered meaningful when they are sig-
nificant at a given confidence level.
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was planted. Increases in the proportion of renter occupancy tended to
result in higher mortality odds, with three logistic models having ne-
gative coefficients and one having a positive coefficient for this vari-
able. This finding is not surprising given that irrigation and other
stewardship activities are very important for tree survivorship during
the establishment phase (Boyce, 2010; Roman et al., 2015), and renters
are less likely to contribute to active stewardship of the trees near their
dwelling. Tax Parcel Size was not significant in any logistic models,
despite being found important by seven CIT models. However, other tax
parcel variables, value and last sale price, were both significant in the
same model: ornamental trees, all planting seasons. For this subset,
higher parcel value was associated with increased mortality, but higher
last sale price associated with decreased mortality. This implies that the
most valuable parcels in the study area saw slightly higher than average
ornamental mortality, while simultaneously mortality odds decreased
from increased recent sale price. This may relate to the use of orna-
mental trees as a means of increasing property value due to aesthetics,
which would be more important for properties being bought and sold
(last sale price), as opposed to those under stable ownership (parcel
value). Further research is needed to fully contextualize these inter-
pretations, and to understand the tree selection and placement from a
homeowner perspective

Impervious surface had a similarly nuanced relationship with mor-
tality, showing positive and negative associations with mortality odds
for all shade trees and conifer trees, respectively. In this study, im-
pervious surfaces included all paved surfaces. For shade trees, each
additional 10m2 of impervious cover within a 10m radius of a given
tree was associated with a 2% increase in mortality odds. This finding
supports the conventional understanding that urban trees close to
sidewalks and other impervious surfaces suffer from reduced soil vo-
lume and constrained root growth space (Grabosky and Gilman, 2004;
Hauer et al., 1994; Sanders et al., 2013; Sanders and Grabosky, 2014;
Scharenbroch et al., 2017). Conversely for conifers, mortality likelihood

was higher with reduced impervious surface. While this appears to be
an unexpected result, it is likely that this relationship results from the
use of conifers planted as privacy screens towards the extreme edges of
properties, particularly in back yards with little or no impervious sur-
face within 10m. These locations tended to be as far as possible away
from the home, often behind fences, shrubbery, or other existing trees,
making them less visible to the homeowner. In addition to the reduced
visibility of such trees, it is likely that their physical distance made
regular irrigation and care more difficult. It is possible that these less
accessible, less visible trees suffered from reduced stewardship, and
therefore increased mortality.

CIT was found to be an effective means of reducing a large number
of candidate variables for use in logistic regression modeling, based on
its ability to handle a large number of potentially collinear predictor
variables. While conventional Random Forests potentially give undue
variable importance to categorical variables, CIT did not show this
problem, with three of the four categorical variables ranked last in
terms of frequency of use in the models. Although CIT can itself be used
for classification of mortality status (alive vs dead), the fact that it is an
ensemble method means that determining the specific relationships
between each predictor variable and mortality is unclear. A single
constituent classification tree, as shown in Fig. 4, is very effective for
understanding subsets of mortality, but lacks the analytical power of
CIT. The variable importance derived from CIT provided unbiased,
conditional rankings of predictor variables, and in itself is a useful in-
formation product. The summary of variable importance and sig-
nificance frequency in all models (Table 6) provides a perspective on
predictor variables from a range of tree ages (i.e. planting season) and
structural types (i.e. Tree Type), which is important because of the
widely differing suite of variables used for each data subset. However,
important and statistically significant differences were found in the best
predictor variables and also the direction of variable influence on
mortality probability. This indicates that it is appropriate and useful to

Fig. 4. Example of an individual conditional inference tree. Note that a single tree cannot be used to interpret the ensemble of trees used in the entire model. In this tree, the terminal
nodes at the bottom indicate the node purity by proportion alive (coded as 0) and dead (coded as 1).
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analyze age and type cohorts of young trees separately, which can
provide more specific information than when using undifferentiated
datasets.

Based on the results, it is evident that in this planting effort, species
was an important variable in determining mortality. This is shown by
the raw mortality rates in Table 3 and extremely high variable im-
portance of species in the CIT models, relative to all other variables (not
shown). In addition to species-specific water, heat, and other stress
tolerances, it is worth noting that the nursery sourcing of trees for
planting may have influenced mortality. In particular, Abies concolor
(white fir) were noted by planting crews to have poor soil quality upon
delivery, which may have contributed to the high mortality rate of this
species, which coincidentally was the most frequently planted tree to be
surveyed (M. Cahill, personal communication). It is also important to
note that Thuja occidentalis (American arborvitae) posed a challenge for
measurement and assessment, as these trees tended to be planted in
closely spaced lines, making individual tree identification difficult.

Future research could incorporate additional field data and poten-
tial explanatory variables to further nuance and characterize juvenile
tree mortality. An extended time series of tree characteristics, including
condition and mortality status, will allow for supplemental age/cohort-
based mortality analysis, exploring whether predictors of mortality
change over time or are constant for particular planting seasons. Also,
further investigation could incorporate additional variables, such as
household-level vegetation diversity, homeowner stability, household
vacancy, and individual sociodemographic information, all of which are
potentially important in determining resident attitudes towards and
interactions with trees (Lin et al., 2017; Meléndez-Ackerman et al.,
2014; Roman et al., 2014b).

6. Conclusions

This study investigated a tree planting program somewhat different
from many others previously studied and reported on in the literature.
While many studies (Nowak et al., 2004; Roman and Scatena, 2011)
report on urban street tree mortality, few were found to report on
drivers or predictors of mortality for juvenile trees professionally
planted in private yards. Other studies of residential tree giveaway
programs (Ko et al., 2015a; Nguyen et al., 2017; Roman et al., 2014b)
involved trees that were distributed for residents to plant, rather than
professionally planted, and so the mortality signal was potentially
strongly influenced by the planting practices, rather than solely by
environment and post-planting stewardship. Nonetheless, our findings
concur with conclusions from those and other studies (Koeser et al.,
2013; Vogt et al., 2015) about the critical role of stewardship for ju-
venile tree survival. Mortality increased with an increasing number of
trees planted on a given property, implying that homeowner care and
resources are easily exhaustible. Additionally, tree type was found to be
an important predictor of mortality, with ornamental trees showing
lower occurrence of mortality than shade deciduous and coniferous
trees. Trees planted adjacent to more recently constructed buildings
showed increased mortality rates, suggesting that construction soil
disturbance may be an important consideration. The findings presented
here provide insights regarding predictors of juvenile tree mortality on
residential lands for land managers, non-profit tree giveaway programs,
local and state government planting initiatives, and private residents.
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