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Abstract
Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective
with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy
of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of
target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat
cycles compared to coarse resolution data. This study evaluated various spatial resolutions of
Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the
eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest
inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to
understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation.
Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the
predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory
and Analysis Program which relied on EVALIDator tool and national forest inventory data from the
2009–2013 cycle and (ii) within a large number of strips (∼1 km wide) predicted via LiDAR metrics at
30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were
highly related (R2> 0.66), although the R2 varied significantly across sites and resolution of
predictors. The mean and standard deviation of county-level estimates followed increasing and
decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB
estimates were larger than the LiDAR-based total estimates within the strips, however the mean of
AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions
obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at
resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

Introduction

Large scale estimates of aboveground biomass (AGB)
in a periodic and consistent fashion is critical
for understanding forest structure and productivity

and implementing strategic policies such as carbon
emission mitigation under the United Nations Frame-
work Convention on Climate Change (UNFCCC).
The US Department of Agriculture Forest Ser-
vice (USFS) conducts annual forest inventories and
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produces statewide and national estimates of car-
bon stocks and stock changes following a consistent
sampling design and protocols established under the
national Forest Inventory and Analysis (FIA) program
(Heath et al2011).TheFIAprogramprovides strategic-
level data from permanent sample plots distributed
over all land cover types and ownerships. However,
the FIA design-based estimates from the strategic scale
of inventory are reliable only to larger spatial scales
such as county-level (McRoberts 2008) because the
distribution of field plots is relatively sparse and inad-
equate for small-area (e.g. forest stands) estimation.
Further, studies based onFIA data across large domains
of space and time often encounter constraints because
of inconsistent sampling methods (e.g. intensity) and
insufficient or no field data (e.g. interior Alaska). A
sufficient number of representative sample plots can
provide reliable estimates of AGB, relying on extant
allometric models and expansion factors for the sam-
pling measurements. The FIA program has established
at least oneplot per2400 haof land, and sufficient num-
ber of plots for large-area estimates are determined
based on sampling error standards as defined in the
database description and user guide (Burrill et al 2017,
McRoberts 2008).

Satellite imagery integrated with the annual
national forest inventory data have the potential to
extend the sample plot attributes over large spatial
(wall-to-wall) and temporal scales. The systematic,
synoptic, and spatially complete characteristics of satel-
lite sensors along with free and open access to data
sources and processing/analysis opportunities have
enabled a reliable and cost-effective estimation of
AGB and carbon over large-areas in contrast to those
solely based on field data. In addition, availability of
free Landsat imagery in analysis-ready formats facil-
itates large area forest dynamics analyses at spatial
resolutions consistent with operational requirements
for resource managers. Landsat imagery is globally
captured at 30 m spatial and ∼16 day temporal res-
olutions via consistent bandwidths of multiple sensors
since 1984, and systematically rectified data are pub-
licly available from the archive of US Geological
Survey (Banskota et al 2014). This characteristic of
Landsat data enables national scale ecosystem moni-
toring and study of biomass dynamics in a systematic
and repeatable fashion (Wulder et al 2012). The fine
spatial resolution of Landsat data is more likely to
reduce uncertainty in AGB estimates because struc-
tural and compositional variability over a landscape
are better represented in 30 m pixels (Brosofske et al
2014, White et al 2016) than in coarse resolution
data such as MODIS imagery at 250–1000 m reso-
lutions (https://modis.gsfc.nasa.gov/). Another reason
for less uncertainty with Landsat data is the compat-
ible sizes of image pixels and ground sample plots in
most national forest inventories, in contrast to coarse
resolution data that record mixed spectral signatures
within a pixel. Satellite data with wider spatial coverage

and higher temporal resolutions (e.g. 2330 km swath
width and 1–2 days temporal frequency of MODIS
imagery) are further enriching the domain of spatial
predictors for regional scale estimation of AGB; how-
ever, their coarse resolutions impair the sensitivity of
predictors for AGB. The time-series data of multiple
sensors can also help reduce the impact of clouds and
aerosol contamination since the best available pixel
can be selected as the predictor variable (White et al
2014). Nonetheless, there are tradeoffs in the predic-
tion accuracy versus operational efficiency of optical
data as high spatial resolutions have to compromise
with low temporal resolutions of sensors.

Periodic mapping of AGB at a shorter time steps
(e.g. annual) over larger areas (e.g. statewide) using
Landsat-derived predictors can be unrealistic because
of the longer repeat cycle (∼16 day) and preva-
lence of extensive atmospheric noise in the spectral
signals. In addition, the need for leaf-on or growing-
season imagery to capture the spectral response of
broadleaves reduces the list of suitable Landsat imagery
for a season in a year. However, such a problem can
be solved with MODIS data because of high imag-
ing frequency (i.e. every other day) and similar or
better radiometric resolutions compared to Landsat.
The larger pixels of MODIS data do not necessar-
ily mean that pixel-level AGB prediction is invalid.
For example, Chen et al (2016) reported that when
LiDAR-derived grid metrics were aggregated to coarser
resolutions (from 13 m up to 390 m), pixel-level rela-
tive AGB prediction error decreased initially and then
flattened, and model predictors made a small con-
tribution to the total error in the predictions across
different cell sizes. A noted drawback of passive opti-
cal sensors is the issue of signal saturation in high
biomass areas with stocks above 300 Mg ha−1 (Zhang
et al 2014). LiDAR technology has evolved in the past
three decades because this active remote sensing sys-
tem provides an accurate three-dimensional profile of
forest structure and the metrics have been found to be
highly related with AGB and other structural attributes
(Deo et al 2016). While multispectral data provide
two-dimensional information on canopy coverage,
integration of height information from active sensors
such as LiDAR has the potential to improve AGB pre-
diction accuracy. However, LiDAR data cannot replace
(but augment) ground observations and need rep-
resentative sample plots to develop AGB prediction
models (Nelson et al 2017).

The effects of predictors’ grid size and field plot
configuration on the uncertainties of LiDAR-based
models have been reported in several studies (Hayashi
et al 2016, Tomppo et al 2016). However, optical
satellite data that provide wide and synoptic cover-
age have not been evaluated in any of the past studies
for the impact of pixel size on the AGB prediction
estimates. Unlike in small-scale operational planning,
regional- or national-scale forest carbon estimation
may not necessarily require a high resolution AGB map
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(Blackard et al 2008, Chen et al 2016). A regional or
national scale spatial inventory of AGB can be made
via a generic model selected for a diverse range of
forests (Deo et al 2017) and coarse resolution spa-
tial predictors can satisfy the accuracy standards for
national reporting and related strategic planning. For
example, if MODIS data at 250 m spatial resolution and
near daily repeat cycles produce accuracies similar to
Landsat data at 30 m resolution, then the issue of data
gap can be avoided. Additionally, intensive processing
and modeling time/efforts required with 30 m resolu-
tions of Landsat data can be minimized with aggregated
pixels at a coarser resolution.

The objective of this study was to evaluate the accu-
racyofAGBmodels for large-area estimationbasedona
range of spatial resolutions of Landsat-derived predic-
tors. To optimize the spatial resolution of predictors
for large area AGB estimation, we further evaluated
how well county-level estimates provided by models at
various spatial resolutions compared with the design-
based estimates of FIA field inventories. Since LiDAR
based models are known to produce high accuracy in
AGB estimation, we also compared the predictions for
wide strips (∼1 km) where extant AGB estimates are
available (Deo et al 2017).

Methods

Study area
The study area is comprised of three sites repre-
sented by Landsat scene WRS-2 path/rows of 14/32,
12/28 and 16/37 over Maine (ME), Pennsylvania-
New Jersey (PANJ), and South Carolina (SC), respec-
tively, across the eastern USA (figure 1). The sites
differ considerably in forest structure and compo-
sition due to substantial differences in geoclimatic
characteristics and variations in forest management
practices. Average annual temperatures are 5.2, 10.6
and 18.2 ◦C and average annual precipitations are 117,
123, and 120 cm for ME, PANJ and SC, respectively.
The terrain elevations range from 98–1138, 0–674,
and 0–114 m above sea level in ME, PANJ, and SC,
respectively. The sites differ in species composition
that characterize boreal and eastern deciduous forests
in ME (McCaskill et al 2011) and loblolly-shortleaf
pine, oak-hickory and oak-gum-cypress forest-type
groups in SC (Rose 2016). Mixed-oak, northern hard-
woods and loblolly/ shortleaf pine are the dominant
forest-type groups in the PANJ site (Crocker 2014,
McCaskill et al 2013).

Remotely sensed data
Landsat-8 surface reflectance images capturedby Oper-
ational Land Imager (OLI) sensor during the peak
growing seasons (July and August) of 2014, 2015
and 2016 that contained less than 5% cloud cover
per scene were acquired from the USGS Climate
Data Records (CDR 2017) via the ESPA on demand

interface (https://espa.cr.usgs.gov). The sites required
9, 7 and 8 scenes in ME, PANJ and SC, respectively
to cover the entire study area (supplementary table
1 available at stacks.iop.org/ERL/13/055004/mmedia).
The high-level image products from the CDR included
blue, green, red, near infrared and shortwave infrared
surface reflectance bands in addition to other derived
metrics and vegetation indices as described in Deo
et al (2017). Any cloud- and shadow-affected areas of
the raster layers were masked out before using them as
predictors in AGB estimation. There were altogether
19 spatial predictors at the original spatial resolution of
30 m that were subsequently resampled to 60, 90, 120,
150, 250, 300, 500, 750 and 1000 m spatial resolutions
(accordingly matching ∼2× 2, 3× 3, 4× 4, 5× 5, 8× 8,
10× 10, 17× 17, 25× 25 and 33× 33 windows of 30 m
pixels) via the aggregate function inArcGIS that yielded
mean input values to the output pixel.

Field data for model training
The field data for model training were based on the FIA
plots measured in 2014, 2015, and 2016 within each
of the study sites. The plots were selected so that the
year of plot measurements and Landsat observations
matched. There were 3849 plots of which 1766 were
in ME, 675 in PANJ, and 1408 in SC. The FIA plot
data for each site were attached to the co-located 19
predictors at each of the 10 spatial resolutions, and 10
generic reference (training) data frames (correspond-
ing to each of the resolutions) were created by pooling
over all plots at the three sites. In the spatial join-
ing of plot data with the fine resolution predictors
at 30 m grid (pixel), mean spectral values of predic-
tors from the 3× 3 pixel-window around the central
subplot was used because the FIA plot configuration
consisting of four subplots spread over a square block
of nine 30 m pixels. The plot AGB was calculated fol-
lowing the methods in Jenkins et al (2003) which
first employed allometric models to determine individ-
ual tree biomass. The mean AGB values for the plot
observations were 78.04, 136.57 and 97.36 Mg ha−1

and standard deviations were 43.99, 102.43 and
52.56 Mg ha−1 in ME, PANJ and SC, respectively.

Modeling and validation
Deo et al (2017) demonstrated that a generic model
combining data from multiple sites produces compa-
rable or even better accuracy than site-specific models
developed from local data only. So, a generic model
for each of the 10 resolutions was developed after
removing collinear and insignificant predictors (Deo
et al 2017). A multivariate variable screening based
on QR-decomposition, random forest based model
selection, and forward-backward stepwise regression
methods were followed to obtain a parsimonious set
of significant predictors for each training data frame.
The optimal sets of predictors selected were used
in ordinary least squares multiple linear regressions
(MLR) to construct AGB models for each of the
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Figure 1. Location of the study sites in Maine (ME), Pennsylvania-New Jersey (PANJ) and South Carolina (SC) across the eastern USA.
The vertical and horizontal bands are LiDAR strips acquired under a carbon monitoring system (CMS) program that also conducted
independent field plot measurements in 2014 within the strips.

resolutions. The model accuracies were noted in terms
of coefficient of determination (R2) and root mean
square error (RMSE).

The 10 AGB models were applied to each of the
sites to obtain estimates at different resolutions (raster
outputs). The prediction estimates were evaluated at
the county-level against the design-based estimates by
the USFS EVALIDator tool (Forest Service 2015) using
the FIA plots measured during the 2009–2013 cycle,
prior to the measurements of training plots in 2014,
2015 and 2016. Additionally, large-area prediction esti-
mates were compared with existing AGB estimates
based on LiDAR metrics at 30 m spatial resolution

for linear strips of about 1 km width for the same
sites (Deo et al 2017). The accuracies of predictions
by each of the models for the county scale and within
the widths of LiDAR strips were calculated in terms
of mean deviation (i.e. bias), RMSE and Pearson’s
correlation (r) amongst the predictions and the ref-
erences (i.e. EVALIDator and LiDAR strip estimates).
The bias, RMSE, standard error (SE) and correla-
tion of predictions and observations at pixel/plot-level
were also calculated using an independent set of
plot data (see, Deo et al 2017). The independent set
of plots was located only within the LiDAR strips
(figure 1).
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Table 1. Fit statistics of the aboveground biomass (AGB) models at various spatial resolutions of Landsat predictors, and validation statistics
based on the comparison of observed and predicted AGB at the independent plot locations.

Grid size (m)

of model

predictors

Model RMSE

(Mg ha−1)

Model Adj. R2 Significant variables in

the model selectiona
Validation statistics based on the model predictions and

observations (Mg ha−1) at independent plots for all three sites

combined

RMSE SE bias r

30 64.38 0.229 B3, B6, EVI, MSAVI,

NDVI, SAVI, TCG,

TCW

69.34 5.39 24.83 0.58

60 65.27 0.207 B2, B3, B7, EVI,

MSAVI, NBR, NBR2,

NDVI, SAVI, TCG,

IFZ

71.40 5.55 27.20 0.59

90 65.58 0.199 B2, B3, B7, EVI,

MSAVI, NDMI,

NDVI, SAVI, TCG,

IFZ

72.73 5.59 28.50 0.56

120 66.45 0.178 B3, B5, EVI, MSAVI,

NBR, NBR2, NDVI,

SAVI, TCB, TCW, IFZ

74.32 5.64 29.95 0.53

150 66.66 0.173 B3, B6, EVI, MSAVI,

NBR, NDVI, SAVI,

TCG, TCW, IFZ

74.67 5.74 31.03 0.55

250 67.93 0.141 B3, B5, EVI, MSAVI,

NDMI, NDVI, SAVI,

TCB, TCW

75.89 5.75 33.10 0.54

300 68.26 0.133 B3, B5, EVI, MSAVI,

NDMI, NDVI, SAVI,

TCB, TCW, IFZ

76.55 5.78 33.29 0.54

500 68.78 0.119 B3, B5, EVI, MSAVI,

NDMI, NDVI, SAVI,

TCA, TCB, TCW, IFZ

79.50 5.92 37.11 0.51

750 69.60 0.098 B3, B5, EVI, MSAVI,

NDMI, NDVI, SAVI,

TCB, TCW, IFZ

83.29 6.32 35.42 0.34

1000 69.89 0.091 B2, B3, B5, B7,

MSAVI, NBR2, NDVI,

SAVI, TCB, DI, IFZ

80.78 6.02 36.91 0.48

a The individual predictors are as follows: B2- band2 or blue band, B3- band3 or green band, B5- band5 or near infrared band, B6- band6

or shortwave infrared 1 band, B7- band7 or shortwave infrared 2 band, NDVI- normalized difference vegetation index, NDMI- normalized

difference moisture index, EVI- enhanced vegetation index, SAVI- soil adjusted vegetation index, MSAVI- modified soil adjusted vegetation

index, IFZ- integrated forest z-score, TCB- tasseled cap brightness, TCG-tasseled cap greenness, TCW-tasseled cap wetness, and TCA- tasseled

cap angle (see, Deo et al 2017).

Results

The accuracy of models decreased with increasing
pixel size of the predictors (table 1). The coefficient
of determination (adj. R2) and RMSE of the model
fits, in addition to the validation statistics based on
the comparison of plot-level predictions against inde-
pendent observations at the independent plot locations
revealed reduced accuracy with increasing pixel size.
Although the fit and validation statistics reveal that the
fine resolution predictors (e.g. those <90 m) produce
more accurate models, statistics such as correlation
and SE from the plot-level observations and pre-
dictions at the sites were similar across all models
(table 1). The final (optimal) set of spatial predic-
tors found in the model selection process were not
consistent across the spatial resolutions, however,
the green band and normalized difference vegetation

index were in general the best predictors (table 1;
supplementary figure A).

The comparisons of average AGB estimates in the
strips of LiDAR coverage indicated that the Landsat
model based on covariates at 30 m pixels provided esti-
mates closest to that based on LiDAR models (also via
30 m grid metrics) from Deo et al (2017) (figure 2,
supplementary table 2). The mean of AGB predictions
by LiDAR metrics in the strips are mostly within one-
standard deviations of the mean predictions obtained
from the Landsat-based model at any of the resolutions.
The standard deviation of the Landsat based models
decreased with increasing grid size of the predictors
(figure 2). The Landsat based average estimates were
larger than the LiDAR based average estimates in the
strips and the difference ranged from 2–34 Mg ha−1.

The relationships between county-level total AGB
estimates by the EVALIDator and the Landsat models
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Figure 2. Average AGB estimates (Mg ha−1) in the strips of LiDAR coverage by LiDAR metrics at 30 m resolution (obtained from Deo
et al 2017) and the Landsat based models of various resolutions. The error bars represent one standard deviation above and below the
mean of predictions. Lsat is short form for Landsat.

were strong (R2> 0.66) at all of the resolutions. How-
ever, the strengths of these relationships varied with
sites as revealed by the R2, RMSE and slope of the
linear fit between the two sets of predictions (i.e. by
the EVALIDator and Landsat models; supplementary
table 3). The total AGB estimates from the Landsat-
based models were higher than the EVALIDator-based
estimates as revealed by all slopes <1 in the regres-
sion between EVALIDator and Landsat AGB estimates
(supplementary table 3). The RMSEs obtained from
the two sets of county-level total predictions were also
found to be stable across the model resolutions.

Discussion

The combined strength of optical remote sensing and
field sample data has been demonstrated in many
published studies on AGB estimation (Deo 2014).
Fine resolution spatially explicit (wall-to-wall) inven-
tories based on Landsat data combined with field
plot measurements have operational advantage com-
pared to the traditional inventories employing field
data alone. However, the accuracy of Landsat-based
approaches to inventory modeling depends on sev-
eral factors such as sensitivity of image bands to the
variation in forest structure and characteristics of the
field sample data. As satellite data of coarser resolu-
tions are associated with higher temporal resolutions,
periodic mapping of AGB over regional or continen-
tal scales is realistic since most data are available in

analysis-ready format or less processing efforts are
involved. Considering the research need, this study
evaluated the impact of spatial resolution of Landsat
derived predictors on large-area AGB estimation to
support national strategic plans.

The large-area estimates (e.g. county-level) using
predictors at 30–1000 m spatial resolutions produced
highcorrectionwithEVALIDator-based inventoryesti-
mates. An inference from this observation is that
strategic plans requiring regional- or continental-scale
estimates of AGB can rely on moderate to coarse res-
olution satellite products (e.g. MODIS derived indices
and composites). Since finer resolution data such as
from Landsat and Sentinel-2 require extra processing
efforts and cloud-free data may be unavailable at a
given time for an area of interest, coarse resolution
predictors are essential to conduct regular assessments
such as at annual time steps. However, small-area (e.g.
stand-level) assessments based on coarse resolution
data may not serve the operational management goals
as the sensors are inefficient to capture the spatial vari-
ability of forest structure, render mixed pixel effects,
and possess limited power for discriminating species
and cover types. The operational inventory systems
may require methods of local relevance with quali-
ties of cost-efficiency and reliability (White et al 2016).
Hence active sensors such as LiDAR and photogram-
metric methods based on high resolution passive
optical imagery are getting wider attention in the
remote sensing community and forest managers for
operational applications. Since several public and
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Figure 3. Scatter plot of independent plot-level observed versus predicted AGB values (Mg ha−1) using 30 m, 250 m and 500 m
resolutions of Landsat predictors. The solid inclined line represents 1:1 line.

private agencies are involved in acquiring large area
LiDAR datasets, and metrics are even in the public
domain, highly accurate small-scale assessments are
possible with such data.

The coefficients of determination of the fitted mod-
els were comparatively low (R2< 0.23) and that can
be associated to factors such as spatial mismatch of
FIA plots and corresponding pixels in the predictors,
incompatible size of the plots and pixels, radiomet-
ric variations within and among adjacent scenes, and
mixed pixel effects in coarse resolution predictors
(Pond et al 2014, Tomppo et al 2008). The large struc-
tural and compositional diversity of forests within and
across the sites combined with the effect of Landsat sig-
nal saturation in high biomass areas can be associated
with the low prediction accuracies of models at plot-
level. The 95th percentiles of the observed AGBs in the
FIA plots were 331.3, 388.6, and 406.1 Mg ha−1 while
Landsat signals generally saturated near 200 Mg ha−1

(figure 3). The FIA plot design also caused inconsis-
tency for the fine (e.g. 30 m) and coarse (>120 m)
pixel sizes because the four subplots (7.3 m radius)
in an FIA plot are very small, and spread over about
an area of about one acre. The individual subplots in
an FIA plots may be differently stocked while Land-
sat predictors provide a single spectral signature for
a plot. When the pixels are aggregated to coarser
sizes, diverse spectral signatures of neighboring pix-
els are subject to spectral smoothing. As expected the
standard deviation of the Landsat based predictions
decreased with increasing grid size of the predictors
(figure 2) because of the smoothing effect of spec-
tral signatures with pixel aggregations. Further, the
standard error of Landsat estimates were less than
the LiDAR estimates and the error decreased with
increasing grid size given the large number of cells in
high resolution maps. Chen et al (2016) also observed

that the prediction error decreased with increasing
grid size of predictors.

The increasing grid size of Landsat metrics
resulted in slightly increasing estimates of AGB density
(figure 2) which can be related to the effects of regres-
sion towards the mean and reduced values of R2

with the increasing grid sizes for model fittings. For
example, when the models were applied to obtain pre-
dictions at the independent plot locations to compare
with corresponding field observations, over-estimation
was noticed in plots with low biomass areas and
under-estimation in high biomass areas (figure 3).
Since low biomass areas dominate over the land-
scape compared to high biomass areas, over-estimation
in the study can be related to the effects of regres-
sion towards the mean. Hayashi et al (2016) also
observed increasing trend of stand-level estimates with
a larger grid size of predictors. The saturation of
canopy-reflectance and biomass relationship above a
certain threshold in high biomass areas leads to spa-
tial models that generate estimates closer to the mean
at every pixel (i.e. over-prediction in areas of low
biomass andvice-versa).Aregression towards themean
effect was obvious as prediction for plots with high
observed AGB density saturated above 200 Mg ha−1,
while low density plots were over-predicted (figure
3). The root mean square errors of plot-level predic-
tions are consistent with other studies as reported in
Deo et al (2016).

The EVALIDator-based county-level total esti-
mates of AGB were found to be consistently lower
than the Landsat based predictions (supplementary
table 3) because EVALIDator generates estimates only
for the forested areas defined as areas with more than
10 percent crown cover, at least one acre in size and
120 feet wide; while Landsat model gave predictions
without any restriction to this definition of forest.
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Conclusions

Landsat-based spatial AGB models at resolutions
ranging from 30–1000 m were developed using FIA
data and the prediction estimates were compared
with existing large-area reference estimates (i.e. for-
est inventories) and an extant AGB map based on
LiDAR metrics. All the AGB estimates produced at
the various resolutions were highly correlated with
the forest inventory estimates and LiDAR-based mod-
els. The RMSE and bias from the difference of the
county-level estimates by the forest inventory and
Landsat models were stable across all the spatial res-
olutions. The Landsat-based average estimates in the
strips of LiDAR coverage were very close to the average
obtained based on LiDAR metrics, i.e. one standard
deviation above and below the average estimate pro-
duced by the LiDAR metrics included the averages
obtained from the Landsat models. We conclude that
the AGB models based on the native (30 m) and coarser
resolutions of Landsat-derived predictors provide
similar estimates for continental scale analyses.
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