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abstract: Periodical cicadas are enigmatic organisms: broods span-
ning large spatial ranges consist of developmentally synchronized
populations of 3–4 sympatric species that emerge as adults every 13
or 17 years. Only one brood typically occupies any single location,
with well-defined boundaries separating distinct broods. The cause
of such synchronous development remains uncertain, but it is known
that synchronous emergence of large numbers of adults in a single year
satiates predators, allowing a substantial fraction of emerging adults to
survive long enough to reproduce. Competition among nymphs feed-
ing on tree roots almost certainly plays a role in limiting populations.
However, due to the difficulty of working with such long-lived subter-
ranean life stages, the mechanisms governing competition in periodical
cicadas have not been identified. A second process that may affect syn-
chrony among periodical cicadas is their ability to delay or accelerate
their emergence as adults by 1 year and accelerate it by 4 years (strag-
glers). We develop a nonlinear Leslie matrix–type model that describes
cicada dynamics accounting for predation, competition, and stragglers.
Using numerical simulations, we identify conditions that generate dy-
namics in which a single brood occupies a given geographical location.
Our results show that while stragglers have the potential for introducing
multiple sympatric broods, the interaction of interbrood competition
with predation-driven Allee effects creates a system resistant to such
invasions, and populations maintain developmental synchrony.

Keywords: synchrony, Allee effect, Leslie matrix, competitive exclu-
sion.

Introduction

A fundamental problem in ecology is understanding the
processes that determine the distribution and abundance
of species. The concept that competition plays a central role
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in displacement of co-occurring species was recognized early
by Darwin (1859) and, subsequently, has comprised a central
theme in ecological theory (Armstrong and McGehee 1980;
McPeek 2014). While the theory of competitive exclusion is
considered a fundamental truism, the concept has also been
criticized for being tautological or untestable (Levin 1970).
Nevertheless, interspecific competition is considered to play
an important role in shaping species ranges in many types of
organisms (Araújo and Rozenfeld 2014).
A critical problem in evaluating the role of interspecific

competition as a driver of the geographical range of species
is the difficulty of measuring the strength of competition in
actual interspecific interactions. While competition clearly
plays a dominant role in the demography of many plants, its
role is much less clear for other organisms, such as insect
herbivores. Lawton and Strong Jr. (1981) concluded that
competition among folivorous insects is generally weak or
nonexistent. In contrast, Denno et al. (1995) identified more
subtle competitive interactions that play important roles in
herbivore communities, particularly within and among spe-
cies of sap-feeding insects. However, the evidence is incon-
sistent for the importance of competition in delimiting the
geographical overlap among species in general and herbivo-
rous insects in particular.
Periodical cicadas (Magicicada spp.) are model organ-

isms for probing the role of various processes (including
competition) in preventing geographic overlap, whereas,
in this case, it is different broods—not species—that do not
overlap in their spatial distribution. In this system, cicada
species exhibit life cycles of either 13 or 17 years in length,
and individuals exist in broods distributed across large geo-
graphical areas (ranging from 50,000 to 500,000 km2) over
which all individuals are developmentally synchronized,
emerging as adults in the same year. Each brood is com-
prised of the same 3–4 sympatric species, and even though
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they are comprised of individuals that are phenotypically
identical, broods generally do not overlap. Instead, sharp
boundaries exist between broods that are apparently stable
over several generations (Williams and Simon 1995).

The phenomenon of nonoverlap of different broods of
cicadas leads to the central questions we investigate here.
Given that there are extensive boundaries separating differ-
ent broods that are in close proximity, individuals of one
brood could potentially be able to move to areas occupied
by other broods that emerge at different times. Even though
range exclusion is a spatial phenomenon, the role that com-
petition plays in setting geographic boundaries and pre-
venting overlap can be approached from a perspective that
does not include space. Specifically, if a brood is rare, can it
invade an existing brood?Or, phrased differently, what syn-
chronizes the emergence of periodical cicadas?

The dramatic characteristics of synchronized emergence
in periodical cicadas have been the subject of numerous
theoretical studies (e.g., Yoshimura 1997;Webb 2001) since
this behavior may shed light on a range of ecological pro-
cesses and interactions. Yet considerable uncertainty remains
about one of the most basic characteristics of these insects:
Why are they periodical (i.e., developmentally synchronized)?
It is clear that the synchronous emergence of large numbers
of adults in a single year satiates predators and allows a sub-
stantial fraction of emerging adults to survive long enough
to reproduce (Karban 1982). Cicada emergences triggermulti-
annual numerical responses in avian predators (Koenig and
Liebhold 2013), but the absence of large numbers of adult ci-
cadas in successive years prevents long-term increases in pred-
ator populations and allows cicada populations to escape
from the effects of this numerical response. Yet it still remains
somewhat of a mystery as to why broods remain geographi-
cally distinct with nonoverlapping brood boundaries. Dra-
matically, there is a virtual absence of locations where two or
more broods exist sympatrically (Cooley et al. 2009). Explain-
ing this observation is our primary goal here.

Understanding these extreme allopatric distributions of
periodical cicada broods may yield insight into the drivers
of allopatric distributions among different species. In the
case of periodical cicadas, however, the various broods are
essentially phenotypically identical so their allopatric distri-
butions might be considered as an extreme case of compet-
itive displacement. Competition among sympatric broods
might play a crucial role in driving the existence of only a
single brood at any location. Unfortunately, relatively little
is known about either intra- or interbrood competition in
periodical cicadas. Limited field studies by Karban (1984, 1997)
document that competition among root-feeding nymphs of
the same brood may be substantial, but the functional form
of this competition is not clear, and essentially, nothing is
known about competition among individuals at different stages
of development (i.e., interbrood competition).
Here, we develop a biologically realistic model of period-
ical cicada population dynamics to explore the role of com-
petition in exclusion versus coexistence of multiple sympat-
ric broods. Our model is a nonlinear Leslie matrix–type
model that describes cicada development and accounts for
predation of adults and competition among nymphs of the
same and different broods (Leslie 1945). While other theo-
retical investigations have also considered the role of com-
petition and predation in driving the spatial distribution of
periodical insects (e.g., Hoppensteadt and Keller 1976; Bul-
mer 1977; Behncke 2000), our study expands this framework
in two primary ways. First, in the absence of better empirical
evidence for the mechanisms driving competition, we con-
sider multiple forms that make varying assumptions about
the role of intra- and interbrood competition. Second, cicadas
are capable of leaking to join other broods via delayed or ac-
celerated development. An especially peculiar property of
this phenomenon is that these stragglers have only been ob-
served to emerge 1 year late, 1 year early, or 4 years early.
Furthermore, the magnitude and rate of these leakage events
also remain poorly understood (e.g., Heath 1968; Lloyd and
White 1976; White and Lloyd 1979; White et al. 1979; Wil-
liams and Simon 1995; J. Machta, J. C. Blackwood, A. Noble,
A. M. Liebhold, and A. Hastings, unpublished data). We
therefore explicitly account for stragglers in our model and
separately consider the dynamics in the presence of small
leakage events that occur each year in addition to large leak-
age events that occur less frequently.
Using numerical simulations, we identify interactions that

lead to a steady state in which only a single brood occupies a
given geographical location. Further, we identify conditions
under which a single brood resists invasion from another
brood via delayed or accelerated development.
Model Formulation

We develop a nonlinear Leslie matrix–type model to cap-
ture the population dynamics of periodical cicadas. Two
key features of our model are the inclusion of competition
and leakage, or the ability of individuals to delay or acceler-
ate their emergence. Given the associated dynamics, our
primary goal is to determine the conditions required for
the stable existence of only a single brood that synchronously
emerges, as typically observed in natural populations.
Periodical cicadas are semelparous (only adults repro-

duce, and they die immediately afterward), and they are
subject to competition as well as predation-driven Allee ef-
fects. We define the population density (per square meter)
of each age i (where i p 0, . . . , 16) at time t by ~xi,t and the
survivorship (both density independent and competition
driven) of individuals from age i to i1 1 as si(~xt). The sur-
viving adult population that successfully emerges following
competition (which, for now, we denote as ~xe ≔ s16(~xt)~x16,t)
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has an overall fecundity of R(~xe). Under this construction,
we are assuming that the vector of cicada densities captures
population sizes at the beginning of each respective age
class. Our model is defined by
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where ~xt is a vector of the population density for each age
class at time t. Hereafter, we refer to the Leslie matrix in
our model as Lt. More succinctly, this can be written as

~x0,t11 p R(~xe)~xe, ð2Þ
~xi,t11 p si21(~x t)~xi21,t , ð3Þ

where i p 1, . . . , 16, or in vector form as

ð1Þ
~xt11 p Lt~xt: ð4Þ
To construct R, we assume that emerging adults first un-
dergo competition and have density-independent survival
(e.g., due to backgroundmortality) and that they then emerge,
face predation-driven Allee effects, and finally reproduce. (A
schematic representation of how our model captures the or-
der of events in the cicada life cycle is provided in fig. 1A.) A
more detailed treatment of the survivorship (competition)
function is provided in the following section.

We assume that predation follows a standard Holling
type II functional response, which accounts for predator sa-
tiation at high densities of cicadas (Karban 1982, 1984). We
define Pmax as the maximum number of cicadas per square
meter that can be killed in a given year by predation, and we
define Ahalf as the adult population density at which exactly
Pmax=2 cicadas are killed per square meter. Assuming that
the per capita fecundity for individuals that escape preda-
tion is m, the total expected reproductive output per adult
is given by

R(~xe) p max 0,m 12
Pmax

Ahalf 1 ~xe

� �� �
, ð5Þ

where the term in parentheses is the proportion of cicadas es-
caping predation. This creates a strong Allee effect because if
the avian population is capable of consuming more adult ci-
cadas than are present, the cicada population is set to zero.
We used data from Karban (1984) to estimate the parameter
values for m, Pmax, and Ahalf (app. A; apps. A–D are available
online).

It is convenient to nondimensionalize the population
density so that

xi,t p
~xi,t

Ahalf
for all i. Under this nondimensionalization, population den-
sity is scaled so that if xe p 1, then Pmax=2 adult cicadas are
killed per square meter by predation. Now, the reproduction
term simplifies to

R(xe) p max 0,m 12
P

11 xe

� �� �
, ð6Þ

where P p Pmax=Ahalf . A summary of all parameters and
their values is provided in table 1.
Forms of Competition

In this section, we define the survivorship terms, si(~xt),
which capture both density-independent survival and com-
petition. For simplicity, we assume there is a fixed propor-
tion, s, of survival between generations that accounts for
any density-independent background mortality (parame-
terized using Karban 1997; see app. A). In contrast to re-
production, little is known about the mechanisms driving
competition among nymphs in periodical cicadas. There-
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Figure 1: Schematic representation of the cicada life cycle as cap-
tured in our model. A, Events captured in the nonlinear Leslie matrix–
type Lt: background mortality (or density-independent survivorship),
competition, adult emergence, predation, and reproduction. Background
mortality and competition are abbreviated as BM and C, respectively, for
juvenile age classes. B, The three possible types of leakage events can
occur for individuals in the jth age class: 1-year accelerations and delays
and 4-year accelerations.
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fore, we introduce and analyze four different functional
forms for competition: (1) all-to-all competition, (2) early
instar competition only, (3) body-size-dependent competi-
tion, and (4) intrabrood competition only.

We make the most parsimonious assumption for all-to-
all competition: all cicadas compete, and both inter- and
intrabrood competition are constant among all broods. We
assume that competition is captured by an inverse expo-
nential of a weighted sum of the densities of each juvenile
age class so that greater densities result in lower survivor-
ship. Given that competition occurs among all cicadas, the
proportion of cicadas of age i2 1 surviving to age i is given
by

si21(~xt) p s exp 2
X16
jp0

~a ij~xj,t

 !
ð7Þ

for i p 1, . . . , 17, where ~aij ≥ 0 is the competition coeffi-
cient capturing the effect of individuals of age j on those of
age i.

We rewrite these equations in terms of the nondimen-
sional variable xi,t, as defined in the previous section, and to
simplify further, we letaij p ~aijAhalf . Because there are limited
data available to parameterize the competition coefficient, we
also assume it is a single constant for all i and j; consequently,
we define a p aij. Now, equation (7) can be written as

si21(xt) p s exp 2
X16
jp0

axj,t

 !
: ð8Þ

We adopt this notation for the remainder of this article.
Now that we have a general structure for competition, we

can consider alternative forms that may also be biologically
plausible. For example, there is some evidence suggest-
ing that the bulk of underground competition and related
nymphal mortality occurs in the earliest years of the cicada
life cycle, during the first two instars (first 3 years of a cica-
da’s life cycle;White and Lloyd 1979; Karban 1984;Williams
and Simon 1995). Under the assumption that competition
occurs only during the first two instars, we can simplify the
competition term to
si21(xt) p s exp 2
X2

jp0

axj,t

 !
ð9Þ

for i p 1, 2, 3, and it is simply equal to s otherwise.
Thus far, we have assumed that the competition coef-

ficients are equal for all competitive interactions. However,
the body size of cicadas increases dramatically between the
first and final instar, and it is possible that larger insects are
better competitors. Therefore, we assume that the compet-
itive ability of nymphs increases with body size. For sim-
plicity, we assume that body size increases linearly between
years and that competitive advantage is proportional to body
size. A simple way to capture this effect is to let

si21(xt) p s exp 2
X16
jp0

a 11
j2 i
16

� �
xj21,t

 !
: ð10Þ

We additionally considered a nonlinear form of body-size-
dependent competition (app. C). The results are qualitatively
similar to those associated with the linear form.
Finally, we considered the case of only intrabrood com-

petition so that

si21(xt) p s exp(2axi21,t): ð11Þ
Note that we have used the symbol a to denote the com-
petition coefficient for each functional form, but the math-
ematical interpretation of a varies between forms of com-
petition.
Tracking the Emergence of Stragglers

A unique aspect of periodical cicadas is that individuals do
not always stay in their original broods, with studies re-
porting small to large numbers of 17-year periodical cicadas
emerging 4 years early, 1 year early, or 1 year late. For cicadas
of ages 2–13, we assume that a proportion of each age class
may either accelerate emergence by 1 year, delay emergence
by 1 year, or accelerate emergence by 4 years. In the absence
Table 1: Summary of known and estimated parameters
Parameter
 Definition
 Default value
Pmax
 Maximum adult cicadas annually killed by predation
 3.929a
Ahalf
 Adult population density at which Pmax/2 cicadas killed
 3.285a
P
 Dimensionless quantity Pmax/Ahalf
 1.196

m
 Offspring per surviving adult cicada
 56.18a
f
 Proportion of cicadas that leak for each form of leakage
 Varies

s
 Density-independent survivorship
 .915b
aij
 Competition coefficient
 Varies

a Source: Karban 1984.
b Source: Karban 1997.
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of data to estimate these proportions as well as to simplify our
parameterization, we assume that leakage occurs with a fixed
proportion f among all three forms of leakage.

We implement leakage under the assumption that it is
not cyclic. For example, a 14-year-old cicada cannot accel-
erate its emergence by 4 years to return to the 1-year-old age
class and skip emergence altogether. Moreover, a 14-year-
old cicada cannot enter a hypothetical 18th age class; there-
fore, a cicada in its 14th year can only accelerate or delay by
1 year. The same properties apply to 15- and 16-year-old
cicadas. Using a similar justification, 17-year-old cicadas
are additionally prohibited from accelerating emergence by
1 year. Finally, 1-year-old cicadas are barred from delaying
emergence by 1 year, which would place them either back
into the 17th age class or into a hypothetical 0th age class.

To capture this mathematically, we define a leakage ma-
trix, D, such that

xt11 p DLtxt: ð12Þ
Here D is a sparse matrix. The ith entry along the main di-
agonal captures the proportion of cicadas that do not leak
out of the ith age class between years t and t 1 1. Then,
the diagonals one above, one below, and four above the main
diagonal capture the proportions of cicadas in the ith age
class that move into age classes i1 1, i2 1, and i1 4, re-
spectively, between years t and t 1 1.We define the nonzero
entries of D as

d1,1 p 12 2f,
di,i p 12 3f, for 2 ≤ i ≤ 13,
di,i p 12 2f, for 14 ≤ i ≤ 16,

d17,17 p 12 f,
di14,i p f, for 1 ≤ i ≤ 13,
di11,i p f, for 1 ≤ i ≤ 16,
di21,i p f, for 2 ≤ i ≤ 17:

ð13Þ

Notice that when f p 0 (i.e., there is no leakage),D reduces
to the 17#17 identity matrix (see fig. 1B for a schematic
representation of leakage).

The biological underpinnings of leakage remain largely
unknown, and most hypotheses regarding the timing and
mechanisms of leakage are purely theoretical or specula-
tive. For example, it is not known whether there are small
amounts of all types of leakage each year or if large leakage
events occur but more sporadically in time. Therefore, we
implement leakage in two ways: (1) leakage of all types
occurs each year at low levels and (2) a single large leakage
event of only one type occurs.

Simulations

Due to the uncertainty surrounding the magnitude and
frequency of leakage, we first analyze the general proper-
ties of the dynamics when there is a small amount of leak-
age during each year. We use this as a means of determin-
ing the conditions under which there is a stable state in
which a single brood exists (i.e., the state that is most con-
sistent with natural populations). We then consider the
dynamics when there is a single large leakage event and
determine when the new leakage brood can competitively
eliminate the original brood.
In all simulations, the initial conditions are fixed so that

there is a single brood populated with 10 individuals. We
also performed the simulations with 100 individuals ini-
tially in one brood, and the results were nearly identical.
For all results, unless otherwise stated, we ran the model
for 12,002 years so that it is both divisible by 17 (and there-
fore simulates an integer number of complete generations)
and representative of the time span in which periodical cica-
das have existed in their North American range (current
broods are believed to have originated just after the last gla-
ciation; Lloyd and Dybas 1966). This also provides a long
time period for transients to decay.
All of our figures and conclusions are based on the final

204 years of each simulation, a number that was chosen to
again be divisible by 17. Moreover, when our objective is to
determine conditions necessary for a single-brood steady
state, we treat this 204-year period as both a representative
snapshot of recent history—capturing the years in which
cicada emergences have been empirically documented—
and as a quasi equilibrium. When considering a single large
leakage event, we assume that the leakage pulse occurs at
the beginning of the final 204 years of simulation. We then
analyze how that pulse propagates in the immediate 12 ci-
cada generations (or 204 years) that follow, which is again a
time frame that is representative of recent history. Finally,
we note that in simulations that require computing the
number of broods present (i.e., figs. 2A, 3, 4), we count only
broods that are large enough to overcome the predation-
driven Allee effect.
Results

The results are broken into two main sections. In the first,
we analyze the dynamics under the assumption of steady
leakage and determine a phase diagram in the leakage ver-
sus competition plane. We find regions that correspond to
population extinction, single brood persistence, and the per-
sistence of multiple broods. In the subsequent section, we
use our phase diagram to identify competition and leakage
parameter values that lead to a single-brood stable state
(i.e., parameters that are most likely to be consistent with
natural populations) and then assess the dynamics when
leakage events are rare. That is, we analyze the population
dynamics following a single large leakage event. In this sce-
nario, we also determine the magnitude of a leakage event
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required to change the stability so that the leakage brood
displaces the original brood. This final analysis may pro-
vide insight into the conditions necessary for a brood to ex-
pand its spatial range and therefore is most relevant at the
spatial boundaries between broods.
Interactions between Competition and Steady Leakage

We investigate how the dominance of a single brood is af-
fected by the relative strength of leakage (f) and competi-
tion (a) for each form of competition. In particular, we
identify the number of broods present in the final 12 gen-
erations of each simulation for a range of a and f values.

We create a phase diagram by dividing a2 f parameter
space into five qualitatively distinct regions: (I) population
extinction, (II) single-brood steady state, (III) steadymultiple-
brood coexistence, (IV) successional multiple-brood coexis-
tence, and (V) steady all-brood coexistence.
The first region is self-explanatory. Region II corresponds

to a single brood persisting with a fixed population size when
averaged over a complete generation. Region III is similar to
II, with the exception that multiple broods coexist, with one
of the broods dominating the majority of the total popula-
tion size. In this region, at most four broods coexist; that
is, some combination of the original brood and broods cre-
ated from leakage from the original brood are able to over-
come Allee effects and persist. In region IV, broods created
by leakage are able to grow over time and eventually out-
compete other broods, leading to periodic changes in the
most prevalent brood over time. In region V, all broods are
Figure 2: A, Phase diagram of the qualitatively different regions of parameter space as the magnitude of competition (a) and leakage (f) are
varied. This figure displays the results for all-to-all competition, and the other functional forms of competition are provided in appendix B.
Region I corresponds to population extinction, region II is single-brood persistence, region III is steady coexistence ofmultiple broods, region IV
is successional multiple-brood coexistence, and region V is steady all-brood persistence. B–F, Time series of the proportion of the total pop-
ulation for each brood (distinct colors are different broods) in each of the qualitatively distinct regions from A. The gray circles in A represent
the parameter combinations used in B–F. B, Time series for region II. C, Region III. D, Leftmost circle in region IV. E, Rightmost circle in re-
gion IV. F, Time series for region V. Multiple time series are shown for region IV to demonstrate that within this region, larger leakage values
lead to faster changes in brood dominance. In all simulations, a single brood is assumed to initially be populated with a density of 10 cicadas per
square meter, and all other broods initially have no individuals. All time series shown are for the final 204 years (12 generations) of the sim-
ulations and are displayed using a moving average of 17 years to eliminate spikes in population sizes following reproduction.
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present with equal average population. Figure 2 shows the
resulting phase diagram for all-to-all competition, and the
other phase diagrams are provided in appendix B. To numer-
ically separate region IV from regions V and III, we find the
magnitude of the variance for each of the broods following
reproduction across the final 12 generations of the simula-
tions. We then average across the resulting variances found
for each brood. Region IV is assumed to contain all param-
eter values in which the mean variance was greater than the
mean population size. While this threshold is chosen some-
what arbitrarily, the difference in variance between regions
is quite large (as can be observed in fig. 2C–2F), and many
other thresholds would work as well.

Each of the six forms of competition exhibit population
extinction for sufficiently high competition (region I) and
the existence of the single-brood steady state for relatively
low levels of leakage over a range of competition values (re-
gion II). Machta et al. (unpublished data) approximated a
Leslie matrix–type model of periodical cicadas using a con-
tinuum model. In that analysis, a similar threshold was
identified for competition that divides the single-brood
steady state from population extinction. In region II, leak-
age is low enough so that predation-driven Allee effects
and competition successfully eliminate stragglers (fig. 2B).
As leakage increases, the range of competition values that
lead to a single-brood steady state shrinks. In particular,
competition needs to be at an intermediate level: if compe-
tition is too high, then population extinction will occur, and
if competition is too low, then leakage broods can stably co-
exist (e.g., as in region III; fig. 2C).
With the exception of the case with intrabrood competi-

tion only, multiple broods coexist and the dominant brood
(s) change over time when there are relatively low levels of
competition and substantial leakage (region IV; fig. 2D, 2E).
These successional dynamics are seeded by leakage and
within-generation changes in brood size (through, e.g., re-
production) that lead to competitive advantages. Within
this region, the timescale in which one brood succeeds an-
other decreases as leakage increases. In this case, high levels
of leakage are able to seed within-generation changes in
brood size at a faster rate. For very low levels of competi-
tion, the dynamics leading to coexistence are dominated
by leakage with minimal effects from competition. Here,
all 17 broods coexist with little variation in population size
(fig. 2F).
The phase diagram for intrabrood-only competition

differs slightly from the other forms of competition in that
only three of the regions described above are present: ex-
tinction, the single-brood state, and coexistence of all broods
(see app. B for phase diagram). This follows from the as-
sumption that there is no interbrood competition; as long
as competition is sufficiently weak and leakage sufficiently
high, then all broods eventually become populated and their
population size is not impacted by any other broods.
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brood takes over, and the height of the cross is the number of generations until the parent brood disappears. The three subplots correspond to
three values of competition: a p 0:001 (A), a p 0:01 (B), and a p 0:022 (C). In A, competition is weak enough so that two broods can
coexist for more than 12 generations over a range of leakage magnitudes indicated by the red shaded region. In B, two-brood coexistence
persists for more than 12 generations only in a narrow range indicated by the vertical red line. In C, there is no unstable two-brood equi-
librium and two-brood coexistence decays in three or fewer generations. These plots also demonstrate how the results shown in figure 4 are
obtained.
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Dynamic Impacts of Isolated Large Leakage Events

Wenow assume that leakage does not occur each year (app. D
provides a sensitivity analysis that assumes there is a small
amount of annual leakage); instead, we assume that there is
a single large leakage event and examine the dynamics that
follow. Here, our goals are fourfold: (1) identify the magni-
tude of the leakage event required for the leakage brood to
dominate and drive the original brood to extinction, (2) de-
termine how the findings for goal 1 change as themagnitude
of competition increases, (3) characterize the differences be-
tween each type of leakage (1-year acceleration or delay and
4-year acceleration), and (4) determine how goals 1–3 differ
between forms of competition.
For each relevant value of a—as determined by the val-

ues in the phase diagrams that correspond to a single-brood
steady state in the absence of annual leakage—we vary the
magnitude of the leakage event as measured by the pro-
portion of the original brood that emerges as stragglers. In
other words, a magnitude of zero implies that there was no
leakage, and a value of one implies that the entire original
brood emerged together but either early or late. We then de-
termine the number of complete generations required for ei-
ther the original brood to outcompete the leakage brood
and drive it to extinction, or vice versa. We again consider
the first 12 generations (or 204 years) following the leakage
event; therefore, while it is possible that competitive exclu-
sion takes more than 12 generations, we end all simulations
after the 12th generation.
Figure 3 summarizes the dynamics following a large leak-

age event where the stragglers appear 1 year late. Each sub-
plot shows, for a given competition strength, the number of
generations until only a single brood is present as a function
of the magnitude of the leakage event. If the leakage mag-
nitude is sufficiently small (indicated by circles in the fig-
ure), the surviving brood is the original parent brood, while
if the magnitude exceeds a threshold, the leakage brood takes
over. For sufficiently weak competition, we have shown else-
where that there is an unstable two-brood equilibrium (Machta
et al., unpublished data). The long coexistence times visible
for weak competition in figure 3A, 3B reflect this unstable
equilibrium. The shaded region in figure 3A corresponds to
coexistence times exceeding 12 generations. The coexistence
time diverges exactly at the unstable equilibrium, as indicated
by the vertical red line in figure 3B. However, the addition of
stochasticity to themodel will remove this divergence. On the
other hand, if the competition exceeds a critical value, the un-
stable two-brood equilibrium ceases to exist and the coexis-
tence time remains small for all leakage fractions, as seen in
figure 3C. The dashed red line in this subplot indicates the
magnitude of leakage for which the leakage brood first takes
over.
The location of these peaks (associated with the shaded

red regions and vertical red lines) is summarized for each
competition and leakage type as a is varied (fig. 4). While
an initial hypothesis might be that the dominant brood
switches from the original to the leakage brood when there
is a leakage event great than magnitude 0.5—that is, more
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Figure 4: Magnitude of leakage event required to replace the parent
brood with the leakage brood. In each subplot and for each color, the
region above a line (or region) of a given color corresponds to dom-
inance by the leakage brood and elimination of the parent brood
within 12 generations. The region below the line (or region) corre-
sponds to dominance of the parent brood and elimination of the
leakage brood within 12 generations. Blue represents leakage events
with a 1-year acceleration, red represents a 1-year delay, and black
represents a 4-year acceleration. In the shaded regions, the parent and
leakage broods coexist formore than 12 generations following the leak-
age event. A, Results for all-to-all competition. B, Linear body size de-
pendence.
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than half of the brood leaks—the dynamics are more subtle
due to interactions between competition, leakage, and re-
production. For all-to-all competition, the magnitude of
the leakage event required for the leakage brood to domi-
nate for a 1-year delay is greater than 0.5, and it is less than
0.5 for a 1-year acceleration (fig. 4A). This arises because
the brood that is closer to reproduction eventually has a
competitive advantage: the more advanced brood repro-
duces first and has a corresponding spike in population size.
In the all-to-all scenario, first-instar nymphs are equally as
competitive as fifth-instar nymphs, allowing the brood that
emerges first to ultimately dominate. Four-year accelerations
behave similarly to 1-year accelerations in that a leakage event
of less then 0.5 can allow the leakage brood to outcompete the
original brood. However, these individuals emerge even ear-
lier than the original brood and therefore require even less of
a leakage event compared to that required for a 1-year accel-
eration. For all three types of leakage, these effects are damp-
ened as the role of competition increases. This result follows
because increasing levels of competition weaken the effects of
a large leakage event, bringing the magnitude required to
cause a change in dominance closer to 0.5.

When competitive ability depends linearly on body size
(and, therefore, age), the magnitude of the leakage event
required for the leakage brood to outcompete the original
brood substantially depends on the magnitude of compe-
tition. When competition is low, for example, the size of a
1-year acceleration has to be much greater than 0.5 for a
switch in dominance to occur. In contrast to the all-to-all
case, the competitive advantage of the accelerated brood
is dwarfed by body size dependence. In this case, the accel-
erated brood will reproduce first and have an advantage be-
cause of the increase in population size. However, during
that same year, the original population is in their 16th year
and has a major competitive advantage over the 1-year
nymphs. This competitive advantage of larger-bodied in-
sects weakens as the magnitude of competition increases;
whena is sufficiently high, the smaller individuals can com-
pete well enough to eventually dominate. For large values of
a, body size dependence mirrors that of all-to-all competi-
tion (fig. 3B). The results corresponding to 4-year accel-
erations are similar to that of 1-year accelerations, with
more dramatic changes in the magnitude of the leakage
event required to cause a change in brood dominance. A
similar argument can be made for 1-year delays, which ex-
hibit the opposite pattern as compared to 1-year accelera-
tions. Nonlinear body size dependence in competition yields
nearly identical results to linear body size dependence (see
app. C).

The magnitude of a leakage event required to cause a
change in brood dominance directly depends on the form
of leakage when there is only early instar competition. For
example, the leakage brood corresponding to a 1-year ac-
celeration will almost always go extinct. This result follows
from the assumption that individuals in their first two
instars cannot compete with other instars. In this scenario,
when the leakage brood reproduces (and therefore has a
competitive advantage over the original brood due to a spike
in population size), it cannot compete with the original
brood. In contrast, the original brood reproduces and com-
petes with the leakage brood after the leakage brood has
already undergone 1 year of competition. From this same ar-
gument, the leakage brood arising from a 1-year delay al-
most always eventually outcompetes the original brood. The
only time this argument fails is when competition is very
low (a ! 0:002), and the two broods coexist for more than
12 generations. Four-year accelerations, on the other hand,
always lead to coexistence of the original and leakage brood.
In this case, the two broods are far enough apart in age that
they never compete.
Finally, the results for intrabrood competition only are

straightforward and a direct consequence of the form of
competition implemented. In particular, all leakage events
lead to stable coexistence of both broods as long as their
population sizes are large enough to overcome the Allee ef-
fects (results not shown). This result follows because the
leakage brood and the original brood never compete with
each other.
Discussion

Understanding the processes that determine the distribu-
tion of species across space remains a fundamental goal
in ecology. The question of what leads to nonoverlapping
spatial distributions of different species is one particular
problem in this area. Periodical cicadas, with broods that
emerge at different times, are analogous to different species
and provide a useful window into the processes that lead to
disjoint spatial distributions.
Additionally, the synchronized emergence of different

cicada broods can be viewed as one of the most dramatic
examples of large-scale spatial synchrony in ecology. Both
views of the unique behavior of cicada populations suggest
that a clear understanding of the processes that produce ob-
served dynamics of cicadas may shed light on fundamental
ecological questions. There are both many examples of spa-
tial synchrony of ecological populations, though perhaps
not quite so dramatic, and examples of organisms that re-
produce just once and therefore may have synchronized
reproduction over space. Given the ubiquity of these phe-
nomena, models that explain the presence of synchronized
emergence in cicadas should provide insights into general
ecological questions by highlighting the processes that lead
to synchrony and exclusion.
The term “semelparous” is used to refer to organisms such

as periodical cicadas, salmon, and many plants in which re-
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production is limited to a brief period at the end of the life
cycle. This phenomenon is relatively common among several
taxa of insects. In most species, populations are composed of
a mixture of cohorts developing together, but in a small frac-
tion of semelparous insects, development is completely syn-
chronous with adults appearing at the same time. These
insects are referred to as periodic, and the causes of this syn-
chrony are poorly understood (Heliövaara et al. 1994). Using
matrix models similar to those used here, previous studies
have explored how different forms of competition may lead
to stability among developmental cohorts or even to exclu-
sion of all but a single cohort (developmental synchrony, i.e.,
periodic behavior), such as exists for periodical cicadas (Davy-
dova et al. 2005; Mjølhus et al. 2005). However none of these
studies has considered how such stability is affected by leak-
age between cohorts. The analyses presented here on either
recurrent or pulsed leakage events that characterize periodical
cicada populations thus are quite unique.

While multiple populations comprise broods of a given
life span (13 or 17 years), the allopatric distribution of these
broods provides a model system for probing how competi-
tion may facilitate exclusion. We developed and analyzed
nonlinear Leslie matrix–type models that describe the dy-
namics of cicadas in an attempt to better understand the
mechanisms driving synchronous emergence—that is, ex-
clusion of other developmental cohorts by a single brood.
While our results provide insight into the complex processes
governing cicada dynamics, considerable uncertainty remains.
Here, we focus on the two main processes that are central to
cicada population dynamics: competition and leakage.

The analysis here demonstrates the close interplay be-
tween competition and Allee effects that maintains the pe-
riodical (synchronized) life history observed in periodical
cicadas. However, Lloyd and Dybas (1966) proposed that
the array of periodical cicada broods that currently exist
in eastern North America descended from a single ancestral
brood, splitting off as straggler populations, and this theory
remains widely accepted. If this theory is correct, then one
of the challenges that remains for understanding this sys-
tem is elucidation of how leakage occasionally might result
in a portion of a brood synchronizing their emergence on a
different year, overcoming the processes documented here
that prevent such a switch.

Results presented here demonstrate that though periodic
population behavior can emerge under a variety of types of
competition, such competition must be sufficiently strong
to maintain the existence of only a single brood at any lo-
cation. Unfortunately, very little mechanistic information
exists about competitive interactions among periodical ci-
cada nymphs (Karban 1984, 1997). Thus, future studies of
both intra- and interbrood competition would help clarify
mechanisms responsible for developmental synchrony in this
system.
Among the most similar previous studies are those on
salmon species in which almost all females return to spawn
the same year, a behavior called obligate semelparous. The
focus of these studies has been on the role of both stochastic
events and competition in these semelparous species, but in
most salmon populations, more than one year class coexists
at a given location, and the goal is to explain why one class
is much more common (Worden et al. 2010; White et al.
2014). As in the cicada case, individuals may return to spawn
at different ages; so why does one age class often dominate?
Further investigations contrasting these two cases as well as
similar dynamics of some flowering plants should prove in-
teresting.
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