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abstract: Ecological pressures such as competition can lead indi-
viduals within a population to partition resources or habitats, but
the underlying intrinsic mechanisms that determine an individual’s
resource use are not well understood. Here we show that an individ-
ual’s own energy demand and associated competitive ability influ-
ence its resource use, but only when food is more limiting. We tested
whether intraspecific variation in metabolic rate leads to microhabi-
tat partitioning among juvenile Atlantic salmon (Salmo salar) in nat-
ural streams subjected tomanipulated nutrient levels and subsequent
per capita food availability. We found that individual salmon from
families with a higher baseline (standard) metabolic rate (which is
associated with greater competitive ability) tended to occupy faster-
flowing water, but only in streams with lower per capita food avail-
ability. Faster-flowing microhabitats yield more food, but high met-
abolic rate fish only benefited from faster growth in streamswith high
food levels, presumably because in low-food environments the cost of
a high metabolism offsets the benefits of acquiring a productive mi-
crohabitat. The benefits of a given metabolic rate were thus context
dependent. These results demonstrate that intraspecific variation in
metabolic rate can interact with resource availability to determine
the spatial structuring of wild populations.

Keywords: Atlantic salmon, individual specialization, intraspecific
competition, niche width, Salmo salar, standard metabolic rate.

Introduction

Individuals within a population can vary considerably in
their patterns of resource use, even when accounting for
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differences in their age, sex, and body size (Bolnick et al.
2003; Araújo et al. 2011). Inmany species, co-occurring in-
dividuals specialize in different resources within the same
habitat or use different but adjacentmicrohabitats (Werner
and Sherry 1987; Svanbäck and Eklöv 2002; Kobler et al.
2009; Edwards et al. 2011). Ecological factors such as intra-
and interspecific competition (Svanbäck and Bolnick 2007;
Sheppard et al. 2018), parasitism (Britton and Andreou
2016; Pegg et al. 2017), and predation (Araújo et al. 2011)
can determine the degree to which individuals partition
their resource use. Intraspecific niche variation, in turn,
can feed back to influence important ecological and evolu-
tionary processes such as population dynamics, community
structure, ecosystem flux (Hughes et al. 2008; Bolnick et al.
2011; Violle et al. 2012), adaptive divergence, and speciation
(Bolnick et al. 2009).
Variation in resource use is thought to occur because

individuals differ in their rank preferences, the criteria by
which they rank resources, and/or their ability to obtain
their preferred resource, for example, if they are socially
dominant versus subordinate (Ekman and Askenmo 1984;
Svanbäck and Bolnick 2005; Tinker et al. 2009; Araújo
et al. 2011). However, the underlying intrinsic mechanisms
that determine an individual’s resource use are not well un-
derstood. There is some evidence that organismal traits as-
sociated with morphology (Robinson 2000; Svanbäck and
Bolnick 2007), digestive ability (Olsson et al. 2007), cogni-
tion (Persson 1985; Werner and Sherry 1987), and person-
ality (Kobler et al. 2009;Mittelbach et al. 2014; Toscano et al.
2016) play a role in promoting the existence and persistence
of individual specialization. For example, intraspecific var-
iation in aggression levels can lead to habitat partitioning
among conspecifics (Kobler et al. 2011). Energy is needed
to acquire resources, but whether an individual’s own en-
ergy requirements andphysiological potential formetabolic
activities determine its resource use is not clear.
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The baseline energetic cost of living (defined as stan-
dard metabolic rate [SMR] in ectotherms and basal met-
abolic rate in endotherms; Hulbert and Else 2000) can dif-
fer up to threefold among individuals in a population
(Burton et al. 2011). These intraspecific differences inme-
tabolism are repeatable within individuals (Auer et al.
2016, 2018b) and consistent within families (Pough and
Andrews 1984; Docker et al. 1986; Steyermark and Spotila
2000; Pakkasmaa et al. 2006; Robertsen et al. 2014) across
a wide variety of taxa. While some of the variation in me-
tabolism can be attributed to early environmental and
maternal effects (Burton et al. 2011), there is increasing
evidence that metabolic rates are heritable and thus that
there is a genetic basis to observed differences in metab-
olism at both the individual and family levels (Nespolo
et al. 2005; Nilsson et al. 2009; Wone et al. 2009; Pettersen
et al. 2018). Metabolic rate is also known to covary with a
range of physiological and behavioral traits that influence
resource acquisition and may determine individual-level
choices in resource use. For example, individuals with a faster
baselinemetabolic rate tend to have a highermeal-processing
capacity (Millidine et al. 2009), activity levels (Careau et al.
2008), daily energy expenditure (Auer et al. 2017), boldness,
competitive dominance, and territorial aggression (Biro and
Stamps 2010).
Laboratory studies show that fastermetabolic rates mean

a higher cost of living that can be beneficial for growth and
survival when food availability is high but disadvantageous
when food is scarce (Bochdansky et al. 2005; Armstrong
et al. 2011; Burton et al. 2011; Killen et al. 2011; Auer et al.
2015a). Individual differences in metabolism and asso-
ciated traits may therefore lead to partitioning of micro-
habitats that differ in their productivity. Specifically, indi-
viduals with a higher metabolic rate may need to compete
more for access to productive habitats to meet their higher
energy demands. In contrast, individuals with lower met-
abolic rates may use less productive sites because of re-
duced costs associated with competition and/or because
they are displaced from more favorable microhabitats by
dominant individuals with higher metabolic rates.
Increased intraspecific competition can lead to higher

levels of individual specialization within a population
(Araújo et al. 2011; but see Jones and Post 2016), so the de-
gree to which metabolic rate determines habitat use may
also depend on per capita resource availability. Specifically,
individuals may fare equally well across different habitat
types regardless of their metabolic rate when resource lev-
els are high, since competition for those resources will be
relaxed. In contrast, low resource levelsmay lead to height-
ened competition, whichwould force less competitive indi-
viduals into suboptimal microhabitats and/or drive indi-
viduals to partition their habitat use in a way that meets
their metabolic demands. There is some evidence that dif-
ferences in metabolic rate can lead to habitat partitioning
among species: introduced rainbow trout (Oncorhynchus
mykiss) with higher metabolic rates displace native west-
slope cutthroat trout (Oncorhynchus clarkii) with lowermet-
abolic rates from more productive downstream sites (Ras-
mussen et al. 2011). However, the role of energymetabolism
in determining habitat use at the intraspecific level and
across gradients of resource availability has not yet been
investigated.
We examined the link between intraspecific variation in

metabolic rate and microhabitat use among juvenile At-
lantic salmon (Salmo salar) in natural streams subjected
to manipulated levels of nutrients and subsequent per cap-
ita food availability. Juvenile salmonids inhabit small trib-
utary streams where they feed predominantly on drifting
macroinvertebrates carried in the water current. As a con-
sequence, differences in foraging profitability between mi-
crohabitats can be stark: fast-flowing areas (termed “riffles”)
with higher densities of drifting prey are directly adjacent
to pools where water flow is minimal and prey availability
is much lower (Logan and Brooker 1983; Brown and Brus-
sock 1991; Nislow et al. 1998, 1999; Brooks et al. 2017).
After hatching and leaving their nests in late spring, the
majority of surviving juveniles defend access to foraging
sites within the same territory throughout their first sum-
mer (Steingrímsson and Grant 2003, 2008). There they
spend much of their time holding position against or near
the substratum surface, darting out to capture drifting prey
or defend against intruders (Grant and Kramer 1990; Nislow
et al. 1998, 2010; Steingrímsson andGrant 2008). Access to
favorable foraging locations is critical for growth and sur-
vival, and territorial defense of feeding sites can lead to
dominance hierarchies within a givenmicrohabitat (Nislow
et al. 2010).
As part of a larger study examining the ecological ef-

fects and evolutionary consequences of nutrient levels
for freshwater ecosystems (Auer et al. 2018a; McLennan
et al. 2019), we planted embryos from full-sibling Atlantic
salmon families in equal distribution and density across
10 replicate tributary streams of the River Conon in north-
ern Scotland (see app. A for description of study sites;
apps. A–F are available online). Nutrient levels are naturally
low in upland streams, but they have been depressed fur-
ther in this particular catchment because of a lack of marine-
derived nutrient input from spawning salmon parents
in combinationwith nutrient export via emigration of juve-
niles stocked as embryos (Nislow et al. 2004). Five of the
streams received a nutrient boost to simulate the deposi-
tion of postspawning parents (high-nutrient streams here-
after), while the five remaining streams did not receive nu-
trients and served as reference sites (low-nutrient streams
hereafter; Auer et al. 2018a). Nutrient restoration led to a
nearly twofold increase inmacroinvertebrate prey abundance
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and biomass but not fish density (fig. 1; Auer et al. 2018a),
thereby generating higher per capita food availability and
subsequent fish growth in streams with high compared
with low nutrient levels (fig. 1). Juvenile salmonids are food
limited in thewild, but aggression during territorial defense
typically declines with increasing food availability (Slaney
and Northcote 1974; Toobaie and Grant 2013; Bailey et al.
2019). In addition, intraspecific resource competition occurs
not just via interference but also exploitative mechanisms,
notably, via shadow competition whereby fish defending
upstream territories, simply by virtue of their position, have
priority access to drifting prey and deplete the resources
available to those farther downstream (Hughes 1992; Elliott
2002; Einum et al. 2011). As such, increased per capita food
availability provides strong evidence that nutrient restora-
tion relaxed levels of intraspecific resource competition.
Here we combinemeasurements of SMR from laboratory-

reared juveniles of each family (Auer et al. 2018a) with
fine-scale observations of their siblings’ microhabitat use
and subsequent growth rates in these same 10 streams to
examine whether variation in SMR at the family level influ-
ences the distribution and performance of conspecifics
among microhabitats. Nutrient restoration had no differ-
ential effects on embryo-to-juvenile survival among fami-
lies differing in their SMR in either low- or high-nutrient
streams (Auer et al. 2018a), thereby allowing us to examine
and compare juvenile microhabitat use and growth among
the same diversity of metabolic phenotypes across stream
types. By comparing sites with manipulated food levels,
we provide experimental evidence that intraspecific varia-
tion inmetabolic rate can interact with resource availability
to determine the spatial structuring of wild populations.
Material and Methods

Rearing and Planting out of Embryos

We used in vitro fertilization over a 3-day period in De-
cember 2015 to create 30 full-sibling families from the
eggs and sperm of wild returning adult salmon caught in
a fish trap on the River Blackwater (fig. A1; figs. A1, A2,
D1 are available online). Only female grilse (those fish
spending only onewinter at sea as confirmed by scalimetry;
Shearer 1992) were used in the crosses to control formater-
nal life history. Egg size has a positive effect on growth and
subsequent body size (Einum et al. 2004) but varies little
within clutches (Einum and Fleming 2004), so a sample
of eggs from each clutch was preserved in a 5% buffered
formalin solution (Fleming andNg 1987) for later determi-
nation of mean egg mass per family and its inclusion in
Figure 1: Mean (5SE) abundance (A) and biomass (B) of macroinvertebrate prey as well as density (C) and fork length (D) of juvenile
salmon in streams with low (blue; n p 5) versus high (green; n p 5) nutrient levels. Estimates for invertebrates are given as the mean catch
per unit effort for 1-min samples taken at three locations at each of 50, 25, and 0 m above the downstream limit of each experimental reach.
Fish density was estimated using depletion curves from triple-pass electrofishing capture rates in each stream. Data and results are from
Auer et al. (2018a).
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growth analyses (see below). A small sample of adipose fin
was taken from each of the adults for genotyping, so that all
offspring could subsequently be assigned to one of the
30 families. Embryos were transported to a nearby hatchery,
where they were reared overwinter in family-specific trays
under identical water and temperature (mean5 1 SE:
4:4750:037C) conditions in a single flow-through stream
system.
In late February 2016, we planted out a subset of these

embryos into artificial nests (McLennan et al. 2016) con-
structed within a 300m2 reach in each of 10 study streams
(75–100 m in length, depending on stream wet width; ta-
ble A1; tables A1, B1, E1, F1 are available online). Each
stream reach received 100 embryos from each of the
30 families (n p 3,000 total in each stream), equating
to a density of 10 embryos per square meter that is within
the range of observed spawning densities (Fleming 1996).
HOBO data loggers (Onset Computer, Bourne, MA) were
also placed in each stream at the time of embryo deposition
and recorded temperature every 4 h (fig. A2). At the same
time, we selected a second subset of siblings from each of
the 30 families and transferred them to the University of
Glasgow, where we measured their metabolic rates during
the juvenile stage (see below). Juveniles were housed in
family-specific compartments in a flow-through stream
system where they experienced the same water and tem-
perature conditions. Using data from these same streams
collected in previous years, temperature in the laboratory
was gradually increased to approximate thermal conditions
experienced by their siblings in the wild (fig. A2).
Manipulation of Intraspecific Resource Competition

Tomanipulate levels of food availability, we increased nu-
trient levels in five of the study streams (selected randomly)
by adding analogue carcasses in the form of dried hatchery
salmon pellets (Skretting, Invergordon, UK) to the experi-
mental reaches at the time of embryo planting (Auer et al.
2018a). Five 3-kg carcass analogues were deposited at equi-
distant points along each experimental reach to simulate
the death and decomposition (Pearsons et al. 2007) of
∼25 adult salmon carcasses (Williams et al. 2009; Guyette
et al. 2013, 2014). The five remaining study streams served
as low-nutrient reference sites.
We determined the effect of nutrient treatment on per

capita food availability by quantifying the density of juve-
nile salmon in relation to the abundance and biomass of
their macroinvertebrate prey. We sampled macroinver-
tebrates between late May and early June 2016 in each
of the 10 streams, corresponding to the time that juveniles
are establishing territories, having emerged from the nest
in early May. Nutrient restoration led to a marked increase
in both the abundance and biomass of macroinvertebrates
within the prey size range (!1 mm in width) for juvenile
salmon (fig. 1A, 1B and Auer et al. 2018a; app. B).
We then estimated juvenile densities and growth rates

by triple-pass electrofishing in July 2016. Electrofishing
was conducted in two different sections within each ex-
perimental reach, each section 10–20 m in length. Lengths
of the two sections differed among streams, since longer
sections were needed to estimate fish densities from deple-
tion curves of triple-pass electrofishing capture rates in
more sparsely populated streams (app. A). The remaining
areas of each experimental reach were also electrofished
(generally one pass). We measured all captured fish (n p
1,242) for fork length (50.01 mm) under a mild anesthetic
(clove oil 20 ppm) and clipped a small portion of their anal
fin before their release for later genotyping and family as-
signment (app. C). The nutrient manipulation resulted in
amarked increase in juvenile growth (fig. 1C) but no change
in juvenile density in the high- compared with the low-
nutrient streams (fig. 1D; Auer et al. 2018a). Together with
measures of macroinvertebrate food supply, these estimates
of fish density and growth demonstrate strong treatment
differences in per capita food availability (fig. 1; Auer et al.
2018a).
Juvenile Microhabitat Availability and Use

At the time of fish sampling, the two sections within each
stream (detailed above) were further subdivided into
subsections 2 m long for assessment of microhabitat use
and availability (see below), and the location (subsection)
of each fish (n p 902) was noted upon capture. We char-
acterized the microhabitat by quantifying water velocity
in each subsection. Water velocity can be used to predict
the profitability of a given stream position since it has a
major effect on the rate of food delivery to juvenile salmon
feeding territories and thereby their bioenergetics and
subsequent growth and survival (Hughes and Dill 1990;
Hughes 1992; Nislow et al. 1999, 2000). Water velocity
was categorized into five flow classes, following SFCC
(2007): class 1 p still (water still or eddying and silent),
2p pool (water flow slow, eddying, and silent), 3p glide
(water flow moderate to fast but silent and unbroken),
4p run (water flow fast, unbroken standing waves at sur-
face, silent), and 5p riffle (water flow fast, broken stand-
ing waves at surface, audible). We estimated the pro-
portion of each flow class to the nearest 5% by visual
assessment and used those proportions to calculate a flow
index for each subsection as Fi p

Px
cp1Fcpi,c, where Fi is

the flow index for each subsection i, Fc is the flow class,
and pi,c is the proportion of the flow class in the ith sub-
section. The flow index thus ranged from 1 to 5, with
higher values indicating faster-flowing water. Subsections
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were 2 m in length, since this area encompasses the range
of territory sizes observed in the study species (Keeley and
Grant 1995; Hedger et al. 2005; Steingrímsson and Grant
2008).
Juvenile Metabolic Rates

We linked individual microhabitat use to family-level
metabolic rate by measuring SMRs of siblings from each
family that were selected haphazardly during the embryo
stage and reared in the laboratory. SMRs were measured
over a 10-day period during the last two weeks of June
2016, approximately 2 months after first feeding (n p
10 juveniles per family). SMR was measured at 127C (to
approximate the temperature experienced by their sib-
lings in the field at that time; fig. A2) and over a 20-h pe-
riod as the rate of oxygen consumption using continuous
flow-through respirometry, following methods described
in (Auer et al. 2015b). After their metabolic rate measure-
ments, we weighed the fish (51 mg) and measured them
for fork length (50.01 mm) under a mild anesthetic (ben-
zocaine 40 mg L21). At the time of measurement, juveniles
in the laboratory were on average slightly smaller but
within the size range of their siblings captured roughly
3–4 weeks later in the field (mean fork length5 1 SE;
lab: 39:2450:17 mm, range 29.90–46.80, n p 300; field:
48:8150:22 mm, range 29.62–70.20, n p 902). Family-
level SMR was consistent within families (log-likelihood
ratio test: x2 p 5:3, P ! :05) after controlling for differ-
ences in body mass (app. D; Auer et al. 2018a).
Statistical Analyses

We first compared themean and variance of microhabitat
availability between low- and high-nutrient streams using
linear mixed models with stream as a random effect. Dif-
ferences in the variance among stream types were as-
sessed using log-likelihood tests that compared the fit of
the model with and without separate error variances for
each nutrient treatment. The same approach was used
to compare the mean and variance of individual micro-
habitat use versus availability in each stream. Compari-
sons between use and availability were conducted sepa-
rately for each stream, since microhabitat use of juveniles
is constrained by microhabitat availability in the stream
that they are living (i.e., they do not move among streams).
Second, we examined whether individual microhabitat

use varied as a function of mean family-level SMR within
and across streams with low versus high nutrient levels
using a linear mixedmodel that included stream and fam-
ily as random effects. Since microhabitat use is a function
of availability within each stream, flow index was stan-
dardized for each stream before analysis. Body size may
also affect or be affected by microhabitat use (Armstrong
et al. 2003; Hedger et al. 2005), so fork length and its in-
teraction with treatment were initially included in the
model but subsequently removed since they were not sta-
tistically significant (fork length: F1, 888 p 0:16, P p :689;
treatment# fork length: F1, 888 p 0:62, P p :431).
We then tested whether individual body size (as an in-

dex of growth, since all juveniles were the same age) dif-
fered among mean family-level metabolic phenotypes
and stream types, first across the microhabitat gradient
(i.e., at the population level) and then after taking micro-
habitat use into account (by including microhabitat score
as a covariate). Stream and family were included as ran-
dom effects. Body size can be a positive function of Julian
date of sampling (fish have reached a bigger size later in
the season) and initial egg size (Einum et al. 2004) and
a negative function of local juvenile density (Nislow et al.
2010), so these three factors were included as covariates
in the analyses of growth. The mean egg mass of each fam-
ily was used as the measure of its egg size. The density of
juveniles (per square meter) in each subsection was quan-
tified by dividing the number of juveniles captured in each
subsection by the subsection wet area. SMR was standard-
ized to a common body size of 1 g before its inclusion in
analyses. All analyses were conducted using SAS 9.4 (SAS
Institute, Cary, NC). Effects were considered significant
when P ! :05.
Our mixed model approach using mean family-level

SMR assumes that the mean is known without error,
which is not strictly the case. We therefore conducted
these same analyses of metabolic rate using a Bayesian ap-
proach that takes error in the estimate of SMR into ac-
count. The results were qualitatively the same (app. E),
so we present results from the generalized mixed models
here in the main text.
Results

Microhabitats within each stream’s experimental reach
ranged from pools with slow-moving water to faster-
flowing riffle areas (fig. 2). The flow index for water veloc-
ity differed among individual streams in both its mean
(F9, 26 p 24:92, P ! :001) and variance (x2 p 27:97, P !

:001) but did not differ between treatments (mean: F1, 8 p
0:61, P p :458; variance: x2 p 0:0, P p 1:00). Juvenile
salmon used the different microhabitats according to their
availability within each stream (table 1; fig. 3). However,
fish families were nonrandomly distributed across those
microhabitats (fig. 4). Specifically, a family’s mean SMR
was a significant predictor of microhabitat use in low- but
not high-nutrient streams (table 2; treatment: F1, 8 p 0:71,
Pp :425; SMR: F1, 890p 4:69, Pp :031; treatment#SMR:
F1, 890 p 10:89, P p :001). Within low-nutrient streams,
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individuals from families with a higher SMR on average
used faster-flowing microhabitats than individuals from
families with lower SMRs (fig. 4A; P ! :001), but there
was no link between metabolic rate and microhabitat
use in high-nutrient streams (fig. 4B; P p :425).
SMR was a significant predictor of fork length in high-
but not low-nutrient streams (table 2; fig. 5; treatment:
F1, 8 p 8:18, P p :021; SMR: F1, 887 p 3:57, P p :059;
treatment#SMR: F1, 887 p 4:67, P p :031) after control-
ling for the positive effects of Julian date of sampling
Figure 2: Microhabitat availability for Atlantic salmon (Salmo salar) juveniles in 10 headwater streams with either low (blue) or high
(green) nutrient levels in the northern highlands of Scotland. Plotted are the percentages of each of five different microhabitat types within
each stream’s experimental reach that were categorized based on water velocity as being still p water still or eddying and silent; pool p
water flow slow, eddying, and silent; glidep water flow moderate to fast but silent and unbroken; run p water flow fast, unbroken standing
waves at surface, silent; and riffle p water flow fast, broken standing waves at surface, audible. Streams are 1: A Chomair, 2: An Eilean
Ghuirm, 3: Coire nan Laogh, 4: Coire Bhuic, 5: Mhartuin, 6: Chaiseachain, 7: Coire a Gormachain, 8: Gleann Chorain, 9: Gleann Meinich,
and 10: Scardroy.
Table 1: Summary of results for tests of microhabitat use versus availability
Stream name
Mean
 Variance
F
 df
 P
 x2
 P
Low nutrient:

A Chomair
 .25
 1, 122
 .621
 0
 1.000

An Eilean Ghuirm
 .83
 1, 52
 .365
 .2
 .327

Coire nan Laogh
 .23
 1, 175
 .631
 0
 1.000

Coire a Bhuic
 .17
 1, 85
 .685
 1.1
 .147

Mhartuin
 .01
 1, 67
 .995
 1.0
 .159
High nutrient:

Chaiseachain
 .56
 1, 82
 .454
 0
 1.000

Coire a Gormachain
 .27
 1, 80
 .604
 .2
 .327

Gleann Chorain
 .01
 1, 132
 .964
 0
 1.000

Gleann Meinich
 .34
 1, 82
 .561
 .1
 .376

Scardroy
 .18
 1, 141
 .670
 .1
 .376
Note: Microhabitat availability and use by juvenile Atlantic salmon (Salmo salar) were measured in 10 headwater streams with low versus high nutrient
levels in the northern highlands of Scotland. x2 tests comparing use versus availability were based on one degree of freedom; P values were halved, since tests
examined whether the variance was greater than zero. Microhabitat use did not differ from availability within any of the 10 streams.
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(F1, 887 p 8:04, P p :005) and initial egg mass (F1, 887 p
155:54, P ! :001) and the negative effects of local juvenile
density (F1, 887 p 14:01, P ! :001). There was no link be-
tween metabolic rate and growth in low-nutrient streams
(fig. 5; P p :893), but within high-nutrient streams, indi-
viduals from families with a higher SMR tended to be
larger compared with those with lower SMRs (fig. 5; P p
:003). Results were qualitatively the same when taking var-
iation in microhabitat use into account (app. F).
Discussion

Differences inmetabolic rate can lead to habitat partition-
ing at the species level (Rasmussen et al. 2011). Here we
show that variation in metabolic rate can also lead to mi-
crohabitat partitioning within a species. However, links
between metabolic rate and microhabitat use depended
on nutrient levels and subsequent per capita food avail-
ability. The effect on microhabitat use was clear: indi-
viduals from families with different metabolic rates used
similar microhabitats in high-nutrient streams where
food availability was higher, whereas the same phenotypic
differences led to divergent microhabitat use in streams
with low nutrient levels. In particular, individuals from
families with a higher SMR tended to occupy faster-
flowing areas (i.e., runs and riffles), compared with indi-
viduals with a lowermetabolic rate, but only in low-nutrient
streams.
Intraspecific resource competition often leads to in-

creased individual specialization but can vary in its effect
Figure 3: Microhabitat use (upper bars, colored) versus microhabitat availability (lower bars, gray) for juvenile Atlantic salmon (Salmo
salar) in 10 headwater streams with either low (n p 5; blue) or high (n p 5; green) nutrient levels. Microhabitats were classified based
on an index of their water velocity that ranged from 1 (still water) to 5 (fast-flowing riffles). See “Material and Methods” for calculation
of water velocity index and table 1 for statistical details on comparisons of microhabitat use versus availability.
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on total niche width at the population level (Bolnick et al.
2003; Araújo et al. 2011). Here we found that changes in
per capita food availability did not lead to a change in the
range of microhabitats used, since microhabitat use at the
population level did not differ from availability within
each stream, nor did it differ between nutrient treatments.
Rather, changes in per capita food availability led to a shift
in how different metabolic phenotypes partitioned their
microhabitat use, that is, who used which microhabitat.
Differential effects of metabolic rate across stream types
suggest that resource availability magnifies the energetic
constraints that governmicrohabitat selection. Specifically,
individuals can meet their baseline energy needs regardless
of microhabitat quality in high-nutrient streams where
food is more readily available, but they are forced to parti-
tion theirmicrohabitat use in amanner thatmeets theirmet-
abolic demands in low-nutrient streams where intraspecific
resource competition is likely to be stronger. Partitioning
Figure 4: Microhabitat use as a function of family-level standard metabolic rate in full-sibling families (n p 29) of juvenile Atlantic salmon
(Salmo salar) in 10 headwater streams with either low (A; blue; n p 5) or high (B; green; n p 5) nutrient levels. Microhabitats were clas-
sified based on an index of their water velocity that ranged from 1 (still water) to 5 (fast-flowing riffles) and standardized on a per-stream
basis before analysis. Standard metabolic rate is standardized to a common body size of 1 g. Plotted are values corrected for the random
effects of family and stream. P values are from tests of whether slopes (coefficients) differ from zero; see text for more statistical details.
Table 2: Summary of results for tests examining the effect of mean family-level standard metabolic rate (SMR) on microhabitat
use and growth of juvenile Atlantic salmon (Salmo salar) in uplands streams with low versus high nutrient levels
in the northern highlands of Scotland
Microhabitat use
 Growth
b5 1 SE
 t
 P
 b5 1 SE
 t
 P
Intercept
 .015 .05
 .20
 .845
 52.225 1.86
 28.06
 !.001

Treatment
 2.065 .07
 2.84
 .425
 27.645 2.67
 22.86
 .021

SMR
 23.665 4.59
 2.80
 .425
 47.905 16.12
 2.97
 .003

SMR# treatment
 21.325 6.46
 3.30
 .001
 250.225 23.24
 22.16
 .031

Local density
 . . .
 . . .
 . . .
 21.105 .29
 23.74
 !.001

Julian date
 . . .
 . . .
 . . .
 .755 .26
 2.84
 .005

Initial egg mass
 . . .
 . . .
 . . .
 .125 .01
 12.47
 !.001
Note: Parameter estimates for treatment are for high- relative to low-nutrient streams. The model for growth also accounts for variation in local fish density,
Julian date of sampling, and initial mean egg mass of each family. All predictors are centered on their mean value (standard metabolic rate: 0.171 mg O2 h21;
local density: 0.92 juveniles m21; Julian date: 199; initial egg mass: 98.1 mg).
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of microhabitats can occur because of individual variation
in competitive ability and/or trade-offs in resource use
(Bolnick et al. 2003; Araújo et al. 2011). Individuals with
a higher SMR, by definition, have a higher baseline energy
demand, so they are expected to place a heavier premium
on gaining access to more productive microhabitats, par-
ticularly when food is limited. It is unclear, though, whether
individuals with a lower metabolic rate occupied less
productive microhabitats in low-nutrient streams because
they prefer them or because they were displaced from
more productivemicrohabitats by individuals with a higher
metabolic rate. In common with a number of other species,
individual salmon with a higher SMR are more dominant
and routinely win territorial contests against individuals
with a lower SMR under simplified laboratory conditions
(Metcalfe et al. 1995; Cutts et al. 2001; Biro and Stamps
2010). However, mesocosm experiments also show that
their competitive advantage weakens with increasing hab-
itat complexity and decreased predictability of food sources
(Reid et al. 2011, 2012), indicating that they may not be
able to fully monopolize the most favorable microhabitats
under similar conditions in the wild. Their lack of growth
advantage, despite occupying more productive habitats,
also suggests that there are trade-offs in microhabitat use.
Body size, as an index of growth, was a positive func-

tion of metabolic rate, but only in high-nutrient streams.
In low-nutrient streams, individuals from families with
higher metabolic rates did not have a growth advantage.
Laboratory studies suggest that a higher SMR is beneficial
when food levels are high but is disadvantageous when
food levels decline (Reid et al. 2011; Auer et al. 2015a;
Zeng et al. 2017a, 2017b). This context-dependent advan-
tage of a higher SMR has been attributed, in part, to a
higher food-processing capacity (rates of intake, process-
ing, and digestion) among individuals with higher meta-
bolic rates (Millidine et al. 2009; Zeng et al. 2017a) that is
advantageous when food levels are high, but whose ben-
efit is outweighed by the costs of a higher baseline main-
tenance cost when food levels decline (Zeng et al. 2017a).
For example, Atlantic salmon individuals with a higher
SMR can process meals up to twice as fast as conspecifics
with a lower metabolic rate (Millidine et al. 2009). In ad-
dition, studies across a wide diversity of animal taxa find
that individuals with a higher SMR tend to have higher
activity levels compared with conspecifics with a lower
SMR (reviewed in Biro and Stamps 2010; Careau et al.
2008). These physiological and behavioral differences may
explain the growth advantage of a high metabolic rate in
the high-nutrient streams. However, individuals from fam-
ilies with higher metabolic rates did not have a growth ad-
vantage in low-nutrient streams, despite occupying more
productive microhabitats. Together, these results suggest
that links between metabolic rate and growth can be medi-
ated not only by food availability but also by the costs of
foraging and territory defense associated with occupying
different microhabitat types. Runs and riffles typically have
a higher density of drifting macroinvertebrate prey and
have a faster water velocity than pools (Hughes and Dill
1990; Hughes 1992; Nislow et al. 1998, 1999), so the payoff
in terms of energy intake is potentially larger than it is for
pool microhabitats. However, foraging in and defending
priority access to faster-flowing microhabitats is also more
challenging because energetic expenditure on swimming
can increase (Fausch 1984; Enders et al. 2003) and prey
capture (i.e., energy intake) can decrease (Hughes and Dill
1990; Nislow et al. 1999) with increasing water velocity. In
addition, aggressive defense of foraging locations can take
away from time and energy otherwise devoted to foraging
(Elliott 1990; Cutts et al. 2001). Trade-offs between energy
conservation versus priority of access to food are therefore
likely to play an increasingly larger role in determining
rank microhabitat preferences as per capita food availabil-
ity decreases and the strength of intraspecific competition
increases. As a result, less competitive individuals, that is,
Figure 5: Growth performance as a function of family-level stan-
dard metabolic rate in full-sibling families (n p 29) of juvenile Atlan-
tic salmon (Salmo salar) in 10 headwater streams with either low
(blue; n p 5) or high (green; n p 5) nutrient levels. Metabolic rates
were standardized to a common body mass of 1 g. Plotted are values
corrected for the fixed effects of local juvenile density, Julian date of
sampling, and initial egg mass as well as the random effects of stream
and family. P values are from tests of whether slopes (coefficients) dif-
fer from zero. Data are a slightly smaller subset of the larger sample
analyzed in Auer et al. (2018a), since microhabitats were quantified in
subsections of the larger experimental area in each stream.
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those with lower metabolic rates and typically subordinate
status, will benefit from adopting a low-cost–low-return
strategy (Metcalfe 1986) of selecting slower-flowing but
less productive microhabitats.
Our results provide evidence that metabolic rate and

per capita food availability have interactive effects on mi-
crohabitat use. However, our study design did not allow
us to distinguish between microhabitat use versus choice
since we focused only on the microhabitat use of survi-
vors and did not measure how survival varied as a func-
tion of microhabitat use. While there was no relationship
between SMRand survival in either stream type (Auer et al.
2018a), we cannot discount that observed patterns of sur-
vival, particularly in low-nutrient streams, could be be-
cause of the differential survival of metabolic phenotypes
within different microhabitats, rather than differences in
their microhabitat choice. To tease apart these two alterna-
tive mechanisms, selection gradient analyses are needed
to examine how survival varies as a function of metabolic
phenotype within and across different microhabitats.
Many organisms live in complex environments that

provide opportunities for niche partitioning in both space
and time. How individuals assort themselves and use re-
sources within that environment can, in turn, affect their
own fitness (Morris andDavidson 2000; Nilsen et al. 2004).
Here we show that members of a wild population can be
distributed among microhabitats according to their family-
levelmetabolic phenotype, which could have consequences
for the ecological dynamics of populations (Hughes et al.
2008; Bolnick et al. 2011; Violle et al. 2012) and the evolu-
tionary trajectories of species (Bolnick et al. 2009). Under-
standing which organismal traits play a role in determin-
ing habitat use, and how their influence is determined by
ecological conditions, is therefore important for predicting
larger-scale patterns and processes. Given that metabolic
rate reflects the energetic costs of maintaining the tissues
and functions needed to sustain life (Auer et al. 2017)
and that energy is considered the central currency in forag-
ing and habitat use decisions (Werner et al. 1983; Piccolo
et al. 2014), variation in metabolic rate among individuals
likely plays an important role in determining the spatial
distributions and patterns of resource use across a wide
range of species.
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