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Abstract

The complexity of processes and interactions that drive soil C dynamics necessitate

the use of proxy variables to represent soil characteristics that cannot be directly

measured (correlative proxies), or that aggregate information about multiple soil char-

acteristics into one variable (integrative proxies). These proxies have proven useful

for understanding the soil C cycle, which is highly variable in both space and time,

and are now being used to make predictions of the fate and persistence of C under

future climate scenarios. However, the C pools and processes that proxies represent

must be thoughtfully considered in order to minimize uncertainties in empirical

understanding. This is necessary to capture the full value of a proxy in model parame-

ters and in model outcomes. Here, we provide specific examples of proxy variables

that could improve decision-making, and modeling skill, while also encouraging

continued work on their mechanistic underpinnings. We explore the use of three

common soil proxies used to study soil C cycling: metabolic quotient, clay content,

and physical fractionation. We also consider how emerging data types, such as gen-

ome-sequence data, can serve as proxies for microbial community activities. By

examining some broad assumptions in soil C cycling with the proxies already in use,

we can develop new hypotheses and specify criteria for new and needed proxies.
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1 | INTRODUCTION

To understand and predict how the carbon (C) cycle responds to

environmental changes, the underlying ecosystem dynamics that

determine net C balance need to be determined. Current efforts to

address this need depend on the exchange of knowledge between

empirical research and simulation models. While net primary produc-

tivity can be readily measured, and modeled with well-established

physical and chemical constraints, the soil C cycle is highly complex

and driven by a vast suite of environmental, physical, and biological
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factors. Given this complexity, and the limitations to disentangling all

the drivers of soil processes, how do we manage, measure, and pre-

dict climate change interactions with terrestrial ecosystems?

In the physical and biological sciences, relatively simple proxy

variables are often used to substitute for more complex variables or

processes. A proxy variable is a measurement of one physical quantity

that is used in the place of a different quantity that would be too dif-

ficult or expensive to measure directly. Proxies are used extensively

in the earth sciences, particularly in attempts to reconstruct past cli-

mate, where direct measurements are impossible. For example, oxy-

gen isotopes in benthic foraminifera are commonly used to infer past

geologic events such as relative sea-level rise and deep water temper-

ature changes (e.g., Waelbroeck et al., 2002). Both tree ring chronolo-

gies (D’arrigo, Wilson, Liepert, & Cherubini, 2008) and marine

sediment records (Henderson, 2002) have been used to infer past cli-

mate as well. Ljungqvist et al. (2016) used multiple hydroclimate

proxy data from ice cores, marine sediments, lake sediments, spe-

leothems, tree rings, and historical documentary data as indicators of

hydrological status in order to analyze the spatiotemporal patterns of

hydrological anomalies in Northern Hemisphere land areas over the

past 12 centuries. These applications of proxies have proven particu-

larly powerful in reconstructing consistent and continuous paleocli-

mate records, and thus have been well researched and vetted.

Ecologists and biogeochemists, however, have typically been less

explicit about using proxies in research, and instead have used prox-

ies to offset the often complex and detailed measurements for pro-

cesses of interest. Proxies have been used in biogeochemistry and

ecology for several different reasons: (1) when direct measurements

are not possible, for example, for historic events (similar to paleocli-

matology); (2) when direct measurements are not practical due to

time, difficulty, and/or cost constraints; (3) when a first-order

screening of a complex process can help eliminate measurements or

refine hypotheses. For example, an extensive allometry literature

uses tree diameter as a proxy for quantities such as biomass and

canopy leaf area (Niklas, 1994). In forestry, “site index” is a proxy

based on average tree height, an easily measured variable that was

developed over a century ago to quantify overall site productivity

(Skovsgaard & Vanclay, 2008). The site index proxy is valuable

because it encapsulates soil and climate conditions that can be

highly variable and are not easily measured. Remotely sensed metrics

such as normalized difference vegetation index have been shown to

be correlated with plant productivity and biomass, as well as to less-

obviously related variables such as herbivore and carnivore species

distribution and dynamics (Pettorelli et al., 2011). In soil science, clay

content is widely used by both experimentalists (Bernoux, Cerri,

Arrouays, Jolivet, & Volkoff, 1998) and modelers (Li, Frolking, & Har-

riss, 1994) as a proxy for properties such as bulk density, water

holding capacity, and soil organic matter. One problem with soil

proxies is that they are often based on features that change very

slowly (e.g., clay content), so their change in response to a transient

disturbance is difficult to ascribe mechanistically. Alternative types

of proxies are transient measurements (e.g., NPP) that may be diffi-

cult to scale through time and space (Bond-Lamberty et al., 2014).

We analyze the use of proxies in the field of soil C dynamics,

and suggest ways that the scientific community can use proxies

most effectively. We classify types of proxies for the purposes of

environmental research and briefly review the historical use of prox-

ies in soil science. To frame the power and limits of proxies, we

focus on soil organic matter (SOM) pools that are critical to ecosys-

tem C cycling, exploring three proxies that have been used to cap-

ture different aspects of SOM dynamics with different degrees of

success, and discuss potential future proxies. Finally, we address

potential implications of SOM itself as a proxy for ecosystem ser-

vices and its use in management and decision-making.

2 | PROXIES AND THEIR HISTORY IN
SCIENCE AND LAND MANAGEMENT

For ecological research it is useful to classify proxies into two cate-

gories: correlative representations (proxies that reveal insights about

covarying factors) and integrative frameworks (summarizing potential

pathways and system control points; Figure 1). While both are use-

ful, each has limits on how the data can be interpreted. The thought-

ful use of proxies can lead to new hypotheses and experiments to

identify causative relationships; the unconsidered use of proxies may

result in overweighting of correlations to explain research results

and the misrepresentation of mechanisms.

Trade-offs in ease of measurement and predictive value drive

the selection and use of proxies in analyses at any spatial scale; an

example of this with respect to annual soil respiration is visualized in

Figure 2. Some potential proxies of soil respiration are easy to mea-

sure but have low explanatory power; some have high explanatory

power but are difficult to measure; and a few combine good

explanatory power with reasonable ease of measurement. For exam-

ple, leaf area index (LAI) is a relatively easy, rapid measurement that

can inform new hypotheses about terrestrial C fluxes. However, on

its own LAI is a poor predictor of soil respiration. In contrast, directly

measuring annual heterotrophic respiration is labor-intensive and/or

subject to large uncertainties, although it has significant predictive

power in this example. We argue that improved understanding of

complex systems will follow by formally identifying data types, that

is, potential proxies, which are both relatively easy to collect and

also useful predictors.

Agriculturalists and other land managers, whose livelihood

depends on the productive capacity of soil, have frequently used

proxies to assess management effects on soils. For example, total

soil organic C is a robust proxy for the potential of processes such

as aggregate formation, water retention, or nutrient turnover to sup-

port production (Grandy, Porter, & Erich, 2002), although it is an

imperfect representation of all the factors that regulate yields, such

as precipitation, temperature, and management inputs. In addition,

since the Dust Bowl, soil conservation practice has been embodied

in concepts that are themselves proxies. For example, the concept of

“soil tilth” or “quality” has been used for decades to describe the

integrated physical condition of the soil (Karlen, Sadler, & Busscher,
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1990), and is a proxy for specific measurements of aggregate struc-

ture, water infiltration, and porosity.

Modelers, empirical scientists, and practitioners all use proxies,

yet, it is important to note that their specific goals, and thus the

types of proxies they may depend upon, frequently diverge. Empiri-

cists typically want to understand underlying mechanisms, and thus

tend toward reductionist approaches, using proxies only when abso-

lutely necessary. Modelers recognize the necessity of proxies for

tractable models (i.e., models that are parameterizable and character-

ized by only as much complexity as is necessary). Land managers are

even less likely to be interested in the details and fidelity of repre-

sentation, and are typically interested in highly integrative and imme-

diately useful proxies. These divergent goals result in inconsistent

use and acceptance of proxies in environmental, soil, and climate

change sciences and management.

3 | OPERATIONAL MEASUREMENTS AND
PROXIES IN SOIL ORGANIC MATTER
RESEARCH

The formation, transformation, and persistence of SOM are difficult

to study and predict. SOM is chemically diverse, spatially heteroge-

neous, and its fate is driven by a suite of chemical reactions and

physical interactions that occur in soil microsites. We lack the sensi-

tivity and resolution to capture these changes in real time, and it is

only over significant time scales (e.g., decades) that we detect the

overall direction of change to the abundance and nature of SOM. A

further difficulty is separating inherent characteristics of SOM from

the environmental factors influencing its cycling (Davidson, 2015;

Schmidt et al., 2011). Given the complex drivers of SOM dynamics,

scientists rely heavily on proxies (Table 1), although direct measure-

ments of SOM stability do exist. Perhaps the most direct measure

we have of SOM stability is its radiocarbon signature. Radiocarbon

has been used to estimate SOM mean residence time in simple

steady-state models (Gaudinski, Trumbore, Davidson, & Zheng,

2000), as well as highly complex models which take into account

variation in inputs and decay over time (Sierra, M€uller, & Trumbore,

2012), and can provide significant constraints on model formulation

and results (He et al., 2016). Other direct measurements include the

resistance of SOM to microbial degradation in laboratory incuba-

tions, or to hydrolysis by strong acids.

Despite these direct measures of SOM stability, many other soil

measurements are proxies rather than direct measurements. In order

to illuminate common issues with widely used proxies, we discuss in

depth three that are commonly used in different areas of soil

science. These relate to microbial dynamics and soil C cycling (Meta-

bolic quotient), soil texture and physical properties that control SOM

F IGURE 1 Proxies can be considered
correlative or integrative. Here, we show a
simplified network of interactions between
processes and related proxies relevant to
the examples presented in this paper.
Correlative proxies may not be directly
causative of the process/feature of
interest, however, the relationship
between a proxy and the feature of
interest can suggest new hypotheses and
refine other analyses needed. Integrative
processes are measurements that reflect a
collection of features, and how they work
as a system. These can be valuable for
high-level inferences, but extracting
mechanistic understanding from integrative
proxies may be difficult
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stabilization (Clay content), and bioavailability of SOM (Soil physical

fractions).

3.1 | Metabolic quotient as a proxy for CUE

The metabolic quotient is the ratio of respiration to microbial bio-

mass C, and has been broadly used to describe the constraints

placed on soil microbes by substrate quality (Wardle & Ghani, 1995).

Similarly, C utilization efficiency (CUE), the ratio of microbial biomass

C to microbial biomass plus CO2-C, is used to describe the efficiency

of organic matter conversion into microbial products relative to CO2

released via respiration (Sinsabaugh, Manzoni, Moorhead, & Richter,

2013). Although these indices are used near-interchangeably based

on their close relationship with one another (Dilly & Munch, 1996),

they derive from different measurements. Recent studies provide a

rigorous review of these indices, and focus on the constraints posed

by the ecosystem and fundamental thermodynamics on microbial

growth, the limitations of available research tools for measuring

microbial growth, and how these features can be used to represent

microbial growth in ecological models (Geyer, Kyker-Snowman,

Grandy, & Frey, 2016; Sinsabaugh et al., 2013).

Metabolic quotients typically integrate a number of different

properties: substrate quality, metabolic rates, and decomposition

products. Metabolic quotients correlate weakly but significantly with

microbial stoichiometries such as C:P (Hartman & Richardson, 2013),

a relationship that was consistent across a wide range of soils across

the globe. However, the stronger association (r2 = 0.44) was with

the availability of inorganic phosphorus, attributed to a stimulation

of C cycling by P, even in N-limited soils (Hartman & Richardson,

2013). When well defined, such correlations can be useful surrogates

for microbial activities, but as noted, these are still proxies, and the

soil properties they encompass are complex integrative processes

with many controlling variables that are difficult to resolve.

Similarly, CUE emerges from a complex suite of integrative pro-

cesses (Geyer et al., 2016). Empirically, CUE has been used to repre-

sent a number of soil traits, and itself, has been inferred from fungal:
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F IGURE 2 The balance between ease of measurement and the predictive power of a measurement often drives the selection of analyses
for a given experiment. This plot combines a quantitative measure (how well various ancillary data or proxies are correlated with total annual
soil respiration, x axis) with a qualitative one (roughly how easy each proxy is to measure as judged by the authors, y axis). For clarity, only a
subset of points is labeled. For example, some potential proxies of soil respiration are easy to measure but have low explanatory power (e.g.,
leaf area index, LAI, and mean annual temperature, MAT, in upper left), while some have high explanatory power but are difficult to measure
(e.g., annual heterotrophic respiration, Rh_annual, in lower right). Five variables labeled in upper right combined good explanatory power with
reasonable ease of measurement: summer and growing season soil respiration (Rs_summer and Rs_growingseason), minimum and maximum
annual soil respiration (Rs_min and Rs_max), and tropical wet season soil respiration (Rs_wet). Other labeled points on the graph include
ecosystem respiration (ER), aboveground net primary production (ANPP), net ecosystem production (NEP), soil organic carbon (SOC), mean
annual precipitation (MAP), respiration at 10 C (R10), clay content (Clay), and root contribution to respiration (RC). By explicitly considering this
value assessment, proxies can be identified that serve both the research goals while staying within time- and cost constraints. Data are from
the SRDB database (Bond-Lamberty & Thomson, 2010)
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bacterial ratio (Thiet, Frey, & Six, 2006) and net microbial growth

(Blagodatskaya, Blagodatsky, Anderson, & Kuzyakov, 2014). CUE can

be a proxy used in lieu of measuring community structure with

respect to biomass or activity ratios (Bailey, Smith, & Bolton, 2002),

or microbial uptake and metabolism of substrates (Blagodatskaya

et al., 2014); such proxies are used to identify high-level changes in

the microbial community. Relating CUE to shifts in F:B (Thiet et al.,

2006) or growth kinetics actually targets a high-level physiological

change in the soil. In such cases, it is the outcome (net C emissions)

that is being explained by an integrative proxy, CUE. We can then

use CUE and the assumption that fungi and bacteria fundamentally

differ in their metabolism of C (Wang et al., 2012) to represent

microbial community shifts in ecological models. Similarly, we can

use the assumption that balanced growth in a soil comes from a

suite of microbial communities for which all catabolic and anabolic

processes are balanced.

From a modeling perspective CUE is frequently defined as the

ratio of uptake C to amount of C incorporated into biomass and is

subtly different from the experimental CUE mentioned above (Man-

zoni, Taylor, Richter, Porporato, & Agren, 2012). It is important to

note that there can be other biological CO2 emissions in many of

these models including basal or maintenance respiration, and adap-

tive costs (i.e., thermophilic metabolism, extracellular enzyme produc-

tion, substrate-specific consumption). Thus, modeling CUE is not

necessarily directly comparable to the empirically measured CUE

described above. This is an excellent example of modelers and

experimentalists using the same name to refer to similar, but not

identical, proxies; care must be taken to ensure that the experiments

(both empirical and modeling) are comparable.

3.2 | Clay content as a proxy for mineralogy and
physicochemical properties

Soil texture, specifically clay content (% clay), is widely used as both

a correlative and integrative proxy for soil physical properties in the

context of ecosystem models (Sulman, Phillips, Oishi, Shevliakova, &

Pacala, 2014; Wieder, Grandy, Kallenbach, & Bonan, 2014). Typically,

% clay is estimated by separating soil mineral particles by size and

defining clay as the smallest particle size class, regardless of the min-

eral phases present. Soil properties inferred based on the % clay cor-

relative proxy include hydrology-related properties such as porosity

and pore size distribution, and parameters related to the formation

and mean residence time of mineral-associated and microaggregated

organic matter. As an integrative proxy, clay accumulation is the

direct result of mineral weathering occurring over time, and there-

fore soils with high clay contents can reflect the soil-forming factors

over time and are presumed to have properties consistent with

older, more weathered soils. Increases in soil clay content across

chronosequences have shown correlations with mean annual soil

temperature and the clay content of the parent material (Bockheim,

1980), indicating that clay content may additionally be accounting

for some SOM variance associated with geology and climate.

Clay content is favored as a proxy for larger scale, more general-

ized models (Lawrence & Slater, 2008; Milly et al., 2014; Sulman

et al., 2014; Wieder, Grandy, Kallenbach, Taylor, & Bonan, 2015)

due to the ease of its measurement and the availability of data at

appropriate spatial scales consistent with the predictions desired—

important criteria for an effective proxy. The analysis of specific

mineralogy is time consuming, requires specialized equipment, and

produces results that can be challenging to interpret. Similarly, the

analysis of specific surface area is both difficult to perform and com-

plex to interpret, and aggregate formation can confound the relation-

ship between mineralogy, specific surface area, and C stabilization in

soils (e.g., Fern�andez-Ugalde et al., 2016). Thus, regional-scale analy-

ses of C sequestration (e.g., Jobb�agy & Jackson, 2000), would be

impossible without the simple proxy of % clay, which, through vari-

ous combinations of the correlations above, can exhibit significant

relationships with soil C stabilization for many soils (Balabane &

Plante, 2004; Jobb�agy & Jackson, 2000; Kirchmann, Haberhauer,

Kandeler, Sessitsch, & Gerzabek, 2004; Wiesmeier et al., 2015).

Percent clay may, however, fail as an effective proxy for key soil

properties affecting C sequestration, due to the widely ranging sur-

face chemistry and surface area of these different mineral phases.

Simple clay percentages do not capture variation in mineral composi-

tion. This is important as extensive research has confirmed the

importance of mineral composition in C sequestration in soils, includ-

ing the specific mineral phases present and their relative abundance

(Kramer, Sanderman, Chadwick, Chorover, & Vitousek, 2012; Lawr-

ence, Harden, Xu, Schulz, & Trumbore, 2015; Rasmussen, Torn, &

Southard, 2005). The critical role of specific surface area and chem-

istry of minerals, particularly that of iron and aluminum oxyhydroxide

species, has also been recognized (Kaiser & Guggenberger, 2003;

Spielvogel, Prietzel, & K€ogel-Knabner, 2008) although see (Vogel

et al., 2015). For example, an Inceptisol and an Andisol from neigh-

boring sites may have similar total clay contents, but vastly different

SOM contents due differences in specific clay minerals: allophane

and ferrihydrite in the Andisol have a higher SOM sorption capacity

compared to the mica clay phases found in the Inceptisol (Parfitt,

Theng, Whitton, & Shepherd, 1997). Clay can also be a poor predic-

tor of specific surface area (Farrar & Coleman, 1967; Ross, 1978)

and therefore does a poor conceptual job of representing factors

relating to available sorptive area. Specific surface area values (post-

SOM removal) may be a more effective proxy for variation in soil

mineralogical properties such as shrink–swell potential (Ross, 1978),

cation exchange capacity (Farrar & Coleman, 1967), and availability

of SOM sorption sites (Parfitt et al., 1997).

Clay content is thus a powerful integrative proxy because it is

intimately associated with both the conditions that shaped the soil,

and the current physicochemical conditions in the soil. However, the

use of clay content as a proxy variable in mechanistic models may

be unwise, since clay content is not directly linked to the surface

area or reactivity of different minerals. Therefore, model develop-

ment and application studies should consider whether % clay is

being used as a correlative or integrative proxy, and recognize the
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potential mismatch between the effective scales of the model and

the proxy.

3.3 | Physical soil C fractions as proxies for
bioavailability

Recent studies have suggested that the vulnerability of soil organic

matter to microbial decomposition is largely a function of OM

accessibility within the soil matrix and interactions between organic

compounds and mineral surfaces (Dungait et al., 2012; Kleber et al.,

2011; Schmidt et al., 2011). Although these factors interact with

organic matter properties to create a continuum of SOM turnover

times, empiricists typically separate SOM into categories of pools

with different turnover times and functions. Likewise, widely used

soil biogeochemical models such as the CENTURY family of models

define SOM pools primarily based on turnover rates ranging from

seasonal to millennial time scales (Kelly et al., 2000). While these

rate-defined pools facilitate the precise modeling of CO2 production

and changes in total C stocks over time, they represent combina-

tions of SOM fractions stabilized through different chemical and

physical processes (Parton, 1996) and can be difficult to relate

directly to physically measurable soil fractions, leading to wide-

spread use of proxies representing soil carbon fractions with varying

stabilities.

Soil organic matter scientists have studied for decades how to

connect SOM pools with different turnover times to physically mea-

surable soil fractions (e.g., Christensen, 1996; Motavalli, Palm, Par-

ton, Elliott, & Frey, 1994; Skjemstad, Spouncer, Cowie, & Swift,

2004; Sohi et al., 2001; Stewart, Plante, Paustian, Conant, & Six,

2008), with the majority of recent analyses using size and/or density

fractionation. For example, a nest of sieves can be used to separate

soil into different aggregate size classes, which can be used as a

proxy for SOM pools with different degrees of physical protection.

Alternately, a high-density liquid can be used to separate soil into a

light fraction composed of unprotected organic matter and heavier

or occluded fractions composed of organic matter trapped in aggre-

gates or bonded onto mineral particles. Within small soil aggregates,

a portion of organic matter can be sequestered within pores too

small for microbes or their enzymes to access (Bailey, Smith, Tfaily,

Fansler, & Bond-Lamberty, 2017; Six, Conant, Paul, & Paustian,

2002).

Recently, a new cohort of soil biogeochemical models has

attempted to use a more mechanistic approach to simulating SOM

formation and decomposition by explicitly representing microbial

dynamics and physically defined, mineral-associated organic matter

pools (Sulman et al., 2014; Tang & Riley, 2015; Wang et al., 2015;

Wieder et al., 2014). A key factor in this push for increased

mechanistic representation has been the explicit simulation of min-

eral-associated and microaggregate organic matter pools, based on

evidence suggesting that these fractions are physically protected

from microbial decomposition through mineral–organic bonds and

small pore spaces and correspond well with slow-turnover SOM

pools (Baldock & Skjemstad, 2000; Schmidt et al., 2011; Six et al., T
A
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2002; Von Lutzow et al., 2006). However, the direct comparison of

these correlative proxies with mechanistically defined model pools

may be problematic if the methods do not correspond directly with

model assumptions. For example, models may assume that mineral-

associated organic matter has a single source (e.g., products of

microbial turnover), a single turnover rate, and uniform accessibility

to microbial decomposition (e.g., Sulman et al., 2014; Wieder et al.,

2014), while actual mineral-associated soil fractions can contain a

wide range of compounds with different chemical characteristics and

levels of binding strength with mineral surfaces (Lehmann, Kinyangi,

& Solomon, 2007), as well as variable SOM turnover times among

physically defined pools (e.g., aggregate size classes, Baldock &

Skjemstad, 2000; Von Lutzow et al., 2006).

In many cases, difficulties in modeling OM decomposition stem

from uncertainties in the underlying physical processes. Organic

matter sorption and desorption on mineral surfaces are poorly

understood, so it can be difficult to relate these fractions to model-

defined pools of C. Empirical studies have similarly used aggregate

size as a proxy for another type of physical protection in both ele-

vated CO2 experiments (Jastrow et al., 2005; Lichter et al., 2008)

and land use manipulations (Denef, Zotarelli, Boddey, & Six, 2007;

Mccarthy et al., 2008). Some modeling studies treat these fractions

as measurements of protected and unprotected SOM pools that can

be directly compared with models (e.g., Sulman et al., 2014), in spite

of the clear differences in scale and mechanism. While it is important

to remain cognizant of the complex factors underlying these OM

protection mechanisms, the physical fractionation approach is a con-

venient correlative proxy that provides information about the distri-

bution of C between fractions that differ in their accessibility to

microbial decomposers. The current need for improved data-model

fusion demands greater thought and communication of how proper-

ties of C accessibility are defined, measured, and translated into

meaningful parameters that represent the persistence and vulnerabil-

ity of soil organic C.

4 | NEW AND EMERGING PROXIES AND
NEXT-GENERATION INSTRUMENTATION

The persistence and vulnerability of OM in soils is the product of

both physical accessibility and microbial activities. This has prompted

the recent surge in microbially explicit models of soil C dynamics.

One of the major drivers of microbially explicit models is the desire

to use “omics” data—biochemical datasets based on the nucleic acid,

protein, or metabolite profiles associated with microbial communities

—to inform soil decomposition models. Incorporating microbial

parameters into Earth system models improves projections of global

soil C stocks (Allison, Wallenstein, & Bradford, 2010; Mcguire & Tre-

seder, 2010; Wieder, Bonan, & Allison, 2013), and omics data are

abundant and relatively easy to measure. Soil biogeochemistry mod-

els are generally mass balance models, breaking down soil C into dis-

crete pools that exchange C over time via parameterized kinetics.

From this standpoint, high-resolution data such as 16S and

metagenome sequences and high-resolution mass spectrometry C/

metabolite profiles are only useful to the extent that they can either

inform the sizes of these discrete C pools or the parameters of the

transfer kinetics. Much of the field of omics is still heavily focused

on phylogenetic diversity and has yet to make the nontrivial leap to

function that is needed to incorporate these data into models.

Representing microbial species in models is impractical, and the

large degree of apparent functional redundancy suggests that it is

also not necessary. A key outstanding question is the identification

of effective proxies for key functional traits within the wealth of

omics-derived data. Higher level taxonomic groups, such as phyla

and families, have been somewhat successful when considering cer-

tain key traits (Fierer et al., 2012; Placella, Brodie, & Firestone,

2012), with phylogenetic analyses supporting these proxies (Ber-

lemont & Martiny, 2013; Martiny, Treseder, & Pusch, 2013). For

example, Amend et al. (2016) recently determined that a phyloge-

netic trait-based framework could help predict soil microbial func-

tional responses to climate change factors such as drought.

Morrissey et al. (2016) found clustering of growth and glucose

assimilation across the bacteria phylogeny, with signals similar in

strength to those found for ecological traits in plants and animals.

However, because many aspects of heterotrophic C physiology are

shared across phyla, this simplification is not likely to be broadly

successful in soils.

Microbial representation into two or three functional groups

based on their ecological or physiological traits is a more common

way of integrating molecular data into proxies (Allison, 2012). Fungi

and bacteria are a common choice of functional groups, reflecting

expected differences in physiology and food webs (De Vries et al.,

2013; Rousk, Brookes, & B�a�ath, 2009). For example, Waring, Averill,

and Hawkes (2013) determined that a two-pool representation of

fungi and bacteria significantly improved on a single-pool “black-box”

microbial model of soil C cycling (Schimel & Weintraub, 2003). How-

ever, recent studies have empirically demonstrated that the ratio of

fungi to bacteria is not a useful predictor of soil C cycling, quality, or

turnover because their C physiologies were more similar than

expected (Rousk & Frey, 2015; Throckmorton, Bird, Dane, Firestone,

& Horwath, 2012). An improved understanding of microbial func-

tional group roles in C cycling will be needed to advance these

approaches.

An alternative proxy relates to the large role that active and dor-

mant functional groups play in community functional responses

(Wang, Mayes, Gu, & Schadt, 2014; Wang et al., 2015). Under

stressful conditions, many microbes enter a dormant state, increasing

survival at the expense of reduced opportunity for resource acquisi-

tion and responsiveness to favorable epochs. Dormancy is wide-

spread among microbial taxa, but relatively little is known about its

effects on community-wide function and it has not been linked to

ecosystem function (Jones & Lennon, 2010). Simple measures of

microbial biomass and community structure added little explanatory

power when soil respiration was considered in a recent meta-analy-

sis (Graham et al., 2016), supporting the idea that better metrics are

needed.
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Another possibility is that higher level traits of the collected

microbial community may serve as a more direct integrative proxy

for soil function, particularly, when metabolic interactions among

microbes are more important than individuals (Ponomarova & Patil,

2015). Omics data can generate community-level aggregate traits for

both microbial metabolic potential and actual metabolic activity

(Fierer, Barber�an, & Laughlin, 2014); metagenomics, metatranscrip-

tomics, metaproteomics, and metabolomics are direct measures of

genes, expressed genes, and gene products that could reveal soil

functions such as respiration, DOC, and microbial C. However, the

wealth of high-resolution omics data currently being generated is

not being translated into models for several reasons: the depth and

quality of annotated genes for identification remains limited and sta-

tistical tools and computational capacity for interpreting this enor-

mity of data are only in their infancy.

Ultimately, we are confident that omics data contain useful rep-

resentations of microbial community function, but urge resolution of

a number of issues to facilitate the use of omics data in the next

generation of models: (1) The relationship between sequence-relative

abundance and function is obscure. The use of internal standards in

marine systems (Gifford, Sharma, Rinta-Kanto, & Moran, 2011) and

soils (Smets et al., 2015) makes it possible to measure transcripts on

a per gram soil or per cell basis, but the relationship between genes

or transcripts and proteins can still vary widely (Schimel, 2016). (2) It

is estimated that only a small subset of microbes are active at any

one time (Jones & Lennon, 2010), and it is not clear whether omics

can help us infer which ones. The microbial enzyme-mediated

decomposition (MEND) model explicitly accounts for dormancy and

better represents long-term trends in microbial biomass in the pro-

cess (Wang et al., 2014). (3) Kinetic effects like temperature sensitiv-

ity are poorly captured by omics, although it is well established that

temperature sensitivity of respiration and CUE can change indepen-

dently of microbial community structure (Bradford et al., 2008; Frey,

Drijber, Smith, & Melillo, 2008; Kallenbach, Grandy, Frey, & Diefen-

dorf, 2015). Whether there are accompanying changes in gene con-

tent (as seen through metagenomics) or gene expression profiles

(metatranscriptomics) remains to be seen.

5 | CONCLUSIONS

In summary, it is not currently tractable to measure, or even identify,

all the driving factors of the complex soil C cycle, and how they inter-

act with one another, and the Earth’s physical system in the face of

global climate change and increasing land use pressures. Our current

measurement and predictive successes have been based on the cou-

pling of specific measurements of the soil system with proxies for

driving factors or internal dynamics (for example Q10). The weak-

nesses of this approach are well known, and in some cases proxies

have been used with little examination of their implications. We

argue, however, that in our push for increasing mechanistic detail, dri-

ven by the flood of data from new imaging and genetic techniques,

we risk losing sight of the value of correlative and integrative proxies

—variables that yield significant insight while being simpler, easier, or

cheaper to measure. We provide specific examples of proxy variables

that improve management decisions, adaptation choices, and model-

ing skill, while noting their mechanistic underpinnings. A closer exami-

nation of the current knowledge gaps in soil C cycling, and of the

proxies we already use, may allow us to develop new hypotheses,

and also specify criteria for new and needed proxies.
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