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Abstract Soil organic matter (SOM) turnover

increasingly is conceptualized as a tension between

accessibility to microorganisms and protection from

decomposition via physical and chemical association

with minerals in emerging soil biogeochemical theory.

Yet, these components are missing from the original

mathematical models of belowground carbon dynam-

ics and remain underrepresented in more recent

compartmental models that separate SOM into dis-

crete pools with differing turnover times. Thus, a gap

currently exists between the emergent understanding

of SOM dynamics and our ability to improve terres-

trial biogeochemical projections that rely on the

existing models. In this opinion paper, we portray

the SOM paradigm as a triangle composed of three

nodes: conceptual theory, analytical measurement,

and numerical models. In successful approaches, we

contend that the nodes are connected—models capture

the essential features of dominant theories while

measurement tools generate data adequate to param-

eterize and evaluate the models—and balanced—
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models can inspire new theories via emergent behav-

iors, pushing empiricists to devise new measurements.

Many exciting advances recently pushed the bound-

aries on one or more nodes. However, newly inte-

grated triangles have yet to coalesce. We conclude that

our ability to incorporate mechanisms of microbial

decomposition and physicochemical protection into

predictions of SOM change is limited by current

disconnections and imbalances among theory, mea-

surement, and modeling. Opportunities to reintegrate

the three components of the SOM paradigm exist by

carefully considering their linkages and feedbacks at

specific scales of observation.

Keywords Biogeochemical models � Carbon

stabilization � Decomposition � Global carbon cycle �
Soil organic matter

Introduction

Understanding soil organic matter (SOM) dynamics is

essential to predicting the size of the soil carbon

(C) reservoir and its contributions to soil function,

global C fluxes, and climate change mitigation.

Resolving uncertainties about the Earth system’s

response to environmental change requires a robust

approach for evaluating SOM dynamics, an approach

that integrates: (a) emerging conceptual understand-

ing, or theory, (b) quantitative measurements, and

(c) mathematical models. Accomplishing this integra-

tion essentially creates a paradigm. According to the

Oxford English Dictionary, a paradigm is ‘‘a concep-

tual or methodological model underlying the theories

and practices of a science…a generally accepted

worldview.’’ In our view, a scientific paradigm can be

represented as a triangle composed of three nodes:

conceptual theory, analytical measurement, and

numerical models (Fig. 1a).

The first paradigm of SOM dynamics evolved early

in the history of soil science and included the

humic/fulvic/humin extraction approach that defined

SOM in terms of solubility and chemical recalcitrance

(Waksman 1927) and a simple one-pool model was

developed to describe and predict SOM changes

(Salter and Green 1933). By the 1980s, other ideas

emerged to explain the stability and turnover of SOM.

Researchers integrated incubation studies, radiocar-

bon dating, aggregate separation, and other methods to

develop the idea of compartmentalizing soil carbon

into pools with different turnover times (Paul 1984).

Even with 1980s computing power, scientists were

able to incorporate these conceptual pools into sim-

ulation models that were able to effectively describe

observed large-scale patterns of SOM dynamics (van

Veen and Paul 1981; Parton et al. 1987) and an early

SOM paradigm formed.

The current dominant paradigm continues to con-

ceptualize soil as discrete C pools with differing

turnover times (theory). Carbon pools and turnover

can be parameterized from experiments or measure-

ments that include: respiration time courses during

laboratory incubations, isolation of SOM pools by

physical properties (such as size or density), and

radiocarbon analyses (measurement). Flow between

pools is governed by first-order kinetics driven by pool

size and modified by environmental conditions

(model). This assumption provides the basis for soil

profile-scale models such as CENTURY (Parton et al.

1987) and RothC (Jenkinson and Rayner 1977), which

have been used widely to explore SOM dynamics and

form the core soil biogeochemical component of Earth

system models (Todd-Brown et al. 2013).

This approach is robust and has stood the test of

time because all three elements (theory, measurement,
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and model) are adaptable, linked and, simply, it

worked. This paradigm persists because it captures a

general principle of SOM dynamics, that SOM is

heterogenous and comprises carbon pools that decom-

pose at different rates. With multiple pools and

turnover times, most observed changes in carbon

mass over time can be simulated, but often by

calibrating the model with different pool sizes and

decay constants unvalidated by measurement. The

empirical models are simple enough to be adapted to

different theories about SOM stability, distribution

among pools, and factors influencing destabilization.

Yet, this paradigm also has been criticized for its

simplicity, i.e., it is oversimplified and excludes many

systems that are not ‘‘typical.’’ Finally, the existing

paradigm is not well suited for dealing with rapidly

changing environmental conditions such as those

developing with climate change. To address the

limitations inherent to first-order models, many excit-

ing new theories, measurements, and models emerged

during the early 2000s (Fig. 1b). But, the paradigm

was left unbalanced.

New work has advanced individual, or pairs of,

nodes of the SOM triangle. But, there has been little

focus on evaluating how these developments can be

integrated to form a new, cohesive, stable paradigm

(Don et al. 2013). In agreement, Bradford et al. (2016)

concluded that, ‘‘the major modeling uncertainty is

associated with representing common and outdated

ideas about soil C turnover,’’ and suggested that

confidence in model predictions of SOM is diminished

because assumptions underlying SOM formation and

stabilization in climate models often conflict with our

emerging understanding. The existing paradigm

worked well because concept, measurement, and

model formed strong connections that reinforced each

other. It is difficult, however, to evolve to new

theories, measurement approaches, and numerical

models within an existing paradigm—the whole

triangle must be evaluated as a unit. We argue that

recent discoveries pulled on the nodes of the existing

SOM paradigm triangle causing discontinuities, or

‘‘cracks.’’

Fig. 1 A representation of existing and emerging approaches to

evaluating soil organic matter (SOM) dynamics. The existing

approach is robust because all three nodes—theory, measure-

ment, and modeling—form strong bidirectional linkages and are

well balanced (a). Recent and ongoing innovation at each node

expands the SOM paradigm triangle as understanding of the

controls on SOM dynamics grows. However, if expansion at a

node outpaces integration of linkages within the triangle, then

cracks form causing a lack of applicability and adaptability to

changing environmental conditions (b)
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Developments causing disconnections in our

understanding of soil organic matter dynamics

Developments in theory

Theoretical and conceptual understanding drives how

we design experiments, collect measurements, and

frame the construction of numerical models. Recent

advances in conceptual theory refined our view of

SOM persistence as an ecosystem property (Schmidt

et al. 2011) and provided nuance to our understanding

of how soil properties and organisms interact to

determine the balance of C in a given system, for

example, (1) the ‘‘onion layer’’ concept of organo–

mineral interaction, (2) C saturation, (3) microbial

accessibility, and (4) metabolic/functional traits of the

microbial assemblage. Some of these advances are

purely theoretical, while others are measurable or

model-able, however none have yet to fully develop in

all three nodes across scales.

In 2007, Kleber et al. advanced the conceptualiza-

tion of SOM–mineral interactions by proposing that

layers of different types of organic molecules self-

assemble on mineral surfaces; e.g., amino acids have

strong affinity for mineral surfaces, while more

aliphatic molecules interact more readily with the

organic ‘‘tails’’ of those amino acids. This ‘‘onion-

layer’’ theory of SOM–mineral interaction provided a

compelling insight into organic matter stabilization

and supported another emergent concept of soil C

saturation (Six et al. 2002; West and Six 2007).

Contrary to the prior assumption of a linear increase in

soil organic C stocks with increasing inputs, C

saturation theorized that soil C storage efficiency

decreases as a soil approaches an asymptote, or

saturation (Stewart et al. 2007, 2008). Mineral-bound

C saturation may be attributable to the finite amount of

mineral surface area onto which organic matter sorbs

(Hassink 1996). Because they are less protected from

decomposition by mineral association, particulate

organic matter fractions are less likely to saturate.

These theoretical developments are difficult to

verify experimentally because the critical measure-

ments are challenging to make. A mono-layer equiv-

alent level of C loading (* 1 mg C m-2 mineral

surface) was used to describe stabilized soil C from

both theoretical and empirical perspectives (Mayer

1994), and the nanometer-scale layering of molecules

on soil particle surfaces is gaining evidence (Petridis

et al. 2013; Mitchell et al. 2018). Yet, the specific

surface area of soil minerals and their coverage or

saturation with organic matter are difficult to quantify

(Kaiser and Guggenberger 2003; Wagai et al. 2009).

These theoretical developments are appealing, exten-

sively cited, provide new perspectives on soil C

stabilization and destabilization, and are beginning to

be implemented in numerical models (e.g., Wang et al.

2013; Ahrens et al. 2015). But, their long-term

adoption will depend on identifying measurements

that are suitable proxies of the phenomena that reflect

differentially stable soil C pools; yet, consensus on

how to determine soil C saturation capacity from

measurements of reactive surface area, or other

inherent soil properties, is lacking.

Recent theoretical advances (e.g. Schmidt et al.

2011; Schimel and Schaeffer 2012) argue that the

primary factor regulating the rate of microbial use of

organic compounds is physical access to those

molecules, rather than metabolic capacity to break

them down. In soil’s complex three-dimensional

mineral matrix, microbes gain access to otherwise

protected organic compounds through aggregate dis-

ruption, desorption, and diffusion. Once accessible,

the fate of C depends on how microbes allocate it

within their metabolic processes. For example, do they

respire it or convert it to cell constituents, exoen-

zymes, and extracellular polymeric substances? Or, is

it deposited into the soil environment as microbial

detritus to be stabilized by aggregation or mineral

interactions (Kallenbach et al. 2016)? While the role

of microbial accessibility and allocation in SOM

stabilization gained recognition, the role of chemical

recalcitrance concurrently declined (Dungait et al.

2012; Schimel and Schaeffer 2012). Unfortunately,

the spatial scale at which these soil processes operate

makes it challenging to incorporate these emerging

theories about microbial access and allocation into

simulation models or even experimentally test them

through direct measurement.

In summary, recent theories treat SOM persistence

as an ecosystem property resulting from the balance

between decomposition by microorganisms and pro-

tection by physical and chemical processes (e.g.,

aggregation and mineral association; Schmidt et al.

2011; Lehmann and Kleber 2015). As such, climate

and soil mineral composition can be dominant controls

on SOM stabilization (e.g., Marı́n-Spiotta et al. 2014;

Doetterl et al. 2015; Lawrence et al. 2015; Khomo
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et al. 2017). Limited physical accessibility of SOM to

microbes (Dungait et al. 2012; Schimel and Schaeffer

2012), saturation dynamics (Six et al. 2002; Stewart

et al. 2008; Castellano et al. 2015), and microbial

community metabolic/functional traits (Averill et al.

2014; Bier et al. 2015; Hawkes and Keitt 2015; Leff

et al. 2015; Averill and Hawkes 2016) also are

recognized as important processes in SOM stabiliza-

tion. These new theories changed our conceptual

understanding of the nature and dynamics of SOM, but

remain largely disconnected from measurements and

models.

Developments in measurements

Measurements and observations are necessary to

inform and test theories, and to parameterize and

validate models. Recent advances in analytical tech-

niques immensely expanded our ability to characterize

SOM and the factors regulating its fate, including: (1)

SOM chemical composition, (2) the molecular biology

and community composition of the microbial agents

acting on it, and (3) the physical structure of the soil

matrix. In some cases, this new wealth of analytical

power has exceeded both our ability to interpret these

data and to incorporate them into numerical models.

To characterize the chemistry of extractable SOM,

a number of spectroscopic methods are available,

ranging from relatively simple ultraviolet/visible

spectroscopy (Weishaar et al. 2003) to ultra-high-

resolution electrospray ionization Fourier-transform

ion cyclotron resonance mass spectrometry (ESI-FT-

ICR-MS) (Sleighter and Hatcher 2007). While these

methods are capable of generating thousands of data

points per sample, they rely on mobilizing SOM from

the mineral matrix using different extractants that

often compromise the very compounds we want to

characterize (Tfaily et al. 2017).

Unextracted SOM can be assessed using solid-state

methods such as: 1H NMR spectroscopy for mineral-

free organic particles or 13C for bulk SOM (Wilson

1987; Simpson and Simpson 2014), Fourier Transform

Infrared Spectroscopy (FTIR; Ellerbrock and Gerke

2013) in the mid- and near-infrared regions, analytical

pyrolysis (such as pyrolysis gas chromatography-mass

spectrometry; GC–MS; Saiz-Jimenez 1994), and near-

edge X-ray adsorption fine structure (NEXAFS)

spectroscopy (Gillespie et al. 2015). These modern

analytical methods allow us to characterize the

chemical composition of SOM more-or-less in situ,

and offer an unprecedented level of chemical detail on

the nature of SOM at the molecular and functional

group scales. Yet, these measurements do not neces-

sarily connect well with mechanistic theory or

numerical modeling.

Microbial communities characterized with DNA-

and RNA-based methods provide thousands to mil-

lions of sequences from gram-quantities of soil, each

sequence representing a different taxon (and some

DNA may come from dead cells; Carini et al. 2016).

This volume of data makes using ‘‘-omics’’-based

approaches in biogeochemical models a surpassing

challenge (Schimel 2016), despite there being great

interest in tying the composition of the microbial

community to its functioning (e.g., Torsvik and

Øvreås 2004; Allison and Martiny 2008; Evans and

Wallenstein 2014; Harter et al. 2014). To identify

microbial functioning more specifically, researchers

have targeted functional genes, yet the presence of a

gene for a protein does not indicate that the gene is

actually being transcribed or the enzyme synthesized,

and also does not predict the functional characteristics

of the enzyme once it is synthesized (Prosser 2015).

Thus, -omics approaches to study microbial commu-

nities are powerful for evaluating the composition and

potential activities of the microbial community—they

have revolutionized microbial ecology—but their

ability to offer useful information on SOM dynamics

remains questionable.

A potential approach to integrating microbial

community data with concepts and models is focusing

on ‘‘microbial traits.’’ Different from prior work on

microbial traits such as growth rate, yields, mainte-

nance versus growth respiration determined in labo-

ratory conditions, recent advances seek similar metrics

for much more dynamic populations in situ. Individ-

uals with different distributions of functional traits

may correspond to different taxa of organisms, and

different suites of traits (e.g., life history strategies)

may be selected for by environmental conditions that

in turn drive biogeochemical processes. Such trait-

based modeling has proven successful in both plant

ecology and marine microbiology (Barton et al. 2013;

Dutkiewicz et al. 2013; Reich 2014). For example, in

the marine environment the distribution of distinct

groups of phytoplankton correspond to traits such as

photosynthetic activity. Trait approaches can collapse

substantial phylogenetic variation into a manageable
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number of functional ‘‘types’’ based on life history

strategies. Models that select from trait distributions

do not require a priori definition of those life history

strategies and offer potential for SOM studies (e.g.,

Allison 2012; Kaiser et al. 2014; Manzoni et al. 2014).

One of the most important advances in character-

izing the physical soil matrix has been the develop-

ment of non-destructive visualization methods such as

X-ray tomography, which provides a three-dimen-

sional representation of a soil’s architecture based on

the contrasting density (or absorbance) of its con-

stituents (Cnudde and Boone 2013). As technological

advances have improved the spatial resolution and

chemical sensitivity, micro X-ray tomography now

allows resolving the arrangements of water films,

roots, soil minerals, and microbes. These analyses

enable the localization of SOM within the three-

dimensional soil pore structure (Peth et al. 2014). Such

micro-scale soil ‘‘maps’’ can help inform future

measurements by indicating potential microsites for

SOM stabilization through co-location among miner-

als, aggregates, roots, and microbes (Kinyangi et al.

2006; Vidal et al. 2018). However, linkages with

theories and models need to be strengthened: can SOM

accessibility be quantified using micro-tomography?

Could tomographic measurements be better aligned

with emerging pore-scale models (Ebrahimi and Or

2016; Manzoni et al. 2016; Segoli et al. 2013; Vogel

et al. 2015; ) to identify which microsites are likely to

protect organic matter for centuries? How might we

distill such insights to a scale where we could improve

whole-soil or larger-scale models?

In summary, innovative measurement techniques

have caused further discontinuities within the existing

SOM paradigm. In part, new measurement approaches

have emphasized high-resolution data: X-ray tomog-

raphy can map the three-dimensional pore structure of

a soil core; mass spectrometry techniques can identify

thousands of individual molecules; and genomic tools

can identify tens of thousands of microbial taxa. But,

integrating these high-resolution data into emerging

concepts and theories is challenging because of the

sheer volume of data and potential mismatches in

scale. Even greater challenges are encountered if these

data are used to calibrate numerical models, whose

tens of state variables are being mapped against

thousands of driving variables (Schimel 2016).

Developments in simulation models

Numerical models provide tools that approximate

theoretical understanding while integrating measure-

ments to test assumptions and make predictions about

potential responses to perturbations. Recent advances

include: (1) process modifiers to encompass greater

complexity, (2) microbial-explicit models, and (3)

reactive transport models. With some models reaching

up to 180 variables describing decomposer dynamics,

including different element pools and different

decomposer groups (Grant 2001), and still others

based entirely in theory, problems with data limita-

tions such as poor coverage or inconsistent methods

keep the triangle unbalanced.

Litter decomposition and SOM models have

expanded from their origins as simple one-pool

models (Salter and Green 1933) to include greater

structural complexity that allows them to cover

broader geographic ranges, a wider array of environ-

mental conditions, and longer temporal scales (Jenny

et al. 1949; Olson 1963; Manzoni and Porporato 2009;

Sierra and Müller 2015). Facilitated by advances in

computing power, this expanded capacity allows

extrapolating model projections beyond the data and

theoretical domains over which they were conceived

(Bradford and Fierer 2012). For example, although the

CENTURY model was conceptualized at the monthly

time scale and parameterized for grassland systems in

the central United States (Parton et al. 1987; Schimel

et al. 1994), CENTURY-like implementations at daily

and even hourly time scales are now common in the

terrestrial components of nearly every Earth system

model used to project global C cycle-climate feed-

backs (Todd-Brown et al. 2013). Modifications to

global-scale models change the magnitude of soil C

feedbacks to the climate system (Jones et al. 2005;

Koven et al. 2015), highlighting the importance of

resolving structural uncertainties in these models. The

sensitivity of these models also highlights potential

limitations in both their theoretical underpinnings and

of the data available to evaluate model predictions

under novel conditions (Luo et al. 2015). For example,

generally soil C flux models based on theories of

chemical recalcitrance are relatively insensitive to soil

moisture—less sensitive than experimental data indi-

cate (Lawrence et al. 2009; Carvalhais et al. 2014).

This suggests that the theories and mechanisms

describing how soil moisture influences
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biogeochemical fluxes are poorly represented in

‘‘standard’’ models (Moyano et al. 2013; Sierra et al.

2015). Globally gridded estimates of soil C concen-

trations can be used to evaluate the belowground

stocks simulated by biogeochemical models (Hararuk

et al. 2014; Wieder et al. 2014). Fewer data, however,

are available to parameterize or evaluate how plant

residues are transformed into stable organic matter, or

to quantify long-term SOM persistence in soils.

Most simulation models focus on SOM dynamics

without explicitly representing SOM as microbial

substrate; therefore, considering microbial agents in

biogeochemical models represents a relatively recent

evolution (Schimel and Weintraub 2003; Allison et al.

2010). Ideas about microbial roles in SOM dynamics

are not new (Tenney and Waksman 1929; Monod

1949; Parnas 1975). Several nonlinear models in

which microbes were explicitly described and interact

with decomposition emerged in the late 1970s and

early 1980s (Harte and Levy 1975; Parnas 1975; Smith

1979; McGill et al. 1981). The new generation of so-

called ‘‘microbial models’’ explicitly considers micro-

bial agents through theoretical investigations of

microbial community composition (Allison 2012;

Waring et al. 2013; Kaiser et al. 2014), trying to

predict microbial activity as measured by laboratory

incubations (Wang et al. 2015), ecosystem-scale

representation of biogeochemical dynamics (Sistla

et al. 2014; He et al. 2014), and even global-scale

projections that incorporate simple representations of

microbes (Sulman et al. 2014; Wieder et al. 2015).

These modeling expansions apply structures that

fundamentally change the theoretical assumptions

and numerical representations of soil biogeochemical

dynamics; thus, they alter model responses to envi-

ronmental perturbations (Wieder et al. 2013; Hararuk

et al. 2015; Tang and Riley 2015). In doing so,

microbial-explicit models present opportunities to

explore effects of emerging theories about the influ-

ence of microbial physiology and functional commu-

nity composition on SOM formation and responses to

environmental changes (Grandy et al. 2009; Cotrufo

et al. 2013; Bradford et al. 2016; Buchkowski et al.

2017). Peering into microbial physiology and func-

tioning in soil biogeochemical models is appealing,

but doing so generates enormous challenges in trans-

lating available data and theory into models that

accurately represent microbial agency at appropriate

scales.

Reactive transport models have been used in a wide

variety of applications, including contaminant trans-

port and transformation, biogeochemical redox

cycling, chemical weathering, and geologic C seques-

tration (Steefel and Maher 2009). The capacity of

these models to capture processes influencing soil C

cycling and stability is, however, increasing (Lawr-

ence et al. 2014; Riley et al. 2014; Li et al. 2017). In

exploring their application to SOM dynamics, we push

the limits of data currently available to constrain the

heterogeneous reactions that define organic matter

behavior in soils. The measurements necessary to

constrain these models are well prescribed: they

include the stoichiometry of the relevant reactions,

associated mineral volume fractions, surface areas,

temperature-dependent equilibrium or partition coef-

ficients, and kinetic rate constants. However, these

data are not easily derived from common and wide-

spread measurements. Current models target multi-

phase aqueous and gas transport, heterogeneous

transport pathways, the interactions of microbial

populations, redox cycling and the associated rela-

tionships between metals and organic matter, and the

complexity of multi-site competitive surface com-

plexation and ion exchange (Lawrence et al. 2014;

Riley et al. 2014; Li et al. 2017). But, the most difficult

challenge lies in quantifying the rate constants and

equilibrium partitioning coefficients for multiple

compound classes or SOM components. With thou-

sands of distinct molecules in soil that can react in a

diversity of ways, reactive transport modeling

approaches thus present computational and analytical

obstacles. However, they also potentially serve as both

a diagnostic and predictive tool for SOM dynamics

and offer an opportunity for addressing novel

hypotheses.

As we further develop models that can incorporate

the complexity of microbial communities, organic

matter, and physical structure, it is worth noting that

many of the most sophisticated microbial models still

contain only three functional groups of microorgan-

isms (Manzoni and Porporato 2009). For example, one

such model (Kaiser et al. 2014) contains plant

degraders, microbial necromass degraders, and oppor-

tunists. Yet another model—the guild decomposition

model (Moorhead and Sinsabaugh 2006)—contains

three groups of microbes: opportunists, decomposers,

and miners (lignin-degraders). Another model con-

tains one microbial biomass pool (Sistla et al. 2014),
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but three classes of enzymes. Further, the biomass

pool is stoichiometrically flexible and can change the

C/N ratio to reflect shifts among bacteria and fungi.

Finally, emerging numerical models are stretching

the existing SOM paradigm. Recent work such as the

Millennial model (Abramoff et al. 2018) aim to be

diagnostic and mechanistic, where the turnover time of

SOM is more directly linked to the timescales of

physical protection and isolation. Thus, there is a shift

from an implicit incorporation of spatial heterogeneity

and biological activity to an explicit incorporation of

physical soil structure (e.g., Monga et al. 2014), SOM

chemistry (e.g., Riley et al. 2014), and microbial traits

(e.g., Manzoni et al. 2016). However, the physical,

chemical, and biological parameters, as represented in

models, are not always tightly linked with theory or

measurements. For example, models that drive

decomposition through the activity of specific

microorganisms necessarily collapse decomposers

into a small number of conceptual groups.

Summary of recent developments

Our perception of SOM dynamics is changing, shifting

to finer-scale, mechanistic perspectives. Simultane-

ously, there is increasing demand for data about SOM

dynamics at landscape to global scales. In other words,

our capacity to observe and understand small-scale

processes has increased, while the spatial and temporal

scope of the questions we are asking has increased to

the globe and over centuries. Therefore, as our

perceptions change, we need new triangles that can

help address pressing questions related to SOM

research: How can we incorporate new theories about

physical protection and microbial residues in a

framework that can help us address global-scale

phenomena? How do we incorporate the wealth of

data being generated into new mathematical theories

and simulation models that spans across scales? How

can we determine particular mechanisms at the

interface of microbes, mineral surfaces, and physico-

chemical interactions that are relevant for the global

carbon cycle and changes of Earth’s climate?

Rapid innovation in theoretical developments,

analytical measurement capabilities, and numerical

model constructs of SOM dynamics are critical for

filling in basic knowledge gaps. In isolation, however,

such advances do not necessarily improve our holistic

understanding of SOM dynamics, its vulnerability to

environmental change, or opportunities to increase C

sequestration. Emphasis on theory, measurement, or

modeling within a study tends to result in disciplinary

insights, but the integrated perspective needed to

transform our thinking about how soils function must

happen collectively over time. We are in a transition;

the next phase of advances in our understanding will

require the search for re-connectivity within new SOM

paradigms.

Developing newly connected and balanced soil

organic matter paradigms

The 1980s concepts and generation of SOM models

based on turnover-time-defined C pools are now

failing to meet developing needs to characterize fine-

scale mechanisms of SOM turnover and large-scale

patterns of SOM dynamics in a rapidly changing

environment. Decades of research and seminal papers

(e.g., Schmidt et al. 2011; Lehmann and Kleber 2015)

have cracked the SOM paradigm, but we haven’t

replaced it with a new one. What do we do with our

new theories, measurements, and models? We don’t

just need a new model, we need a new framework to tie

together theories, measurements, and models.

Thus, we argue that the SOM paradigm is broken

and needs reintegration. Chemists, microbiologists,

and large-scale modelers have been pushing forward

separately. Each of these research threads is offering

deep and fundamental contributions to our under-

standing of the processes that drive SOM dynamics;

however, they remain largely disconnected from each

other and are only beginning to gel to create a new

dominant paradigm that would reintegrate the nodes of

the triangle. For example, advances in analytical

techniques for characterizing SOM composition could

be better aligned with representation of the organic

constituents in reactive transport models, such that

measurable classes of compounds correspond directly

with those in the models.

As concepts evolve, and as tools develop, mea-

surements and models based on outdated theory may

need to be abandoned rather than ‘‘repaired’’ by

patching up the cracks. The dominant current triangle

based on pools of soil C with different turnover times,

which led to the phenomenally successful CENTURY

and RothC models, has reached its limits. To move

past, to be able to predict how SOM will respond to
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rapid changes in climate and land management, and to

do so robustly enough to support high-level policy

development, we need to either develop a new

paradigm structure based on current theories, or look

back at previous theories that have lacked popularity,

but contain innovative ideas. Developing this new

framework will remain an iterative process of trial,

error, and exploration. One recent step along this road

was the Millennial model which relies on measurable

soil C pools and key physical and microbial processes

(e.g. sorption/desorption and depolymerization;

Abramoff et al. 2018). Reactive transport models have

also been used previously with some success (Elzein

and Balesdent 1995; Braakhekke et al. 2013, 2014),

and may be best used in the future at an intermediate

level of complexity as a blended pool-transport model,

adding more processes than a traditional model, but

not requiring a full-blown transport model with

detailed chemistry. Our first recommendation, there-

fore, to help reintegrate the SOM paradigm triangle is

for researchers to continue in this line by more

explicitly considering how their work connects to

other perspectives (i.e., other nodes in the triangle).

Soil microbiologists, chemists, and physicists need to

interact more effectively—i.e. a regrowth of soil

science.

To imagine that a single triangle will emerge that

applies at all scales and soil processes is, however,

almost certainly a false expectation—a paradigm

triangle that is well-integrated at the scale of mineral

surfaces, organic matter sorption, exoenzyme activity,

and microbial sequencing would not also describe

global-scale C dynamics. The paradigm structure we

are migrating to, thus, instead of being a single new

triangle, may more likely be a ‘‘stack’’ of triangles,

each focusing on a different scale, at which different

processes dominate biogeochemical dynamics. A key

challenge will therefore be to ensure that larger-scale

models engage the new paradigms that develop from

finer scales—large-scale analysis must remain

grounded in solid mechanistic understanding of the

underlying processes.

For example, high-resolution micro-scale models

can generate dynamics that may be fundamental to

explaining how C is decomposed and recycled, but at

longer time-scales, those dynamics can become

effectively a blur of activity—‘‘sound and fury,

signifying nothing.’’ In contrast, big-but-slow pro-

cesses, such as soil mixing or weathering, that have

little influence on seasonal to annual timescales might

emerge as critical at the decadal to centennial scales.

Tools exist for identifying which processes operate at

timescales relevant for specific questions and which

can be collapsed by assuming effective steady-state

(e.g., Manzoni et al. 2016). Such approaches can allow

climate to set the stage for local-scale microbial

communities, as well as soil conditions (e.g., parent

material mineral assemblage) that control how micro-

bial products are stabilized (e.g., Rasmussen et al.

2018; Rowley et al. 2018).

Developing landscape- and soil profile-scale trian-

gles must capture the essential behaviors that domi-

nate at the mineral particle-scale (e.g.,

protection/sorption vs. microbial metabolism), yet

must still capture the phenomena that dominate at

larger scales (e.g., topography and vegetation type).

Thus, one might not need to explicitly capture the

complex dynamics of microbial communities within a

large-scale model—if you understand the drivers of

the functional responses, you can ‘‘model past the

microbes’’ (Schimel 2001), and so capture the essence

of microbial dynamics in a mathematically

tractable way. Such approaches allow us to capture

high-resolution information to inform models that

operate at larger scales, yet scales appropriate for

linking with global climate models.

Part of the challenge moving forward, therefore,

will be to extract the essential fine-scale behaviors that

larger-scale models should capture. Scaling these

insights into societally relevant theories and models is

critical to advancing biogeochemical understanding in

the twenty-first century and to supporting policy and

land management. Reaching this level requires that we

acknowledge that the paradigm triangle that has

served us well for 30 years has reached its limits; to

meet the new demands being placed upon soil

scientists, the existing triangle should be modernized,

if not completely replaced. The replacement will

likely be an integrated bundle of triangles, each with a

coherent internal intellectual structure that functions at

one of the critical scales of space and time. In many

ways, the theory, measurements, and models that will

form these new paradigms already exist. The first

challenge is to assemble these parts to achieve balance

and parsimony. The next challenge is to link these sub-

paradigms across spatial and temporal scales such that

the essential mechanistic richness of the small scale is

honored appropriately at the large scale.
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Don A, Rödenbeck C, Gleixner G (2013) Unexpected control of

soil carbon turnover by soil carbon concentration. Environ

Chem Lett 11:407–413. https://doi.org/10.1007/s10311-

013-0433-3

Dungait JAJ, Hopkins DW, Gregory AS et al (2012) Soil organic

matter turnover is governed by accessibility not recalci-

trance. Global Change Biol 18:1781–1796. https://doi.org/

10.1111/j.1365-2486.2012.02665.x

Dutkiewicz S, Scott JR, Follows MJ (2013) Winners and losers:

ecological and biogeochemical changes in a warming

ocean. Global Biogeochem Cycle 27:463–477. https://doi.

org/10.1002/gbc.20042

Ebrahimi A, Or D (2016) Microbial community dynamics in soil

aggregates shape biogeochemical gas fluxes from soil

profiles—upscaling an aggregate biophysical model. Glo-

bal Change Biol 22:3141–3156. https://doi.org/10.1111/

gcb.13345

Ellerbrock RH, Gerke HH (2013) Characterization of organic

matter composition of soil and flow path surfaces based on

physicochemical principles—a review. Adv Agron

123

10 Biogeochemistry (2018) 140:1–13

https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1016/j.soilbio.2015.06.008
https://doi.org/10.1016/j.soilbio.2015.06.008
https://doi.org/10.1111/j.1461-0248.2012.01807.x
https://doi.org/10.1073/pnas.0801925105
https://doi.org/10.1073/pnas.0801925105
https://doi.org/10.1038/ngeo846
https://doi.org/10.1111/ele.12631
https://doi.org/10.1111/ele.12631
https://doi.org/10.1038/nature12901
https://doi.org/10.1038/nature12901
https://doi.org/10.1111/ele.12063
https://doi.org/10.1093/femsec/fiv113
https://doi.org/10.1093/femsec/fiv113
https://doi.org/10.5194/bg-10-399-2013
https://doi.org/10.5194/bg-10-399-2013
https://doi.org/10.1002/2013JG002420
https://doi.org/10.1002/2013JG002420
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1111/ele.12712
https://doi.org/10.1038/nmicrobiol.2016.242
https://doi.org/10.1038/nmicrobiol.2016.242
https://doi.org/10.1038/nature13731
https://doi.org/10.1038/nature13731
https://doi.org/10.1111/gcb.12982
https://doi.org/10.1016/j.earscirev.2013.04.003
https://doi.org/10.1016/j.earscirev.2013.04.003
https://doi.org/10.1111/gcb.12113
https://doi.org/10.1038/ngeo2516
https://doi.org/10.1038/ngeo2516
https://doi.org/10.1007/s10311-013-0433-3
https://doi.org/10.1007/s10311-013-0433-3
https://doi.org/10.1111/j.1365-2486.2012.02665.x
https://doi.org/10.1111/j.1365-2486.2012.02665.x
https://doi.org/10.1002/gbc.20042
https://doi.org/10.1002/gbc.20042
https://doi.org/10.1111/gcb.13345
https://doi.org/10.1111/gcb.13345


121:117–177. https://doi.org/10.1016/b978-0-12-407685-

3.00003-7

Elzein A, Balesdent J (1995) Mechanistic simulation of vertical

distribution of carbon concentrations and residence times

in soils. Soil Sci Soc Am J 59:1328–1335. https://doi.org/

10.2136/sssaj1995.03615995005900050019x

Evans SE, Wallenstein MD (2014) Climate change alters eco-

logical strategies of soil bacteria. Ecol Lett 17:155–164.

https://doi.org/10.1111/ele.12206

Gillespie AW, Phillips CL, Dynes JJ et al (2015) Chapter one—

advances in using soft X-ray spectroscopy for measure-

ment of soil biogeochemical processes. Adv Agron

133:1–32. https://doi.org/10.1016/bs.agron.2015.05.003

Grandy AS, Strickland MS, Lauber CL et al (2009) The influ-

ence of microbial communities, management, and soil

texture on soil organic matter chemistry. Geoderma

150:278–286. https://doi.org/10.1016/j.geoderma.2009.02.

007

Grant RF (2001) Modeling transformations of soil organic

carbon and nitrogen at different scales of complexity. In:

Shaffer MJ, Ma L, Hansen S (eds) Modeling carbon and

nitrogen dynamics for soil management. CRC Press, Boca

Raton, pp 597–630

Hararuk O, Xia J, Luo Y (2014) Evaluation and improvement of

a global land model against soil carbon data using a

Bayesian Markov chain Monte Carlo method. J Geophys

Res 119:403–417. https://doi.org/10.1002/2013jg002535

Hararuk O, Smith MJ, Luo Y (2015) Microbial models with

data-driven parameters predict stronger soil carbon

responses to climate change. Global Change Biol

21:2439–2453. https://doi.org/10.1111/gcb.12827

Harte J, Levy D (1975) On the vulnerability of ecosystems

disturbed by man. In: van Dobben WH, Lowe-McConnell

RH (eds) Unifying concepts in ecology. Centre for Agri-

cultural Publishing and Documentation, Wageningen,

p 302

Harter J, Krause H-M, Schuettler S et al (2014) Linking N2O

emissions from biochar-amended soil to the structure and

function of the N-cycling microbial community. ISME J

8:660–674. https://doi.org/10.1038/ismej.2013.160

Hassink J (1996) Preservation of plant residues in soils differing

in unsaturated protective capacity. Soil Sci Soc Am J

60:487–491. https://doi.org/10.2136/sssaj1996.

03615995006000020021x

Hawkes CV, Keitt TH (2015) Resilience vs. historical contin-

gency in microbial responses to environmental change.

Ecol Lett 18:612–625. https://doi.org/10.1111/ele.12451

He Y, Zhuang Q, Harden JW et al (2014) The implications of

microbial and substrate limitation for the fates of carbon in

different organic soil horizon types of boreal forest

ecosystems: a mechanistically based model analysis. Bio-

geosciences 11:4477–4491. https://doi.org/10.5194/bg-11-

4477-2014

Jenkinson DS, Rayner JH (1977) The turnover of soil organic

matter in some of the Rothamsted classical experiments.

Soil Sci 123:298–305

Jenny H, Gessel SP, Bingham FT (1949) Comparative study of

decomposition rates of organic matter in temperate and

tropical regions. Soil Sci 68:419–432

Jones C, McConnell C, Coleman K et al (2005) Global climate

change and soil carbon stocks; predictions from two

contrasting models for the turnover of organic carbon in

soil. Global Change Biol 11:154–166. https://doi.org/10.

1111/j.1365-2486.2004.00885.x

Kaiser K, Guggenberger G (2003) Mineral surfaces and soil

organic matter. Eur J Soil Sci 54:219–236. https://doi.org/

10.1046/j.1365-2389.2003.00544.x

Kaiser C, Franklin O, Dieckmann U et al (2014) Microbial

community dynamics alleviate stoichiometric constraints

during litter decay. Ecol Lett 17:680–690. https://doi.org/

10.1111/ele.12269

Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence

for microbial-derived soil organic matter formation and its

ecophysiological controls. Nat Commun 7:13630. https://

doi.org/10.1038/ncomms13630

Khomo L, Trumbore S, Bern CR et al (2017) Timescales of

carbon turnover in soils with mixed crystalline mineralo-

gies. Soil 3:17–30. https://doi.org/10.5194/soil-3-17-2017

Kinyangi J, Solomon D, Liang B et al (2006) Nanoscale bio-

geocomplexity of the organomineral assemblage in soil:

application of STXM microscopy and C 1s-NEXAFS

spectroscopy. Soil Sci Soc Am J 70:1708–1718. https://doi.

org/10.2136/sssaj2005.0351

Kleber M, Sollins P, Sutton R (2007) A conceptual model of

organo–mineral interactions in soils: self-assembly of

organic molecular fragments into zonal structures on

mineral surfaces. Biogeochemistry 85:9–24. https://doi.

org/10.1007/s10533-007-9103-5

Koven CD, Lawrence DM, Riley WJ (2015) Permafrost carbon-

climate feedback is sensitive to deep soil carbon decom-

posability but not deep soil nitrogen dynamics. Proc Natl

Acad Sci USA 112:3752–3757. https://doi.org/10.1073/

pnas.1415123112

Lawrence CR, Neff JC, Schimel JP (2009) Does adding

microbial mechanisms of decomposition improve soil

organic models? A comparison of four models using data

from a pulsed rewetting experiment. Soil Biol Biochem

41:1923–1934. https://doi.org/10.1016/j.soilbio.2009.06.

016

Lawrence C, Steefel C, Maher K (2014) Abiotic/biotic coupling

in the rhizosphere: a reactive transport modeling analysis.

Proc Earth Planet Sci 10:104–108. https://doi.org/10.1016/

j.proeps.2014.08.037

Lawrence CR, Harden JW, Xu X, Schulz MS, Trumbore SE

(2015) Long-term controls on soil organic carbon with

depth and time: a case study from the Cowlitz River

Chronosequence, WA USA. Geoderma 247:73–87

Leff JW, Jones SE, Prober SM et al (2015) Consistent responses

of soil microbial communities to elevated nutrient inputs in

grasslands across the globe. Proc Natl Acad Sci USA

112:10967–10972. https://doi.org/10.1073/pnas.

1508382112

Lehmann J, Kleber M (2015) The contentious nature of soil

organic matter. Nature 528:60–68. https://doi.org/10.1038/

nature16069

Li L, Maher K, Navarre-Sitchler A et al (2017) Expanding the

role of reactive transport models in critical zone processes.

Earth Sci Rev 165:280–301. https://doi.org/10.1016/j.

earscirev.2016.09.001

Luo Y, Keenan TF, Smith M (2015) Predictability of the ter-

restrial carbon cycle. Global Change Biol 21:1737–1751.

https://doi.org/10.1111/gcb.12766

123

Biogeochemistry (2018) 140:1–13 11

https://doi.org/10.1016/b978-0-12-407685-3.00003-7
https://doi.org/10.1016/b978-0-12-407685-3.00003-7
https://doi.org/10.2136/sssaj1995.03615995005900050019x
https://doi.org/10.2136/sssaj1995.03615995005900050019x
https://doi.org/10.1111/ele.12206
https://doi.org/10.1016/bs.agron.2015.05.003
https://doi.org/10.1016/j.geoderma.2009.02.007
https://doi.org/10.1016/j.geoderma.2009.02.007
https://doi.org/10.1002/2013jg002535
https://doi.org/10.1111/gcb.12827
https://doi.org/10.1038/ismej.2013.160
https://doi.org/10.2136/sssaj1996.03615995006000020021x
https://doi.org/10.2136/sssaj1996.03615995006000020021x
https://doi.org/10.1111/ele.12451
https://doi.org/10.5194/bg-11-4477-2014
https://doi.org/10.5194/bg-11-4477-2014
https://doi.org/10.1111/j.1365-2486.2004.00885.x
https://doi.org/10.1111/j.1365-2486.2004.00885.x
https://doi.org/10.1046/j.1365-2389.2003.00544.x
https://doi.org/10.1046/j.1365-2389.2003.00544.x
https://doi.org/10.1111/ele.12269
https://doi.org/10.1111/ele.12269
https://doi.org/10.1038/ncomms13630
https://doi.org/10.1038/ncomms13630
https://doi.org/10.5194/soil-3-17-2017
https://doi.org/10.2136/sssaj2005.0351
https://doi.org/10.2136/sssaj2005.0351
https://doi.org/10.1007/s10533-007-9103-5
https://doi.org/10.1007/s10533-007-9103-5
https://doi.org/10.1073/pnas.1415123112
https://doi.org/10.1073/pnas.1415123112
https://doi.org/10.1016/j.soilbio.2009.06.016
https://doi.org/10.1016/j.soilbio.2009.06.016
https://doi.org/10.1016/j.proeps.2014.08.037
https://doi.org/10.1016/j.proeps.2014.08.037
https://doi.org/10.1073/pnas.1508382112
https://doi.org/10.1073/pnas.1508382112
https://doi.org/10.1038/nature16069
https://doi.org/10.1038/nature16069
https://doi.org/10.1016/j.earscirev.2016.09.001
https://doi.org/10.1016/j.earscirev.2016.09.001
https://doi.org/10.1111/gcb.12766


Manzoni S, Porporato A (2009) Soil carbon and nitrogen min-

eralization: theory and models across scales. Soil Biol

Biochem 41:1355–1379. https://doi.org/10.1016/j.soilbio.

2009.02.031

Manzoni S, Schaeffer SM, Katul G et al (2014) A theoretical

analysis of microbial eco-physiological and diffusion

limitations to carbon cycling in drying soils. Soil Biol

Biochem 73:69–83. https://doi.org/10.1016/j.soilbio.2014.

02.008

Manzoni S, Moyano F, Kätterer et al (2016) Modeling coupled

enzymatic and solute transport controls on decomposition

in drying soils. Soil Biol Biochem 95:275–287. https://doi.

org/10.1016/j.soilbio.2016.01.006

Marı́n-Spiotta E, Gruley KE, Crawford J et al (2014) Paradigm

shifts in soil organic matter research affect interpretations

of aquatic carbon cycling: transcending disciplinary and

ecosystem boundaries. Biogeochemistry 117:279–297.

https://doi.org/10.1007/s10533-013-9949-7

Mayer LM (1994) Relationships between mineral surfaces and

organic carbon concentrations in soils and sediments.

Chem Geol 114:347–363. https://doi.org/10.1016/0009-

254(94)90063-9

McGill WB, Hunt HW, Woodmansee RG et al (1981) Phoenix, a

model of the dynamics of carbon and nitrogen in grassland

soils. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen

cycles. Processes, ecosystem strategies and management

impacts. Ecological Bulletins, Stockholm, pp 49–115

Mitchell PJ, Simpson AJ, Soong R et al (2018) Nuclear mag-

netic resonance analysis of changes in dissolved organic

matter composition with successive layering on clay min-

eral surfaces. Soil Syst 2:8. https://doi.org/10.3390/

soils2010008

Monga O, Garnier P, Pot V et al (2014) Simulating microbial

degradation of organic matter in a simple porous system

using the 3-D diffusion-based model MOSAIC. Biogeo-

sciences 11:2201–2209. https://doi.org/10.5194/bg-11-

2201-2014

Monod J (1949) The growth of bacterial cultures. Annu Rev

Microbiol 3:371–394. https://doi.org/10.1146/annurev.mi.

03.100149.002103

Moorhead DL, Sinsabaugh RL (2006) A theoretical model of

litter decay and microbial interaction. Ecol Monogr

76:151–174. https://doi.org/10.1890/0012-9615(2006)076

%5B0151:ATMOLD%5D2.0.CO;2

Moyano FE, Manzoni S, Chenu C (2013) Responses of soil

heterotrophic respiration to moisture availability: an

exploration of processes and models. Soil Biol Biochem

59:72–85. https://doi.org/10.1016/j.soilbio.2013.01.002

Olson JS (1963) Energy storage and the balance of producers

and decomposers in ecological systems. Ecology

44:322–331. https://doi.org/10.2307/1932179

Parnas H (1975) Model for decomposition of organic material

by microorganisms. Soil Biol Biochem 7:161–169. https://

doi.org/10.1016/0038-0717(75)90014-0

Parton WJ, Schimel DS, Cole CV et al (1987) Analysis of fac-

tors controlling soil organic matter levels in Great Plains

grasslands. Soil Sci Soc Am J 51:1173–1179. https://doi.

org/10.2136/sssaj1987.03615995005100050015x

Paul EA (1984) Dynamics of organic matter in soils. Plant Soil

76:275–285. https://doi.org/10.1007/BF02205586

Peth S, Chenu C, Leblond N et al (2014) Localization of soil

organic matter in soil aggregates using synchrotron-based

X-ray microtomography. Soil Bio Biochem 78:189–194.

https://doi.org/10.1016/j.soilbio.2014.07.024

Petridis L, Ambaye H, Jagadamma S et al (2013) Spatial

arrangement of organic compounds on a model mineral

surface: implications for soil organic matter stabilization.

Environ Sci Technol 48:79–84. https://doi.org/10.1021/

es403430k

Prosser JI (2015) Dispersing misconceptions and identifying

opportunities for the use of ‘‘omics’’ in soil microbial

ecology. Nat Rev Microbiol 13:439–446. https://doi.org/

10.1038/nrmicro3468

Rasmussen C, Heckman K, Wieder WR et al (2018) Beyond

clay: towards an improved set of variables for predicting

soil organic matter content. Biogeochemistry

137:297–306. https://doi.org/10.1007/s10533-018-0424-3

Reich PB (2014) The world-wide ‘fast–slow’ plant economics

spectrum: a traits manifesto. J Ecol 102:275–301. https://

doi.org/10.1111/1365-2745.12211

Riley WJ, Maggi F, Kleber M et al (2014) Long residence times

of rapidly decomposable soil organic matter: application of

a multi-phase, multi-component, and vertically resolved

model (BAMS1) to soil carbon dynamics. Geosci Model

Dev 7:1335–1355. https://doi.org/10.5194/gmd-7-1335-

2014

Rowley MC, Grand S, Verrecchia EP (2018) Calcium-mediated

stabilization of soil organic carbon. Biogeochemistry

137:27–49. https://doi.org/10.1007/s10533-017-0410-1

Saiz-Jimenez C (1994) Analytical pyrolysis of humic sub-

stances: pitfalls, limitations, and possible solutions. Envi-

ron Sci Technol 28:1773–1780. https://doi.org/10.1021/

es00060a005

Salter RM, Green TC (1933) Factors affecting the accumulation

and loss of nitrogen and organic carbon in cropped soils.

J Am Soc Agron 25:622–630

Schimel JP (2001) Biogeochemical models: implicit versus

explicit microbiology. In: Schulze E-D, Heimann M,

Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D

(eds) Global biogeochemical cycles in the climate system.

Academic Press, San Diego, pp 177–183

Schimel J (2016) Linking omics to biogeochemistry. Nat

Microbiol 1:15028. https://doi.org/10.1038/nmicrobiol.

2015.28

Schimel JP, Schaeffer SM (2012) Microbial control over carbon

cycling in soil. Front Microbiol. https://doi.org/10.3389/

fmicb.2012.00348

Schimel JP, Weintraub MN (2003) The implications of exoen-

zyme activity on microbial carbon and nitrogen limitation

in soil: a theoretical model. Soil Biol Biochem 35:549–563.

https://doi.org/10.1016/s0038-0717(03)00015-4

Schimel DS, Braswell BH, Holland EA et al (1994) Climatic,

edaphic, and biotic controls over storage and turnover of

carbon in soils. Global Biogeochem Cycle 8:279–293.

https://doi.org/10.1029/94gb00993

Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of

soil organic matter as an ecosystem property. Nature

478:49–56. https://doi.org/10.1038/nature10386

Segoli M, De Gryze S, Dou F et al (2013) AggModel: a soil

organic matter model with measurable pools for use in

123

12 Biogeochemistry (2018) 140:1–13

https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1016/j.soilbio.2014.02.008
https://doi.org/10.1016/j.soilbio.2014.02.008
https://doi.org/10.1016/j.soilbio.2016.01.006
https://doi.org/10.1016/j.soilbio.2016.01.006
https://doi.org/10.1007/s10533-013-9949-7
https://doi.org/10.1016/0009-254(94)90063-9
https://doi.org/10.1016/0009-254(94)90063-9
https://doi.org/10.3390/soils2010008
https://doi.org/10.3390/soils2010008
https://doi.org/10.5194/bg-11-2201-2014
https://doi.org/10.5194/bg-11-2201-2014
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1890/0012-9615(2006)076%5B0151:ATMOLD%5D2.0.CO;2
https://doi.org/10.1890/0012-9615(2006)076%5B0151:ATMOLD%5D2.0.CO;2
https://doi.org/10.1016/j.soilbio.2013.01.002
https://doi.org/10.2307/1932179
https://doi.org/10.1016/0038-0717(75)90014-0
https://doi.org/10.1016/0038-0717(75)90014-0
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1007/BF02205586
https://doi.org/10.1016/j.soilbio.2014.07.024
https://doi.org/10.1021/es403430k
https://doi.org/10.1021/es403430k
https://doi.org/10.1038/nrmicro3468
https://doi.org/10.1038/nrmicro3468
https://doi.org/10.1007/s10533-018-0424-3
https://doi.org/10.1111/1365-2745.12211
https://doi.org/10.1111/1365-2745.12211
https://doi.org/10.5194/gmd-7-1335-2014
https://doi.org/10.5194/gmd-7-1335-2014
https://doi.org/10.1007/s10533-017-0410-1
https://doi.org/10.1021/es00060a005
https://doi.org/10.1021/es00060a005
https://doi.org/10.1038/nmicrobiol.2015.28
https://doi.org/10.1038/nmicrobiol.2015.28
https://doi.org/10.3389/fmicb.2012.00348
https://doi.org/10.3389/fmicb.2012.00348
https://doi.org/10.1016/s0038-0717(03)00015-4
https://doi.org/10.1029/94gb00993
https://doi.org/10.1038/nature10386


incubation studies. Ecol Model 263:1–9. https://doi.org/10.

1016/j.ecolmodel.2013.04.010

Sierra CA, Müller M (2015) A general mathematical framework

for representing soil organic matter dynamics. Ecol

Monogr 85:505–524. https://doi.org/10.1890/15-0361.1

Sierra CA, Trumbore SE, Davidson EA et al (2015) Sensitivity

of decomposition rates of soil organic matter with respect

to simultaneous changes in temperature and moisture.

J Adv Model Earth Systems 7:335–356. https://doi.org/10.

1002/2014ms000358

Simpson MJ, Simpson AJ (2014) NMR spectroscopy: a versatile

tool for environmental research. Wiley, Hoboken

Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a

tundra system to warming using SCAMPS: a stoichio-

metrically coupled, acclimating microbe-plant-soil model.

Ecol Monogr 84:151–170. https://doi.org/10.1890/12-

2119.1

Six J, Conant RT, Paul EA et al (2002) Stabilization mecha-

nisms of soil organic matter: implications for C-saturation

of soils. Plant Soil 241:155–176. https://doi.org/10.1023/

A:1016125726789

Sleighter RL, Hatcher PG (2007) The application of electro-

spray ionization coupled to ultrahigh resolution mass

spectrometry for the molecular characterization of natural

organic matter. J Mass Spectrom 42:559–574. https://doi.

org/10.1002/jms.1221

Smith OL (1979) An analytical model of the decomposition of

soil organic matter. Soil Biol Biochem 11:585–606. https://

doi.org/10.1016/0038-0717(79)90027-0

Steefel CL, Maher K (2009) Fluid–rock interaction: a reactive

transport approach. Rev Miner Geochem 70:485–532.

https://doi.org/10.2138/rmg.2009.70.11

Stewart CE, Paustian K, Conant RT et al (2007) Soil carbon

saturation: concept, evidence, and evaluation. Biogeo-

chemistry 86:19–31. https://doi.org/10.1007/s10533-007-

9140-0

Stewart CE, Paustian K, Conant RT et al (2008) Soil carbon

saturation: evaluation and corroboration by long-term

incubations. Soil Biol Biochem 40:1741–1750. https://doi.

org/10.1016/j.soilbio.2008.02.014

Sulman BN, Phillips RP, Oishi AC et al (2014) Microbe-driven

turnover offsets mineral-mediated storage of soil carbon

under elevated CO2. Nat Clim Change 4:1099–1102.

https://doi.org/10.1038/nclimate2436

Tang J, Riley WJ (2015) Weaker soil carbon-climate feedbacks

resulting from microbial and abiotic interactions. Nat Clim

Change 5:56–60. https://doi.org/10.1038/nclimate2438

Tenney FG, Waksman SA (1929) Composition of natural

organic materials and their decomposition in the soil: IV.

The nature and rapidity of decomposition of the various

organic complexes in different plant materials, under aer-

obic conditions. Soil Sci 28:55–84

Tfaily MM, Chu RK, Toyoda J et al (2017) Sequential extraction

protocol for organic matter from soils and sediments using

high resolution mass spectrometry. Anal Chim Acta

972:54–61. https://doi.org/10.1016/j.aca.2017.03.031

Todd-Brown KEO, Randerson JT, Post WM et al (2013) Causes

of variation in soil carbon simulations from CMIP5 Earth

system models and comparison with observations. Bio-

geosciences 10:1717–1736. https://doi.org/10.5194/bg-10-

1717-2013
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