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Optimal Inspection of Imports to Prevent Invasive
Pest Introduction

Cuicui Chen,1,∗ Rebecca S. Epanchin-Niell,2 and Robert G. Haight3

The United States imports more than 1 billion live plants annually—an important and grow-
ing pathway for introduction of damaging nonnative invertebrates and pathogens. Inspection
of imports is one safeguard for reducing pest introductions, but capacity constraints limit
inspection effort. We develop an optimal sampling strategy to minimize the costs of pest
introductions from trade by posing inspection as an acceptance sampling problem that incor-
porates key features of the decision context, including (i) simultaneous inspection of many
heterogeneous lots, (ii) a lot-specific sampling effort, (iii) a budget constraint that limits to-
tal inspection effort, (iv) inspection error, and (v) an objective of minimizing cost from ac-
cepted defective units. We derive a formula for expected number of accepted infested units
(expected slippage) given lot size, sample size, infestation rate, and detection rate, and we
formulate and analyze the inspector’s optimization problem of allocating a sampling budget
among incoming lots to minimize the cost of slippage. We conduct an empirical analysis of
live plant inspection, including estimation of plant infestation rates from historical data, and
find that inspections optimally target the largest lots with the highest plant infestation rates,
leaving some lots unsampled. We also consider that USDA-APHIS, which administers in-
spections, may want to continue inspecting all lots at a baseline level; we find that allocating
any additional capacity, beyond a comprehensive baseline inspection, to the largest lots with
the highest infestation rates allows inspectors to meet the dual goals of minimizing the costs
of slippage and maintaining baseline sampling without substantial compromise.
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1. INTRODUCTION

Acceptance sampling is a method of statistical
quality control that helps decisionmakers accept
or reject a lot, based on information obtained in a
sample of individuals from the lot.(1) Although ac-
ceptance sampling is usually described in the context
of manufacturing, it plays an important role in public
safety programs by helping administrators attain the
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program quality standards. Acceptance sampling
is used in programs to maintain food safety,(2–4)

control grain purity,(5) monitor illegal drug use,(6,7)

reduce the spread of animal diseases,(8) and prevent
the introduction of damaging pests on agricultural
imports.(9)

The literature on acceptance sampling in public
safety programs focuses on single sampling plans for
individual lots. A single sampling plan involves one
sample of items or individuals from a lot. The plan is
defined by the sample size and acceptance number,
and the decision rule is to accept the lot only if the
number of defective items in the sample is equal to
or less than the acceptance number. The sampling
plan depends on the size of the lot and is determined
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to minimize costs,(6,7) attain an acceptable level of
risk,(2,3,8–10) or attain desirable levels of cost and
risk.(5)4

Much of this literature implicitly assumes that
each lot is inspected at a level specified to achieve
the quality control objective. In practice, however,
acceptance sampling often takes place in settings
where many heterogeneous lots that vary in size
and composition are received and inspected simul-
taneously with budget or capacity constraints that
limit the overall level of sampling across all lots. For
example, inspection of live plant imports at ports of
entry is a prominent part of the system used by the
U.S. Department of Agriculture, Animal and Plant
Health Inspection Service’s (USDA-APHIS’s) Plant
Protection and Quarantine program to protect U.S.
agriculture and natural resources from unwanted
and damaging pests.(9) Sometimes, the desired
acceptance sampling plans are not employed (i.e.,
some lots may be sampled at less than desired levels)
because the overall number of samples prescribed
for lots received during a given day exceeds the
capacity of personnel to perform the sampling. Work
is needed on this broader problem of allocating
resources to inspection sampling based on externally
imposed resource constraints.(4,10)

We address the problem of allocating a targeted
sampling budget among a set of lots that are received
and inspected simultaneously and can differ in their
sizes, composition, costs of sampling, and damages
from defective items in accepted lots. The objective is
to determine the single acceptance sampling plan for
each lot to minimize the total damages caused by de-
fective items across accepted lots subject to the bud-
get constraint. We use the term “targeted sampling
budget” to represent the portion of a total sampling
budget that is available for acceptance sampling.5

We first derive a formula for the expected number

4While the literature on acceptance sampling in public safety
programs focuses on single sampling plans, other types of
sampling plans, including double sampling, multiple sam-
pling, sequential sampling, and skip-lot sampling, have been
developed and standardized (e.g., see NIST/SEMATECH
e-Handbook of Statistical Methods, http://www.itl.nist.gov/
div898/handbook/pmc/section2/pmc22.htm). For example, in the
context of import inspection sampling for invasive species,
Batabyal and Yoo(11) study a random inspection scheme
based on the “continuous sampling” plan first formulated by
Dodge.(12)

5This recognizes that sampling may also be conducted for other
purposes, such as estimating defect rates of populations of im-
ported commodities, which is an important input to the optimiza-
tion model.

of accepted defective items in a lot—which we call
expected slippage—given the lot size, sample size,
defect rate, and detection rate (i.e., the likelihood of
detecting a defective item if it is inspected). We ex-
amine how expected slippage varies with those four
parameters. Then, we set up the inspector’s optimiza-
tion problem for allocating the targeted sampling
budget among a set of incoming lots and examine
the comparative statics of the optimal strategies.

Our analysis extends the theoretical foundation
of single sampling inspection based on cost mini-
mization. Hald(13) was among the first to develop and
analyze cost functions for single acceptance sampling
plans, including the cost of sampling, the cost of the
expected number of accepted defective items, and
the cost of a rejected lot. He derived a formula to
determine the cost-minimizing sampling plan for
a single lot given lot size, prior distribution of the
number of defective items in the lot, and the cost
parameters. Since Hald’s paper was published, many
studies have expanded our knowledge of the eco-
nomics of acceptance sampling of individual lots,(14)

including the sensitivity of optimal plans to changes
in cost parameters and defect rates, the development
and performance of optimal multistage sampling
plans, and the effects of inspection on producer
behavior. In recent work similar to ours, authors
allocate a fixed inspection budget among lots or ship-
ment pathways to minimize the expected number or
cost of accepted nonconforming lots.(4,15,16) Our work
departs from those models by deriving a formula for
expected slippage (number of defective items in an
accepted lot) and allocating the inspection budget to
individual lots to minimize the aggregate cost of slip-
page across heterogeneous lots. Yamamura et al.(10)

address a similar problem of allocating a fixed
number of samples across lots to minimize the total
number of defective items admitted in accepted lots;
however, they use simplifying assumptions that both
defective rate and sample proportion of each lot are
small.

Having analyzed the inspector’s optimization
problem, we illustrate its application with an empir-
ical analysis of the inspection of live plant imports
in the United States. Live plant imports, including
rooted plants, bulbs, roots, and unrooted cuttings,
are a valuable retail commodity: the U.S. horticul-
ture industry imports more than 1 billion live plants
annually, with sales exceeding $600 million.(17) At
the same time, live plant imports are an important
and growing pathway for damaging nonnative pests
of agriculture and natural resources, including
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invertebrates and pathogens.(17–19) For example,
damage from nonnative forest insects, many of
which arrived on imported plants, costs U.S. taxpay-
ers billions of dollars annually.(20,21) The nonnative
forest pathogen, Phytophthora ramorum, has caused
substantial mortality in coastal live oak and other
tree species on the U.S. Pacific Coast.(22) Discovered
in 2000, the pathogen likely arrived on imported
nursery stock in the 1990s,(23,24) and projections
suggest that an expanding infestation will warrant
treatment, removal, and replacement of thousands
of oak trees on residential property with annual costs
exceeding $10 million.(25) The Australian light brown
apple moth (Epiphyas postvittana) was discovered
in wholesale nurseries in California in 2006 with
evidence suggesting that it arrived on imported live
plants.(26) An economic risk analysis suggested that
damages to California’s four main fruit crops, as
well as quarantine and other costs, could reach $105
million annually.(27)

One means for reducing the introduction of
pests on live plants is the inspection of shipments
at ports of entry. Most imported plants enter the
United States through one of 16 plant inspection sta-
tions, which are located near major international air-
ports and seaports and managed by USDA-APHIS.
If there is sufficient capacity, inspectors examine a
number of selected sample plant units from each in-
coming lot. If a regulated pest or pathogen is de-
tected in the sample units, inspectors may require
that the lot be treated, returned, or destroyed. The
process for determining the sample size of each lot
is evolving.6 Through 2012, inspections of live plant
imports involved sampling approximately 2% of the
items in each lot. These inspections were inconsis-
tent and nonrandom. In 2013, a new, random sam-
pling method, called risk-based sampling (RBS), was
rolled out, and a version was fully implemented by
late 2014. With RBS, lots are inspected according to
hypergeometric sampling, and the sample size for
each lot is determined to achieve a specified detec-
tion level, where the detection level is the minimum
proportion of infested items in a lot for which the
probability of detection is 95%. Currently, the detec-
tion level is 5% for all lots. Eventually, lots will be
assigned to risk categories based on history of pest
interceptions, potential damage of pests associated
with the commodity, and other information. Lots

6Robert L. Griffin, AQI Coordinator, USDA-APHIS, PPQ, 1730
Varsity Drive, Suite 400, Raleigh, NC 27606. Personal commu-
nication.

with higher risk are anticipated to be assigned lower
detection levels.7

The goal of our empirical analysis is to in-
vestigate the performance of sampling plans that
minimize slippage given inspection capacity con-
straints relative to the performance of risk-based and
proportional sampling plans. Minimizing slippage is
an important objective because slippage is related
to propagule pressure, and hence to the likelihood
of establishment of pests. Invasion biology has
shown that the more unwanted propagules released
into the environment, the greater the chance of
establishment.(28–32) While the number of infested
plant units is not an exact measure of propagule
pressure, it provides a useful proxy—all else equal
about a lot, a greater number of infested plant
units is likely to comprise a higher pest or pathogen
load.

In our empirical analysis, we first introduce a
maximum likelihood estimation procedure to esti-
mate the infestation rate of a population of imported
plants using historical inspection data and illustrate
the procedure using data for 91 plant genera im-
ported from Costa Rica via freight to Miami from
2010 through 2012. Second, for a set of lots arriving
during a representative single day at the Miami plant
inspection station, we calculate sample strategies that
minimize total expected slippage across lots subject
to a range of inspection capacity constraints, and we
compare the performance of the slippage minimizing
strategy with RBS and proportional (2%) sampling
strategies, using comparable capacity constraints. We
demonstrate the robustness of the sampling strat-
egy’s performance improvements to uncertainties in
the daily sample composition and the infestation rate
estimates and also consider an alternative optimiza-
tion procedure that directly accounts for uncertainty
in the infestation rate estimates. Third, recognizing
that a minimum level of sampling is required to
generate inputs to the optimization model and may
be desired for information collection but may not
be optimal under the slippage minimization goal,
we analyze a sampling strategy where the decision-
maker first allocates inspection resources according
to the RBS rule and then allocates any unused
inspection resources among lots to minimize total
slippage.

7Indeed, a small subset of live plant imports have already been
categorized as very low risk and are subject to skip-lot sampling
under the Propagative Monitoring and Release Program.
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2. EXPECTED SLIPPAGE

In simple random acceptance sampling, a pop-
ulation is composed of countable individuals with a
defect rate γ ∈ (0, 1). The defect rate is the prob-
ability that a randomly drawn individual from the
population is defective. A lot contains N individuals
randomly drawn from the population. The number
of defective individuals in a lot is a random variable
that follows a binomial distribution parametrized by
the defect rate and the lot size. The inspector selects
a random sample of size n ∈ {1, 2, . . . , N} from the
lot to inspect. Each individual in the sample is in-
spected with detection rate e, which is the probability
of detecting a defect when the individual is in fact
defective. The inspector adopts the zero-acceptance
rule, which means she rejects the lot if and only if at
least one individual in the randomly drawn sample
is found to be defective. Her goal is to minimize the
expected number of accepted defects in a given set of
lots by choosing an optimal sample size for each lot,
where lots may be drawn from different populations,
subject to a capacity constraint that puts an upper
limit on the total number of individuals that she can
inspect.

We define expected slippage as the expected
number of accepted defects in a lot. Let K be the
number of defects in the lot and ξ be a binary variable
indicating whether the lot is accepted (ξ = 1) or not
(ξ = 0). Given a lot size N, sample size n, defect rate
γ > 0, and detection rate e, the expected slippage is:

ES(N, n, γ, e) = Pr(ξ = 1|N, n, γ, e)E[K|N, n, γ, e, ξ = 1]

+ Pr(ξ = 0|N, n, γ, e) × 0, (1)

which is the probability that a lot is accepted times
the expected number of defects in the lot given that
it was accepted. If the lot is rejected, no defects are
accepted.

In Appendix A.2, we show that the formula for
expected slippage is:

ES = (1 − γ e)n ·
{
γ (N − n) + 1 − e

1 − γ e
· γ n

}
,

≡ P · {D1 + D2} (2)

where P is the probability of accepting the lot (i.e.,
none of the inspected samples were detected as de-
fective), D1 is the expected number of defects in the
sublot that is not inspected, and D2 is the expected
number of defects in the sample conditional on ac-
ceptance. If e = 0, or detection rate is zero, the con-
ditioning factor 1−e

1−γ e = 1, and conditioning on accep-

Fig. 1. Expected slippage versus defect rate under various detec-
tion rates. The lot size N is 100 and the sample size n is 25.

tance does not affect the inspector’s posterior about
the number of defects in the sample, which is always
accepted. When e = 1, or detection is perfect, 1−e

1−γ e =
0, and the inspector’s posterior about the number of
defects in the accepted sample equals zero (because
she has inspected every individual in the sample and
detection is perfect). When e ∈ (0, 1), the condition-
ing factor is decreasing in e and increasing in γ . Intu-
itively, the higher the detection rate, the more opti-
mistic the inspector is about the number of defects in
the sample she has accepted. The higher the defect
rate, the less optimistic the inspector is because both
the conditioning factor and γ n are increasing in γ .

We can make several observations about the
behavior of expected slippage as a function of its pa-
rameters. Expected slippage is increasing in lot size
N, which only affects expected slippage via D1, which
is increasing in N. Expected slippage is not necessar-
ily monotone in defect rate γ , which affects P (de-
creasing), D1 (increasing), and D2 (increasing) (Figs.
1 and 2). Expected slippage is decreasing in detection
rate e, which affects expected slippage via P and the
conditioning factor, both of which are decreasing
in e (Figs. 1 and 3). Finally, expected slippage is
decreasing in sample size n, which affects expected
slippage via P and D1 + D2, both being decreasing in
n (the latter is decreasing in n because the decrease
in D1 offsets the decrease in D2) (Figs. 2 and 3).

3. OPTIMAL SAMPLING PROBLEM

Suppose the inspector receives a finite set of
lots, J, for inspection. For each lot j ∈ J , let Nj, γ j,
and ej be its size, defect rate, and detection rate,
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Fig. 2. Expected slippage versus defect rate under various sam-
pling intensities. The lot size N is 100 and the detection rate
e is 0.6.

Fig. 3. Expected slippage under various sampling intensities and
detection rates. The defect rate γ is 0.02, and the lot size N is 100.

respectively. Her goal is to minimize the expected
damage from accepted defects (expected slippage)
from J by choosing a sample size nj for each lot j
subject to an overall capacity constraint. We for-
mulate the objective function as a weighted sum of
the expected slippage of each lot. We interpret the
weights κ j > 0 for all j ∈ Jas measures of harm or
cost associated with an accepted defective individual.
We model the capacity constraint as restricting a
cost-adjusted sum of the sample sizes of each lot,
with the weights cj for all j ∈ J being the unit cost of
inspecting an individual from lot j.8 Let c̄> 0 be the

8We note that the cost function could be expanded to include
a fixed cost for each lot sampled, which would account for the
costs of delivering and unloading selected lots. We do not in-

upper limit of the total cost, or the budget or capacity
constraint.

The inspector’s problem is as follows:

min
(nj ) j∈J

∑
j∈J

κj ES(Nj , nj , γj , ej )

subject to :
∑
j∈J

cj nj ≤ c̄ (3)

Nj ≥ nj ≥ 0,∀ j ∈ J.

The Lagrangian for this constraint minimization
problem is:

∑
j∈J

κj ES(Nj , nj , γj , ej ) − λ

⎛
⎝c̄ −

∑
j∈J

cj nj

⎞
⎠

−
∑
j∈J

μj nj −
∑
j∈J

νj (Nj − nj ). (4)

The associated Kuhn–Tucker necessary condi-
tions are:

∀ j ∈ J, λ= 1
cj

[
μj − νj − κj (1 − γj ej )

nj

{
ln(1 − γj ej )

[
γj (Nj − nj ) + 1 − ej

1 − γj ej
γj nj

]
− 1 − γj

1 − γj ej
γj ej

}]

λ ≥ 0, c̄ ≥
∑
j∈J

cj nj , λ

⎛
⎝c̄ −

∑
j∈J

cj nj

⎞
⎠ = 0 (5)

∀ j ∈ J, μj ≥ 0, nj ≥ 0, μj nj = 0

∀ j ∈ J, νj ≥ 0, Nj − nj ≥ 0, νj (Nj − nj ) = 0.

These conditions are also sufficient for optimal-
ity because the objective function is convex and the
constraint is quasi-convex.9

We provide some intuition for the Kuhn–Tucker
necessary conditions by considering an optimal
interior solution (i.e., Nj > nj > 0,∀ j ∈ J ), such that
for all j ∈ J , μj = νj = 0, and therefore:

clude these fixed inspection costs in our model because in prac-
tice shipments of live plants are all delivered and unloaded for
processing.

9The Hessian of the objective function, a diagonal matrix, has
only positive eigenvalues, which are the diagonal elements, im-
plying that the Hessian is positive semi-definite. The constraint
is linear, which is a special case of quasi-convexity.
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Table I. Comparative Statics for the Case with Two Shipments,
Size N1 and N2, and Assuming an Interior Solution n1* and n2*

Parameter Change in n1*

Budget c̄ +
Cost of sampling lot 1 c1 –
Cost of sampling lot 2 c2 ±
Cost of damage lot 1 κ1 +
Cost of damage lot 2 κ2 –
Size of lot 1 N1 +
Size of lot 2 N2 –
Infestation rate lot 1 γ 1 ±
Infestation rate lot 2 γ 2 ±
Detection rate lot 1 e1 ±
Detection rate lot 2 e2 ±

∀ j ∈ J, λ = 1
cj

[
κj (1 − γj ej )nj

{
ln(1 − γj ej )

[
γj (Nj − nj ) + 1 − ej

1 − γj ej
γj nj

]
− 1 − γj

1 − γj ej
γj ej

}]

= 1
cj

κj
∂ ES(Nj , nj , γj , ej )

∂nj
. (6)

That is, at an optimal interior solution, sample
sizes are selected to equalize the marginal damage-
and cost-weighted expected slippage reduction
across lots, so that gains cannot be made by shifting
effort between lots. Higher per unit damage costs
or lower marginal inspection costs justify lower
marginal reductions in the expected slippage at
the optimal interior solution. If marginal expected
slippage reduction cannot be equated across all lots
(i.e., the optimal solution is not interior), inspection
capacity is allocated to the lots with higher marginal
reductions, leaving some lot(s) inspected 100%
and/or some lot(s) not inspected at all.

Additional intuition can be gained from the
Kuhn–Tucker conditions by examining the compar-
ative statics for sample allocation among two lots of
size N1 and N2, assuming an interior solution n1* and
n2*. Table I shows how n1* changes with an increase
in the parameters of each shipment (proofs are
given in Appendix B). Many results are immediately
intuitive, such as a higher budget leads to higher sam-
pling intensity. Also, higher inspection cost or lower
damage cost of a lot leads to lower sampling intensity
of that lot. Sampling intensity also increases with the
lot’s size because expected slippage increases with
lot size, thereby increasing the benefits of sampling.
Similarly, the sampling intensity of a lot decreases as

the other lot’s damage cost and size increase because
the benefits of sampling the other lot increase.

Note, however, that n1* does not change mono-
tonically with changes in γ , e, or c2; instead, the
direction of change of n1* depends on the levels of
these parameters. The intuition for the nonmono-
tonic response to a change in defect rate γ can be
gained from Figs. 1 and 2, which show that expected
slippage, given a fixed sampling intensity, tends to
increase with increasing defect rate when the defect
rate is low and decrease with increasing defect rate
when the rate is high. As such, changes in a lot’s
defect rate can increase or decrease the marginal
benefits of sampling, affecting optimal sampling
intensity in two alternative directions.

The intuition behind the effects of detection
rate e and other lot sampling costs c2 on sampling
intensity is different. An increase in detection rate
e always decreases the expected slippage of a lot
for a given sampling intensity, thereby decreasing
the amount of sampling required to achieve the
same expected slippage level. Thus, an increase in
detection rate can be viewed as effectively freeing up
some of the sampling budget, which can be used to
further decrease expected slippage for whichever lot
has the higher ratio of benefits to costs at the given
levels of sampling and parameters.

Similarly, for some sets of parameter values, the
sampling effort for lot 1 can increase or decrease
as the cost of sampling the other lot (c2) decreases.
A decrease in sampling cost enables a larger total
number of samples to be drawn for any given budget
constraint. Thus, both lots could be sampled more
intensively. However, the decrease in lot 2’s costs
could also increase the favorability of its ratio of
marginal benefits to marginal costs from sampling,
such that sampling of lot 1 could optimally decrease,
while sampling of lot 2 increased.

4. DEFECT RATE ESTIMATION

The defect rate of a population can be estimated
using maximum likelihood estimation based on
random sampling inspection data of lots, assumed
to have been drawn from a single population with
defect rate γ (we discuss in Section 5.1 how one
might define a population based on the variability
of the defect rate and the richness of data). For each
record i, we have sample size ni and an indicator
variable ri for whether lot i was rejected (i.e., ri = 1
if one or more defects are found in the sample).
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The probability of accepting a lot is:

Pr(ri = 0|ni , e, γ ) = (1 − γ e)ni , (7)

where γ is the defect rate to be estimated. Appendix
A derives this formula by using the compound prob-
ability of two random events: first, some number of
individuals are defective in the sample; and second,
for each potential number of defects, the inspector
fails to detect any defects. Alternatively, the follow-
ing intuitive argument would do the job. The detec-
tion rate, e, is a scalar modifier on the defect rate,
such that γ e is the probability that a sampled individ-
ual is found to be defective. A lot is accepted if and
only if all of the sampled individuals drawn are found
not to be defective. Because each sample is an inde-
pendent Bernoulli trial with the probability of being
found not defective 1- γ e, the probability of no sam-
ples being found defective is 1- γ e raised to the power
of the number of samples.

A consequence of the detection rate entering as
a scalar modifier on the defect rate for the estima-
tion is that the detection rate cannot be separately
identified from the defect rate. For this reason, we
assume certain values for the detection rate in our
empirical analysis.

The likelihood of each observation is:

f (ri |ni , e, γ ) =
{

(1 − γ e)ni if ri = 0
1 − (1 − γ e)ni if ri = 1

(8)

It follows that the maximum likelihood estima-
tion maximizes the log likelihood function:

L(γ ) ≡
∑
i∈I

log f (ri |ni , e, γ )

=
∑
i∈I

[(1 − ri )ni log(1 − γ e) (9)

+ ri log(1 − (1 − γ e)ni )
]
.

5. APPLICATION TO LIVE PLANT
IMPORT INSPECTION

In applying our framework to the inspection
of live plant imports, we treat each combination
of plant genera and exporting country as a unique
commodity (we discuss in Section 5.1 ways to work
with a finer definition of commodity to account for
within-commodity variations in the infestation rates,
given rich enough data sets). All lots of the same
commodity are assumed to have been drawn from
the same population with infestation (defect) rate
γ , where the infestation rate is the probability that

a plant unit will be infested with at least one pest
or pathogen. We first estimate the plant infestation
rates for each commodity in our application, and
then apply our optimization framework to minimize
expected slippage across imported lots.

5.1. Estimating Plant Infestation Rates

We use the maximum likelihood estimation pro-
cedure described in Section 4 to estimate infestation
(defect) rates of plants of 91 genera imported from
Costa Rica based on available inspection data (see
Appendix C). The 91 genera represent live plants
imported from Costa Rica via freight at the Miami
plant inspection station in September 2010, focusing
on genera that had at least one interception in Miami
2010 through 2012 (maximum likelihood estimation
is feasible only if there is at least one “success”
realization in the data set, which in this context is
interception). The data for estimating the infestation
rate for each genus include information for all
shipments of the genus from Costa Rica to Miami
for 2010 through 2012. These shipments were in-
spected following the 2% sampling guideline, which
recommends that inspectors inspect roughly 2% of
the shipment. Under this methodology, inspectors
may inspect more or less than 2% of a shipment,
and the specific sample is at the discretion of the
inspector. From USDA-APHIS inspection records,
for each lot, the lot size and whether or not the lot
was found to be infested are known. We calculated
the sample size of each lot assuming 2% inspection
intensity. A detection rate of 80% is assumed, which
is the rate that has been used by USDA-APHIS in
its internal calculations of sample size under RBS
and that it refers to as inspection efficiency. Under
these assumptions, the estimated plant infestation
rates vary from 0.888% for Dendrobium to 0.0002%
for Petunia (Appendix C, Table C.I).

Because the actual sample size for each lot
inspected is not known but estimated based only on
the 2% sampling guideline, we conduct robustness
analyses of the estimation procedure using Monte
Carlo experiments (Appendix D). We find that
our estimation approach is quite robust to random
deviations in sample size relative to a fixed 2%
proportional sample, but such deviations may lead
to a slight downward bias in the estimated infes-
tation levels (Appendix D, Table D.I). Yet, there
are other data challenges that are not addressed
by our robustness checks. Specifically, inspections
under USDA-APHIS’s 2% sampling guideline are
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inconsistent and nonrandom, with sample selection
and deviations in sampled proportions determined
nonrandomly by inspectors.

Another constraint to our empirical applica-
tion is that we assume that all lots of a particular
commodity are drawn from a single population
with a fixed underlying infestation level. In reality,
the underlying infestation rate of a commodity is
likely to vary across years, seasons, and producers.
If one had a rich enough inspection data set, the
estimation method could be applied to subsets
of data to obtain heterogeneous infestation rate
estimates across these different dimensions. For
example, to capture within-commodity year-to-year
variability, the estimation method could be applied
to each year’s data to obtain yearly infestation rate
estimates, though these likely would still be subject
to out-of-sample prediction error. In our application,
we estimate an average (across year, season, and
producer) infestation rate for each commodity due
to the limited number of years in the data and lack
of producer information. As such, our empirical
estimates obscure some of the interlot variability in
underlying infestation rate within a commodity and
should be considered illustrative.

5.2. Minimizing Expected Slippage with a
Capacity Constraint

We now solve for sampling strategies that min-
imize slippage under various capacity constraints for
a hypothetical set of shipments that arrive during
one day at the Miami plant inspection station. In
solving for the optimal sampling strategy, we set all
the weights in the optimization problem (3) equal to
one (i.e., κ j = cj = 1 for all lots j ∈ J ). We use the
AMPL-Knitro solver(33) and impose the additional
constraint that the solution is integer-valued. We
then compare these counterfactual sampling strate-
gies and values with a proportional sampling strategy
and the RBS scheme currently in use.

To construct the hypothetical set of shipments,
we draw, with replacement, a random sample of lots
received from Costa Rica and inspected in Miami
in September 2010. The size of the sample is 39 lots,
which is the average daily number of such lots
received. The attributes of the lots are shown in
Table E.I in Appendix E. The number of plants
per lot varies from 10 to 240,000, with a total of
756,762 plants in 23 genera received. Estimated plant
infestation rates vary from 0.148% for Codiaeum to
0.0004% for Euphorbia.

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
pe

ct
ed

 sl
ip

pa
ge

 (p
la

nt
 u

ni
ts

)

Ratio of capacity constraint over total lot size

e = 0.2
e = 0.4
e = 0.6
e = 0.8
e = 1.0

Fig. 4. Expected slippage across a range of capacity constraints for
various detection rates under optimal sampling of the hypotheti-
cal set of lots received from Costa Rica and inspected in Miami
(Appendix E, Table E.I). The expected slippage is calculated as
the value of the objective function in the expected slippage mini-
mization problem. The capacity constraint is expressed as the ratio
of the total number of plant units inspected to the total number of
plant units across all lots.

We solved the optimization problem for capacity
constraints varying between 0 and the total number
of imported plants (756,762) (Fig. 4). Minimized
expected slippage decreases with the capacity con-
straint rapidly at first and then slowly, after the
inspection capacity constraint exceeds about 10%
of the total imported plant units. For any given
capacity constraint, expected slippage decreases with
increasing detection rate e.

We are interested in the performance of these
slippage-minimizing sampling plans relative to the
RBS plan and the proportional sampling plan. To be
comparable, we computed the slippage-minimizing
sampling plans using capacity constraints equal to
the total number of samples taken under RBS (2,193
plants) and proportional (2%) sampling (15,143
plants). The RBS sample size for each lot detects
a 5% infestation level with 95% confidence.10 The

10In mathematics, the sample size for a size-N lot is the small-

est integer n such that (
n
N − 	0.05N
)/(

n
N

) ≤ 1 − 0.95. We use

MATLAB to generate the RBS sample size. In practice, PIS in-
spectors determine the RBS sample size by manually entering
lot information into the plant inspection station (PIS) sampling
tool at http://ports.cphst.org. The current protocol requires the
PIS to select the medium button under part D of the sampling
variable input section, where medium corresponds to a 5% in-
festation level.
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proportional sampling sample size for each lot is the
ceiling of 2% of the lot size.

The slippage-minimizing sampling strategies
yield substantial reductions in expected slippage
relative to the other sampling plans: up to 36%
relative to the RBS plan and up to 61% relative to
the proportional sampling plan (Table II). The re-
duction in expected slippage under optimal sampling
increases with increasing detection rates.

The substantial reduction in expected slippage
by our optimal sampling strategy is robust to alter-
native random samples of lots received from Costa
Rica and inspected in Miami in September 2010.
In addition, the reduction in expected slippage also
holds when shipments are drawn from a distribution
of smaller sized lots representative of shipments to
non-Miami USDA-APHIS plant inspection stations
in September 2010 from any country. We discuss the
approach and results of these robustness checks in
Appendix F.

How are the samples allocated among lots?
Table III shows lot-specific sample sizes and ex-
pected slippage for the slippage-minimizing sampling
plan and RBS. With an inspection capacity of 2,193
plants (the RBS total sample size), the slippage-
minimizing plan prescribes allocating samples across
only four of the largest lots with the highest plant
infestation rates, whereas RBS prescribes sampling
every lot. These differences in inspection allocation
among lots reflect the differences in objectives of
RBS and slippage minimization. Under RBS, all lots
are inspected at the intensity required to detect an
infested shipment with 95% probability, assuming
that 5% of the plants are infested. In contrast,
the slippage-minimizing sampling plan allocates
inspections to minimize expected slippage, which is
higher for larger lots with higher plant infestation
rates. For example, under RBS, assuming a detection
rate of 0.80, the Codiaeum lot with 36,800 plant units
has a sample size of 74 units with a corresponding
expected slippage of 49.81 units. For comparison,
under the slippage-minimizing plan, the same lot has
a sample size of 1,300 units with a corresponding ex-
pected slippage of 11.34 units, a reduction of 38 units.
Under RBS, a Codiaeum lot with 4,000 units has a
sample size of 73 units and corresponding slippage
of 5.35 units. For comparison, under the slippage-
minimizing plan, the same lot is not sampled and
the expected slippage is only 0.57 units higher than
under RBS.

The results are similar for an inspection ca-
pacity of 15,143 plants (the proportional sampling

total sample size). The slippage-minimizing plan
prescribes sampling only nine of the largest lots
with the highest plant infestation rates, whereas the
proportional sampling plan prescribes sampling 2%
from all lots (Table III). We note that, as the targeted
sampling budget increases, more lots are sampled
with higher intensity under optimal sampling plans.
For example, as the sampling budget increases from
2,193 (0.36% of the total number of plant units)
to 15,143 (2% of the total number of plant units),
the number of lots sampled increases from four to
nine under the optimal sampling plans (Table III);
Appendix F.1 shows that this pattern holds for the
distributions as well.

While a highly concentrated sampling portfolio
might seem intuitively undesirable, the concen-
trated sampling in Table III represents the optimal,
slippage-minimizing sampling plan when the in-
spector is risk neutral and given our empirical
assumptions. If the inspector were risk averse (caring
about variance as well as expectation) or if the
analysis accounted for additional uncertainty (e.g.,
from annual, seasonal, or producer-by-producer
variation in infestation rate), then a more diversified
inspection portfolio would be expected.

5.3. Sensitivity to the Uncertainty in the Infestation
Rate Estimates

Our slippage minimization problem takes infes-
tation rates as parameters. We do not observe the
true underlying infestation rates, but rather use the
infestation rate estimates from maximum likelihood
estimation. In this section, we first investigate the
extent to which the uncertainty in these estimates in-
duces a distribution of minimized slippages. Second,
we consider an alternative objective function that
incorporates this uncertainty directly.

To evaluate the sensitivity of minimized slip-
page to the uncertain infestation rates, we simulate
independent draws of infestation rates from their
(asymptotic) sampling distributions obtained from
the maximum likelihood estimation, calculate for
each draw the slippage achieved by the original
optimal sampling plan laid out in Table III, and take
the average. To avoid drawing a negative infestation
rate, we reparametrize the log likelihood function
(9) by substituting exp(θ)

1+exp(θ) for the infestation rate
γ and obtain the maximum likelihood estimates of θ

and their sampling distributions. Indeed, as γ ranges
between 0 and 1, θ ranges from negative to positive
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Table II. Comparison of Expected Slippage for Sampling Strategies that Minimize Expected Slippage and Strategies Based on Risk-Based
Sampling and Proportional (2%) Sampling; Slippage-Minimizing Sampling Strategies are Computed with Capacity Constraints Consistent

with Risk-Based Sampling (2,193 Plant Units) or Proportional (2%) Sampling (15,143 Plant Units)

Inspection Capacity = 2,193 Inspection Capacity = 15,143

Detection Rate Slippage Minimization Risk-Based Sampling Slippage Minimization Proportional (2%) Sampling

0.2 158.23 182.04 103.56 164.13
0.4 143.91 179.68 75.40 147.00
0.6 133.21 177.36 59.86 132.48
0.8 124.07 175.06 49.61 120.15
1.0 116.15 172.81 42.65 109.62

infinity. We then obtain independent draws of θ

from their sampling distributions and convert each
draw back to γ . Table IV reports the standard errors
of the expected slippage under various detection
rates with capacity constraints consistent with RBS
sampling (2,193 plant units) and proportional (2%)
sampling (15,143 plant units), respectively, using 100
independent draws of the reparametrized infestation
rates θ . Table IV shows that the standard error of
the expected slippage (across draws of θ) is only
a small fraction of the minimized slippage, and
thus the variation in θ has only a small impact on
expected slippage. This indicates that, at least in our
context, the performance of the optimal sampling
plan derived using point estimates of infestation rates
is quite robust to the distribution of infestation rates.

Next, we consider an alternative optimization
procedure that directly takes the uncertainty into
account; it minimizes the expected value of the
expected slippage across a large number of infes-
tation rate scenarios derived from the sampling
distributions of the infestation rate estimates:

min
(nj ) j∈J

∑
s∈S

ps

∑
j∈J

ESjs(Nj , nj , γ js, ej )

subject to :
∑
j∈J

cj nj ≤ c (10)

Nj ≥ nj ≥ 0,∀ j ∈ J,

where ps is the probability of scenario s of plant
infestation rate estimates, or the vector (γ js) j∈J .

Thus, the inspector takes into account the uncer-
tainty in the infestation rate estimates when he or she
designs the sampling strategies. We report the values
of this expectation-based objective function under
various detection rates in Table IV. The associated
sampling strategies can be found in Appendix G. The
expected slippage and the optimal sampling plans

are almost identical to those derived for the original
optimization problem (3). The similarity in solutions
is explained by the relatively small variances in
the estimated means of the infestation rates. If the
estimated means of the infestation rates had higher
variances, we would have greater variation in the
alternative realizations of the infestation rates, and
the optimal sampling plan that directly accounts
for this variability would have a more diversified
allocation of limited sampling resources across lots.
Similarly, accounting for out-of-sample prediction
error or uncertainty arising from variation in infesta-
tion rates across years, seasons, and producers would
lead to a more diversified portfolio. Nonetheless,
sampling would be targeted at larger lots with higher
underlying infestation rate estimates.

5.4. Optimization with Information-Gathering
Constraint

In practice, inspection of shipments is important
for not only intercepting infested shipments, but also
for gathering information about plant infestation
rates and providing incentives to importers to ship
clean stock. These latter objectives are in tension
with the prescription of the slippage-minimizing
sampling plan, which focuses resources on only a
few large shipments with high plant infestation rates.
To incorporate these latter objectives, we consider
a scenario in which all shipments are inspected with
at least the RBS sample size, and any remaining
sampling capacity is allocated to minimize expected
slippage. We consider a total capacity constraint
equal to the proportional (2%) sampling sample size
(15,143). Results show that once the RBS inspection
levels are satisfied, additional inspection capacity is
allocated to the larger lots with higher plant infesta-
tion rates under the constrained expected-slippage
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Table IV. Standard Errors of the Minimized Slippage, and the Values of the Expectation-Based Minimized Slippage, Under Capacity
Constraints Consistent with RBS (2,193 Plant Units) and Proportional (2%) Sampling (15,143 Plant Units), Respectively

Inspection Capacity = 2,193 Inspection Capacity = 15,143

Detection Rate
Slippage

Minimization Standard Error
Expectation-Based

Minimization
Slippage

Minimization Standard Error

Expectation-
Based

Minimization

0.2 158.23 5.07 160.47 103.56 2.74 105.19
0.4 143.91 4.74 146.12 75.40 2.44 76.86
0.6 133.21 4.18 135.27 59.86 2.49 61.25
0.8 124.07 3.58 125.96 49.61 2.56 50.96
1.0 116.15 3.18 117.92 42.65 2.59 44.01

Note: Calculated using 100 independent draws of the reparametrized infestation rates based on their (asymptotic) sampling distributions
from maximum likelihood estimation.

Table V. Comparison of Lot-Specific Sample Size and Expected Slippage for Plans Developed for Slippage Minimization and Slippage
Minimization with a Risk-Based Sampling (RBS) Constraint

Inspection Capacity = 15,143

Lot Attributes Slippage Minimization
Slippage Minimization with RBS

Constraint

Plant Genus
Infestation Rate

Percentage Lot Size Sample Size Expected Slippage Sample Size Expected Slippage

Codiaeum 0.148 36,800 2,817 1.83 2,671 2.18
Codiaeum 0.148 7,506 1,452 1.68 1,316 2.01
Codiaeum 0.148 4,000 956 1.54 830 1.85
Codiaeum 0.148 1,250 260 1.13 153 1.39
Codiaeum 0.148 504 – 0.74 54 0.64
Dracaena 0.104 28,697 2,855 2.56 2,650 3.05
Dracaena 0.104 5,860 1,028 2.23 845 2.67
Dracaena 0.104 4,900 851 2.16 673 2.59
Dracaena 0.104 1,125 – 1.17 57 1.07
Dracaena 0.104 956 – 0.99 57 0.90
Dracaena 0.104 193 – 0.20 49 0.15
Schefflera 0.081 1,850 – 1.50 58 1.41
Cordyline 0.069 49,200 3,815 3.84 3,509 4.58
Cordyline 0.069 10,020 1,109 3.43 831 4.10
. . . . . . . . . . . . . . . . . . . . .
Total 756,762 15,143 49.61 15,143 52.90

Note: The inspection capacity is 15,143 plant units and the detection rate is 0.80. The lots (rows) are organized in descending order of the
estimates of plant infestation rates. All omitted rows have sample sizes of zero under slippage minimization but positive sample sizes under
slippage minimization with an RBS constraint.

minimization strategy (Table V). Although the
constrained optimization produces a slightly larger
expected slippage than if we do not impose the min-
imum RBS sample size, it still provides a substantial
improvement over proportional (2%) sampling.

6. CONCLUSION

This article addresses an acceptance sampling
problem that is commonly encountered in public and

environmental safety programs such as reducing the
introduction of damaging pests on agricultural im-
ports. The problem is to allocate a limited inspection
budget to multiple, heterogeneous lots to minimize
the cost from damage caused by defective items in
accepted lots. We derive a formula for expected slip-
page (i.e., number of accepted defects) under single
acceptance sampling, as a function of the lot size,
sample size, defect rate, and detection rate. Using
the formula for accepted slippage, we formulate an
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optimization problem to allocate a fixed targeted
sampling budget among a set of lots that can differ in
their size, costs of sampling, damages from slippage,
and the populations they are drawn from, with the
objective of minimizing the total damages from
slippage across all lots. From comparative statics
analysis, we find that, for an interior solution, the
optimal sample intensity of a given lot increases with
larger lot size and higher damage cost and decreases
with higher inspection cost. Further, sample intensity
for a given lot decreases with higher other damage
cost and larger other lot size. Sample intensity,
however, is nonmonotonic with respect to defect
rate, detection rate, and other lot sampling cost.

We apply our optimization formulation to the
problem of sampling shipments of live plant imports
to the United States with the goal of reducing the
introduction of plant pests. First, we derive and
implement a procedure to estimate the infesta-
tion rate of plant populations based on historical
sampling outcomes. Using the estimated plant
infestation rates and an example of daily shipments
received at the Miami plant inspection station, we
find that slippage-minimizing sampling strategies
target the subset of largest lots with highest plant
infestation rates (i.e., lots with the highest expected
slippage). Further, those strategies yield substantial
reductions in expected slippage relative to strategies
in which a fixed proportion of plant units in each
lot is sampled or the sample size for each lot is
determined to achieve a specified detection level,
where the detection level is the minimum proportion
of infested items in a lot (e.g., 5%) for which the
probability of detection is 95%—two sampling
strategies representative of those that have been or
are currently being used by USDA-APHIS, which
conducts the inspections. These improvements are
robust to alternative examples of daily shipments, as
well as alternative infestation rate scenarios based on
sampling from infestation rate distribution estimates.
We also propose an alternative optimization pro-
cedure that directly accounts for the uncertainty in
the infestation rate estimates when minimizing slip-
page. Recognizing that inspections provide benefits
beyond interception of infested shipments, including
information about infestation rates and incentives
to importers to ship clean stock, we also consider
an inspection scenario in which all shipments are
sampled at least at a baseline level. We identify how
any additional sampling capacity, beyond a baseline
survey effort, could be allocated to lots to minimize
total expected slippage. We find that allocating

additional sampling capacity to the largest shipments
with highest plant infestation rates can substantially
reduce expected slippage relative to the baseline
sampling effort. This result suggests that the dual
goals of minimizing the number of accepted infested
plants and maintaining a comprehensive baseline
sampling effort could be met without substantial
compromise when additional sampling capacity is
available. This approach would also allow continued
data collection for updating estimates of infestation
rates for implementing our methodology.

Several caveats affect our numerical estimates
of defect rate, as described in Sections 4 and 5.1.
First, the detection rate and the infestation rate are
not separately identified by the maximum likelihood
estimation. Therefore, our estimates are obtained
under an assumed value of the detection rate e.
Second, because USDA-APHIS’s inspection data do
not record the actual number of samples inspected,
our estimated infestation rate estimates may be
biased slightly, as suggested by the Monte Carlo
experiments in Appendix D. Third, under the 2%
sampling guideline formerly used by USDA-APHIS
and the source of data for our estimations, inspectors
could select their samples nonrandomly based on
their knowledge of the commodity and other factors.
Detection rates may also vary across inspectors and
lots. Finally, there can be annual, seasonal, and cross-
producer variation in infestation rates that could
be accounted for in estimation given a rich enough
data set. For these reasons, the numerical estimates
of defect rate presented in this article are largely
illustrative. It is worth noting, however, that the data
currently being collected under USDA-APHIS’s
RBS strategy are based on random sampling and
follow a detailed protocol. Thus, these data should
be more amenable to estimating plant infestation
rates using our maximum likelihood estimation tech-
nique, particularly if they record the number of plant
units inspected. Unfortunately, these data were not
available at the time of these analyses. Future work
should also seek to develop empirical methods that
better represent the nonreducible uncertainties in
infestation rates that result from natural variability
in pest populations across time and space.

Our empirical estimation and optimization
analyses highlight the value of inspection data for
informing risks and targeting inspections across
commodities. However, these data for live plant
imports are rare outside the United States and
incomplete within the United States.(34) Our findings
support the value of collecting data on both random
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sampling inspection outcomes and sample sizes for
estimating infestation rates, as collection of such data
would improve overall efforts to reduce accidental
importation of pests.

Our goal of minimizing expected slippage, or the
expected number of accepted defective individuals,
is an alternative to that of minimizing the expected
number of accepted defective lots, which is the ob-
jective of some applications of acceptance sampling
in public safety programs.(4,15,16) Even though our
approach instructs inspectors to focus on larger
lots with higher plant infestation rates (Table III),
we expect that solutions that minimize the number
of accepted defective lots will allocate sampling
effort to lots with higher infestation rates with less
regard to lot size. For example, in our case with an
inspection capacity of 2,193 (Table III), only the two
largest among five Codiaeum lots (which has the
highest estimated infestation rate) are sampled (and
rather intensively) under the objective of minimizing
expected slippage. In contrast, all five Codiaeum
lots are sampled almost evenly under an objective
of minimizing the expected number of accepted
defective lots. This makes intuitive sense because
conditional on the same defect rate, lot size has a
larger effect on the number of expected infested in-
dividuals than on the probability that a lot is infested,
across most lot sizes relevant to live plant imports.

The preference to minimize accepted defective
lots versus damages from accepted defective individ-
uals may vary across public policy problems. For live
plant import inspections, optimizing based on the
number of accepted defective (i.e., infested) plants is
most relevant because the number of introductions
of a pest into the environment is a key predictor of
establishment.(28–32) We note that the number of in-
fested plant units is not an exact measure of propag-
ule pressure because the number of pests may vary
from plant to plant within a lot and across lots. If esti-
mates of infestation rates and number of propagules
per plant are available for each pest and plant taxa,
our formulation could be refined to calculate a sepa-
rate expected slippage estimate for each pest and lot,
and the objective function would choose the optimal
sample size for each lot to minimize the total damage
from expected slippage across all pests and lots.

Our optimal sampling problem also allows
for refinement of the damage cost, κ i, of accepted
infested individuals across commodities dependent
on the level of damages expected from establishment
of pests associated with a commodity. For example,
pests on a plant genus that is more closely related to a

commercially valuable plant in the importing country
may receive a higher damage weight. Alternatively,
the damage cost parameters could be replaced by
a function that captures nonlinear relationships
between the number of accepted infested plants and
the likelihood of pest establishment. Parameteriza-
tion of these damage cost parameters or functions is
an important future research area and will require
drawing on expertise of entomologists, plant pathol-
ogists, and economists. Finally, if the inspector were
also concerned with welfare losses associated with
intercepting an infested shipment, the objective func-
tion could be expanded to account for these values as
well.

Several other extensions of this acceptance sam-
pling problem are worthy of future research. First,
the inspection problem could be posed in a dynamic
framework to allow for the termination of sampling
of a lot once a defective individual is found or for
learning about infestation rates as lots are sampled.
Optimal sampling with learning involves allocating
inspection effort among lots to maximize the ex-
pected benefits from slippage reduction, accounting
explicitly for the benefits from inspection for reduc-
ing uncertainty about risks across commodities and
hence dynamically improving inspection targeting.
Springborn(16) studies a dynamic optimization prob-
lem of inspection where the probability of a lot’s
being infested is uniform across all lots from a single
producer and the goal of sampling is to maximize the
discounted sum of the expected number of averted
infested lots under a capacity constraint. The prob-
ability of infestation of a lot from a given producer
is updated over time as lots are sampled. In contrast
to Springborn’s(16) assumption that lots from a given
producer have an equal probability of being infested
and binary decision of whether or not to sample a
given lot, our model treats the population infestation
rate as the primitive from which to derive a specific
expected level of infestation for each lot and allows
a different number of individuals to be sampled from
each lot. Combining the approach of our static model
with a dynamic optimization approach and Bayesian
learning regarding population infestation rates could
further improve inspection efficacy. The Bayesian
learning approach also overcomes the inability of
maximum likelihood estimation to estimate the
infestation rates of commodities for which there has
been no interception; a Bayesian inspector would
have some prior belief on the possible infestation
rate, and update such belief given any observation,
with or without interception.
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Finally, accounting for strategic interactions be-
tween the inspector and the producers of inspected
lots would enhance the realism of optimal acceptance
sampling design. In the context of U.S. live plant im-
ports, USDA-APHIS has communicated to us that
live plant exporters adapt to changes in inspection
policies in various innovative ways (e.g., mixing in-
fested material with clean material in response to
a more stringent inspection policy). Similarly, ex-
porters could adjust infestation rates or lot sizes in
response to inspection policies in order to minimize
their losses from detected infested shipments. Ame-
den et al.(35,36) and Springborn et al.(37) have consid-
ered exporter responses in the contexts of uniform
inspections and risk-based inspections. Anticipating
and accounting for the response of regulated firms
in the design of optimal acceptance sampling will be
an important focus for future research and policy de-
sign and could be incorporated into the slippage min-
imization framework developed here.
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