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Abstract

Uncertainty about future spread of invasive organisms hinders planning of effective

response measures. We present a two-stage scenario optimization model that accounts for

uncertainty about the spread of an invader, and determines survey and eradication strate-

gies that minimize the expected program cost subject to a safety rule for eradication suc-

cess. The safety rule includes a risk standard for the desired probability of eradication in

each invasion scenario. Because the risk standard may not be attainable in every scenario,

the safety rule defines a minimum proportion of scenarios with successful eradication. We

apply the model to the problem of allocating resources to survey and eradicate the Asian

longhorned beetle (ALB, Anoplophora glabripennis) after its discovery in the Greater

Toronto Area, Ontario, Canada. We use historical data on ALB spread to generate a set of

plausible invasion scenarios that characterizes the uncertainty of the beetle’s extent. We

use these scenarios in the model to find survey and tree removal strategies that minimize

the expected program cost while satisfying the safety rule. We also identify strategies that

reduce the risk of very high program costs. Our results reveal two alternative strategies: (i)

delimiting surveys and subsequent tree removal based on the surveys’ outcomes, or (ii) pre-

ventive host tree removal without referring to delimiting surveys. The second strategy is

more likely to meet the stated objectives when the capacity to detect an invader is low or the

aspirations to eradicate it are high. Our results provide practical guidelines to identify the

best management strategy given aspirational targets for eradication and spending.

Introduction

Programs that are designed to stop the spread of invasive species often involve the allocation

of resources to survey and eradicate the invading individuals [1–6]. Although a considerable

share of the available resources is often devoted to surveys [7], such efforts rarely reveal com-

plete information about the presence of the species of interest. The resulting uncertainty about

the spread and extent of the invader means that the costs—and likelihood of success—of the
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management actions to control the invasion are also uncertain. This creates problems with

allocating resources appropriately to control the invasions, because critical management deci-

sions (e.g., when and where to prioritize surveys or eradication efforts) must be made under

uncertain expectations of the likelihood and outcomes of invasion. A common approach in

this situation is to estimate the expected cost of eradicating the species based on probabilistic

expectations of the species’ spread in the area of concern. These expectations are uncertain but

can be represented as a large set of plausible stochastic scenarios that help estimate the bounds

of uncertainty on those expectations [8–14]. However, the true costs of the actions that ulti-

mately must be taken to manage the invasion remain unknown, because the decisions based

on the expected costs could be wrong and lead to extremely high management costs.

Detection and control of biological invasions can be greatly improved through application

of spatial-dynamic optimization models that predict economically optimal strategies for sur-

veillance and eradication of invasive species. The models depict the allocation of resources to

control an invasion as an optimization problem, with some important parameters and decision

variables depicted in temporal and spatial domains. Epanchin-Niell et al. [15] developed a

dynamic model of pest colony establishment and growth and designed optimal long-term

equilibrium surveillance and eradication programs to minimize program costs. They used the

model to optimize long-term surveillance effort across heterogeneous landscapes subject to

region-wide surveillance budgets. Hauser and McCarthy [16] proposed a static model to opti-

mize one-time surveillance effort across multiple sites when a species’ presence is uncertain

prior to detection and probability of occurrence varies across sites. In contrast to the equilib-

rium analysis of Epanchin-Niell et al. [15], the static model of Hauser and McCarthy [16] is

appropriate for optimizing surveillance when many local populations are thought to have

established prior to the initiation of a surveillance program. Horie et al. [17] and Yemshanov

et al. [14] developed models to optimize one-time surveillance effort across multiple sites given

uncertainty about the extent (rather than simply the presence) of the infestation in each site.

They handled this uncertainty by splitting the management decision into two stages. In the

first stage, sites are selected for surveillance given their expected levels of infestation, and in the

second stage, eradication treatments are prescribed within the surveyed sites contingent on the

levels of infestation found. The objective is to minimize the expected growth of the infestation

subject to the total budget for surveillance and treatment. Epanchin-Niell et al. [18] developed

a mechanistic bioeconomic model that relates surveillance intensity and invasion size to prob-

abilities of detection and control. Their model determined, in a geographic domain, the opti-

mal investment in surveillance, in terms of the numbers and distributions of traps, to

minimize the total invasion impact. Moore and McCarthy [19] proposed a model that opti-

mizes the allocation of surveillance efforts in both spatial and temporal domains and accounts

for stochastically varying detection rates in geographical space.

In this study, we address a problem in which a decision maker must select a program for

delimiting surveys and eradication that minimizes overall program costs and attains a desired

level of eradication success despite uncertainty about the current and future extent of an inva-

sion. Similar to Horie et al. [17] and Yemshanov et al. [14], we split the management decision

into two stages representing the placement of surveillance in the first stage and the intensity of

treatment given the outcome of surveillance in the second stage. Rather than attempting to

minimize expected invasion expansion, we include probabilistic constraints for attaining erad-

ication success as a way to limit the damage from the invader populations that have been estab-

lished in the area of interest. These constraints are consistent with a safety-rule approach to

addressing uncertainty in environmental regulation [20–22]. A safety rule includes a risk stan-

dard representing a minimum probability of attaining a desirable environmental outcome

(e.g., eradication of an invasive species population). The safety rule includes a probability that
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management action(s) will not achieve a desired outcome. This probability value (also known

as margin of safety) represents the decision-maker’s aversion to uncertainty about the attain-

ing the risk standard.

We apply our safety-rule approach to the case of managing the invasion of a forest pest, the

Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), in the Greater

Toronto Area of Ontario, Canada. This woodborer is a native of China and the Korean Penin-

sula and is listed among the world’s worst invasive species [23]. In invaded landscapes, its pre-

ferred host is maple (Acer spp.); other suitable hosts include, but are not limited to, birches

(Betula spp.), poplars (Populus spp.), willows (Salix spp.), and elms (Ulmus spp.) [24–29]. East-

ern North America seems especially vulnerable to infestations by this beetle because of its

abundance of maple and of suitable habitat conditions [30]. Breeding populations of ALB have

been found at several locations in eastern North America [28, 31, 32] and in Europe [33–35].

Most of these introductions involved beetles that had originated from the species’ native range

[36–38]. In most countries outside of its native range, discovery of ALB leads to the implemen-

tation of an eradication program [39, 40]. Such programs typically feature a delimitation phase

of the invaded area, which leads to the establishment of a quarantine zone to limit the spread

of the beetle as well as a treatment phase [41]. Removal and destruction of all infested trees and

removal or treatment of high-risk suitable host trees, a strategy that takes advantage of ALB’s

slow rates of spread [42, 43], represents an effective method to eradicate ALB. Indeed, this

strategy has led to successful eradications in North America [44, 45].

Materials and methods

Scenario-based invasion management model

We develop a two-stage, spatial optimization model in which uncertainty about the presence

and extent of the invader (i.e., ALB or another forest pest) is represented by a set of probabilis-

tic scenarios. We assume at the beginning of the first stage that the invader is known to be

present in a single area and a quarantine zone is established around that invaded area. The

area under quarantine contains J sites where the invader may also be present, but which of

these sites are actually infested is unknown. Defining a quarantine zone (“regulated area” here-

after) surrounding known infestations is a common phytosanitary practice aimed at contain-

ing expanding invader populations [41]. The size of the area J is defined by decision makers

based on expectations of future spread and new introductions. Each site j, j 2 J, in the regulated

area J contains Nj suitable host trees that can be used by the invader to complete its develop-

ment and reproduction (see Table 1 for a summary of model parameters). The proportion of

host trees at site j that are infested is θj, θj 2 [0,1]. While the true proportion of infested trees,

θj, is unknown, the θj value at each survey site is estimated based on the invader’s historical pat-

terns of spread and the numbers of infested trees found in surveyed sites during previous sur-

veillance campaigns. These estimates are used to develop a large set of probabilistic scenarios,

S, where each site j in scenario s, s = 1,. . ., S, is characterized by the proportion, θjs, of trees that

are infested at the site under that scenario. We assume each invasion scenario s has an equal

probability of occurrence, 1/S.

The model has one set of decision variables in each stage. In the first stage, the binary deci-

sion variables xj, xj 2{0,1} and j 2 J, represent whether or not to select site j for survey. While

sites are selected for survey with knowledge that they could potentially be invaded, the selec-

tion is done without knowing which sites are actually invaded, and if so, to what extent. In the

second stage, the decision variables Rjs, j 2 J and s 2 S, represent the number of trees to remove

in each site j under scenario s, which is contingent on the proportion of infested trees that are

found to be present under the scenario.

A safety rule approach to manage biological invasions
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The manager’s objective is to minimize the expected cost of survey and tree removal in the

regulated area J over S invasion scenarios, i.e.:

t ¼ min
1

S

XS

s¼1

XJ

j¼1

ðbNjcjxj þ tjRjsÞ ð1Þ

where cj and tj are the costs of inspecting and removing host trees in site j and β, β 2 [0;1], is

the proportion of a site’s area (in our formulation, equivalent to the proportion of host trees at

a site) that has been surveyed. Note that our model considered a single level of survey intensity

at all sites. Ideally, the proportion of a site’s area that is surveyed (β) should be a decision vari-

able, but the model formulation would become non-linear in that case. While it may be possi-

ble to reformulate the model to address this non-linearity it would significantly increase the

computational complexity of the problem.

Table 1. Summary of the model parameters and variables.

Symbol Parameter / variable name Description

Parameters:

j Potential survey sites in a defined regulated area j 2 J

J Size of the defined regulated area J > 0

s Stochastic spread scenarios s 2 S

S Total number of stochastic spread scenarios 2400*

Nj Number of host trees at a site j Nj� 0**

θjs Proportion of trees at a site j in a scenario s that are infested θjs 2 [0; 1]***

β Proportion of a site’s area that is surveyed β 2 [0; 1]

γ Pest detection rate after inspecting a tree γ 2] 0; 1]

d, 1—D Probability of eradication success d 2] 0; 1]

d0 Probability value that denotes eradication failure 1e-64

p Minimum proportion of the scenarios where eradication is expected to succeed

with the probability d (safety margin)

P 2] 0; 1]

α Confidence level that defines the value in the program costs distribution that can

be exceeded only in (1 –α)*100% of worst scenarios

0.99

cj Tree survey cost $6.83 tree-1

tj Tree removal cost $1000 tree-1

F Weighting parameter that defines decision-making preferences towards

minimizing the expected cost vs. minimizing the cost in the right tail of the cost

distribution in the objective function equation

F2 [0; 1]

Decision variables:

xj Binary survey selection of a site j xj 2 {0,1}**

Rjs Number of host trees removed at a surveyed site j in a scenario s Rjs 2 [0; Nj]***

gs Binary indicator variable that specifies eradication success (or failure) for a

scenario s

gs 2 {0,1}****

ws Auxiliary decision variable for a linearized formulation of CVaRα ws� 0

ζ Auxiliary decision variable for a linearized formulation of CVaRα ζ 2 <

* The number of scenarios was chosen based on the optimality gap analysis.

** The parameter / variable value is site-specific.

*** The parameter / variable value is site and scenario-specific.

**** The parameter / variable value is scenario-specific.

https://doi.org/10.1371/journal.pone.0181482.t001
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We define two constraints on the number of trees that can be removed from each site. The

number of removed trees cannot exceed the total number of trees at a surveyed site j:

Rjs � Njxj 8 s 2 S; j 2 J: ð2Þ

Trees are only removed (Rjs� 0) at sites which are selected for surveys (xj = 1). If a tree is

infested, it can be found with the detection rate γ, γ 2 [0,1], and each tree that is found to be

infested must be removed. Because the survey covers only a proportion β of a site, the mini-

mum number of infested trees to remove from site j in scenario s is:

Rjs � Njbgyjsxj 8 s 2 S; j 2 J: ð3Þ

Eq 3 implies that all detected infested trees must be removed. A special case with β = 0

describes a situation when a decision-maker chooses to skip the delimiting survey stage and

proceed with preventive tree removal at a selected site instead.

We next define a probabilistic constraint for successful eradication of the pest from all of

the sites in area J under a given scenario s. The probability that one or more of the remaining

host trees in area J is infested after Rjs trees have been removed at sites j, j 2 J, is:

1 �
YJ

j¼1

ð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
ðNj � RjsÞ

h i
: ð4Þ

The term ð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
ðNj� RjsÞ defines the probability that the remaining trees

in site j are not infested in a scenario s. Then, the product sign in Eq 4 represents the probabil-

ity that the remaining trees in all of the sites are not infested, and one minus that probability

equals the probability that removal fails to eradicate the infestation from area J. The derivation

of Eq 4 can be found in S1 File. A requirement that the probability of eradication failure be

below a chosen threshold, D, is:

1 �
YJ

j¼1

ð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
ðNj � RjsÞ

h i
� D 8 s 2 S: ð5Þ

Rearranging terms, the probabilistic constraint for successful eradication of the pest is:

YJ

j¼1

ð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
ðNj � RjsÞ

h i
� d 8 s 2 S ð6Þ

where the threshold d, d = 1 –D, defines the minimum probability for successful eradication in

area J. Eq 6 is linearized with respect to the decision variables Rjs:

XJ

j¼1

ðNj � RjsÞlnð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
h i

� lnðdÞ 8 s 2 S: ð7Þ

Eq 6 represents a decision-maker’s aspiration to satisfy the eradication success threshold for

each and every invasion scenario. When uncertainty about the extent of the invasion is signifi-

cant, achieving successful eradication in all possible scenarios may be cost-prohibitive because

most of the sites would require tree removal. We address this issue by defining a margin of

safety p, representing the minimum proportion of the scenarios that must satisfy the eradica-

tion success threshold d. To create a constraint for the margin of safety, we first define a binary

indicator variable, gs, gs 2{0,1}, that specifies, for each scenario s, whether eradication succeeds

with probability d (i.e., gs = 1) or fails (gs = 0; the failure condition is defined with a probability

of eradication success, d0, equal or close to zero. Since the d0 value is under the logarithm sign
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it was set to a very low positive value.). We have used the following constraint to set the gs
value:

XJ

j¼1

ðNj � RjsÞlnð1 � yjs½ð1 � bgÞ=ð1 � bgyjsÞ�Þ
h i

� gslnðdÞ þ ð1 � gsÞlnðd0Þ 8 s 2 S: ð8Þ

Then, a constraint that requires attainment of the margin of safety is:

1

S

XS

s¼1

gs � p: ð9Þ

Note that Eqs 8 and 9 are consistent with a safety-rule approach to dealing with uncertainty in

environmental regulation (e.g., [20–22]). Eq 8 defines whether or not a risk standard is satis-

fied for each scenario, where the risk standard is the required probability of eradication, d.

Eq 9 defines the margin of safety, which is the required proportion of the scenarios that satisfy

the risk standard. The margin of safety p can be interpreted as a confidence level for a hypothe-

sis test with the values typically set to 0.9 or 0.95. In summary, the problem is to determine

which sites to survey in the first stage and how many trees to remove in the second stage con-

tingent on the outcome of the first stage, in order to minimize the expected cost of surveys and

tree removals over S scenarios (Eq 1), subject to upper and lower bounds on tree removals

(Eqs 2 and 3) and constraints for satisfying the risk standard for eradication (Eq 8) and the

margin of safety (Eq 9).

Controlling the risk of extreme project costs

Due to the uncertainty about the invader’s spread, the actual costs of survey and eradication in

individual scenarios may vary. Some scenarios could be severe in terms of invasion extent and

impact, and therefore may require costly eradication. These scenarios are located in the right

tail of the cost distribution (Fig 1), which the decision-maker tries to avoid. The problem of

controlling the worst (i.e., most cost-intensive) outcomes essentially amounts to controlling

the costs in the right tail of the program cost distribution. This can be achieved with a metric

that characterizes the upper percentile of the distribution.

Percentile-based metrics such as maximum loss [46, 47], Value-at-Risk [48] and Condi-

tional Value-at-Risk [49, 50] have been widely used to quantify risks of extreme losses in many

disciplines. In particular, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), also

known as expected shortfall or conditional tail expectation (CTE), are commonly used by

financial institutions to evaluate the potential for extreme losses in investment portfolios

[51–55]. With respect to our invasive species example, VaRα is defined, with a confidence level

α, α 2 [0;1], as the value in the distribution of the surveillance and eradication program costs

that is exceeded only in (1 –α)×100% of the worst scenarios (Fig 1). In turn, CVaRα, for a con-

fidence level α, is defined as the expected value of the cost distribution over (1 –α)×100% of

the worst scenarios, or alternatively, as the expected value above VaRα for confidence level α.

Fig 1 is a depiction of the CVaR concept and how it is related to minimizing the expected

value of a distribution.

Incorporating VaR in an optimization framework is difficult [56] because VaR is a non-

convex function for discrete distributions and may not account for properties of the distribu-

tion beyond the confidence level α. The CVaR is more useful for optimization-based models

[49, 51] because it is a coherent risk metric (cf. Artzner et al. [57]) and continuous with respect

to the confidence level α. The most appealing property of CVaR is its convexity with respect to

the decision variables [49, 56]. Optimization of CVaR with respect to linear decision variables
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for discrete scenario-based distributions can be expressed by a set of linear equations [56]. In

comparison, optimizing VaR in the same problem setting could be numerically intractable.

In our model, we used the CVaR to control the right tail of the program cost distribution

and reduce the cost uncertainty. Ideally, both the expected cost value (i.e., the mean value

across the entire cost distribution) and the CVaR should be minimized, however this requires

a two-objective formulation. We reformulated the objective function equation as a weighted

average between the expected cost value and the CVaRα of the program cost, i.e.:

min½Expected cost � ð1 � FÞ þ CVaRaðcostÞ � F� ð10Þ

where F is the weighting parameter that defines a decision-maker’s preferences towards mini-

mizing the expected cost versus minimizing the expected value in the right tail of the cost dis-

tribution (i.e., the CVaRα). For F = 0, the objective function minimizes the expected cost, and

for F = 1, the CVaRα is minimized. Eq 10 adopts an approach of combining multiple objectives

in a single objective function equation via weighted averaging [58, 59], with F and 1—F values

representing the objective weights. By altering the F values, a trade-off between the objectives

can be explored.

The objective function in Eq 1 is linear with respect to the decision variables xj and Rjs, so

we applied a linearized formulation of the CVaRα from [49, 60]. For a discrete distribution of S
scenarios with equal probability of occurrence, 1/S, the CVaR of the program cost, at a confi-

dence level α, can be approximated with the following equivalent set of S + 1 auxiliary decision

variables and S + 1 inequality constraints:

zþ
1

Sð1 � aÞ

XS

s¼1

ws ð11Þ

Fig 1. The program cost distribution, the expected cost and the CVaRα concept. The scenarios in the

right tail of the cost distribution above the confidence level α (shaded area) depict the worst outcomes with the

highest costs. These outcomes are characterized with the VaRα and CVaRα metrics. Minimizing the CVaRα
deviation decreases the expected value of the cost distribution above VaRα.

https://doi.org/10.1371/journal.pone.0181482.g001
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XJ

j¼1

ðbNjcjxj þ tjRjsÞ � z � ws 8 s 2 S ð12Þ

ws � 0 8 s 2 S ð13Þ

where
PJ

j¼1

ðbNjcjxj þ tjRjsÞ in Eq 12 is the total program cost in a scenario s, z and ws are auxil-

iary decision variables and z is a member of a set of real numbers. We have modified the objec-

tive function to follow the idea of Eq 10 as:

min F
1

S

XS

s¼1

XJ

j¼1

ðbNjcjxj þ tjRjsÞ þ ð1 � FÞ zþ
1

Sð1 � aÞ

XS

s¼1

ws

 ! !

ð14Þ

where 1

S

PS

s¼1

PJ

j¼1

ðbNjcjxj þ tjRjsÞ is the expected program cost, subject to model constraints in

Eqs 2, 3, 8, 9 and auxiliary constraints in Eqs 12 and 13.

By adding the CVaRα to the objective function equation, the uncertainty in the right tail of

the program cost distribution can be controlled and the risk of incurring high program costs

can be reduced. Reducing the risk of high program costs increases the expected program costs

because more resources will be required to reduce the cost uncertainty. We have explored this

aspect by evaluating the optimal solutions for a range of F values between 0 and 1, and report

the solutions with F values between 0.5 and 1.0 that yielded the greatest reduction of the cost at

CVaRα.

Case study: Assessing the program costs for controlling the outbreak of

Asian longhorned beetle (ALB) in the Greater Toronto Area (Ontario,

Canada)

Assessing the human-mediated spread of ALB in an urban setting. Two infestations of

ALB have been found in the Greater Toronto Area (GTA). The first population was discovered

in 2003 in Toronto [61], and the second one in 2013 in Mississauga [62]. Discovery of each

population led to the implementation of an eradication program [28, 62, 63]. The regulated

(i.e., quarantine) area to manage the first 2003 infestation was declared pest-free in 2013 [44].

The Mississauga quarantine area was about 46 km2 and outside that of the Toronto quarantine

area (Fig 2). Treatment for both eradication programs consisted of the removal of all infested

trees as well as host trees categorised as suitable and at high risk of being infested.

We applied our model to manage the most recent ALB incursion in Mississauga. Several

techniques have been tested in an attempt to improve early detection of ALB [28, 64, 65], but

visual inspection of trees for signs of attack remains the most practical detection method

[35, 63]. The possibility of new introductions and high costs of eradication necessitate that sur-

veillance activities linked to the eradication of ALB extend beyond the initial regulated area, as

well as the potential expansion of the regulated area and an assessment of the total eradication

costs were this to happen in the future.

ALB is known to have slow spread rates [42, 43]: 80% of the population at a given site is

expected to spread less than 300 m per year [66]. Most recent ALB introductions have been

attributed to human activities [38]. Growing anecdotal evidence suggests that the pest may

hitchhike on slow-moving vehicles that have been previously parked near suitable host trees
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[32, Turgeon, pers. obs.], similar to the documented spread of another invasive forest insect,

the emerald ash borer (Agrilus planipennis Fairmaire) [67]. Local street traffic accounts for a

large portion of the movement of people and goods in urban settings, and has been recognized

as a proxy for a variety of local economic activities [68]. We used volumes of local road traffic

as a measure of activities that could facilitate ALB spread. We utilized a dataset on local street

traffic volumes [69] that had been linked to the GTA portion of the ESRI Street Map geospatial

database [70, 71] to estimate probabilities of ALB movement from previously invaded loca-

tions (see description in S2 File). We divided the GTA street network into 400×400-meter

blocks, each representing a potential survey site, and then used the local traffic volume data to

estimate a matrix of probabilities of ALB movement from block to block via the network. We

also adjusted the probability values by the annual projected rates of traffic volume increase,

which we estimated from the available traffic volume data over the last 10 years. This matrix

was used to simulate 5×106 randomized pathways of ALB spread between sites in the study

area, and to estimate arrival rates for each of the destination sites (see next section). The ALB

Fig 2. Probability of ALB spread, pj est, in the Greater Toronto Area (GTA). The blue polygon depicts the

initial quarantine area defined when ALB was discovered in Mississauga in 2013. The calculated probability

for each map location (i.e., each 400×400-m block) is the mean value from 6000 stochastic spread scenarios.

https://doi.org/10.1371/journal.pone.0181482.g002
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spread model then was calibrated to match the historical spread rates of ALB in the GTA as

determined from previous survey campaigns prior to the current eradication effort (S2 File).

Parameterizing the optimization model. The optimization model required a large set of

plausible invasion scenarios. As noted before, each scenario had an associated set of propor-

tions of trees that are infested, θjs. We generated the invasion scenarios in two steps. First,

we used our calibrated pest spread model to estimate the probability of ALB arrival, pj est, for

each site j in the study area (Fig 2). For each spread scenario s, we generated a stochastic pat-

tern of invaded sites via uniform random draws against the pj est values. Next, each invaded

site j in a scenario s was assigned a number of infested trees that was randomly sampled

from an empirical distribution of the number of infested trees. This distribution was based on

previous records of historical ALB detections in the GTA prior to the current eradication cam-

paign. The proportion of infested trees, θjs, at a site j in a scenario s was then found by dividing

the number of infested trees sampled from the distribution by Nj, the total number of host

trees at site j. To estimate the total number of host trees (Nj), we first estimated the area of tree

cover at each survey site j from the SOLRIS land cover dataset for the GTA [72]. Subsequently,

we converted the area of tree cover into a corresponding number of host trees by multiplying

by tree density and the host species proportion; the tree density values came from the SOLRIS

data, while the estimates of host tree species proportions came from the City of Toronto’s

Every Tree Counts survey [73], which provided a detailed summary of Toronto’s urban

forests.

The model also required estimates of the costs of survey (cj) and tree removal (tj) as well as

the pest detection rate value (γ). Because surveys are conducted within an accessible street net-

work, we assumed equal survey costs on a per-tree basis. We estimated the survey cost from

contractor rates paid to do visual tree inspections in previous ALB survey campaigns. This

yielded an average survey cost of $6.83 per tree. The cost of tree removal was based on current

tree disposal costs in the ongoing ALB eradication program and was set at $1000 per tree. The

high cost of tree removal was due to regulatory requirements when disposing of a tree, which

require costly chipping operations at designated disposal sites. The baseline probability value

of detecting ALB by inspecting a host tree, γ, was set to 0.7. This estimate is based on experi-

ence gained during the previous ALB surveillance programs and assumes that inspections are

performed by trained personnel [63]. We have also evaluated the model behaviour for a range

of detection rates between 0.3 (inspections by untrained personnel [37]) and 0.95 (inspections

in idealized conditions). We evaluated optimal solutions with different aspirational targets of

eradication success, d = 0.5 and 0.95, and safety margins, p = 1 and 0.95.

Computing bounds on the objective function value. We also assessed the suitable range

for the number of stochastic spread scenarios, S, that should be used in the model. Ideally, the

optimization model would be supplied with a very large set of invasion scenarios, but the num-

ber of scenarios is limited by computational capacity. Optimal solutions based on a finite num-

ber of random scenarios provide an approximation of the true optimal solution. To better

understand how close our model solutions were to the solution with a complete set of scenar-

ios, we estimated the upper and lower bounds on the optimal objective function value using

concepts from Mak et al. [74] and Lee et al. [75]. We computed the bounds on the objective

function for an area J of sufficient size to cover the majority of plausible ALB spread patterns

in the GTA over a short-term planning horizon (i.e., 3208 sites). This was done to ensure that

the number of scenarios was sufficient to depict the variation of possible spread outcomes. The

lower bound (�L) was estimated as the mean of the objective function values for the solutions to

20 independent replicate problems with S scenarios, S = 400, 800, 1200, 1800, 2400 and 3000

scenarios. For each of the 20 solutions based on non-overlapping sets of spread scenarios,
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obtained to compute the lower bound, we re-computed the objective function value using a set

of 6000 scenarios, and then estimated the upper bound ( �U ) as the mean of the objective func-

tion values in those 20 sets. The optimality gap was estimated as the relative difference between

the upper and lower bounds, i.e.:ð �U � �LÞ= �U [15]. A summary of the model parameters and

variables is shown in Table 1. We prototyped the model in SolverStudio [76] and GAMS envi-

ronments [77] and solved the MIP problem using the GUROBI linear programming solver

[78].

Results

Number of spread scenarios and the optimality gap

We estimated the upper and lower bounds on the objective function value for problem solu-

tions with 400, 800, 1200, 1800, 2400 and 3000 spread scenarios (Table 2). The optimality gap

was around 8% for problem solutions with 400 scenarios and around 1% for problem solutions

with 2400 scenarios. We also examined the program costs (i.e., averaged over 20 independent

replicates) for the optimal solutions based on different numbers of scenarios (Table 3). Specifi-

cally, the worst-case and upper percentile (α = 0.95) cost values indicate how well the scenarios

depict the most damaging outcomes with the highest cost. As the number of scenarios S
exceeds 2400, the worst-case cost value and the CVaR both stabilize, which indicates that fur-

ther increase of the number of scenarios does not add much information about extreme inva-

sion events. It does not appear that solving problems with more than 2400 scenarios would

Table 2. Upper and lower bounds on the objective function value for differing numbers of spread scenarios. The mean values, �Uand �L, of the objec-

tive function over a specified number of scenarios S, as well as their 95% confidence intervals, were calculated for a base case with the desired probability of

successful eradication d = 0.5 in all scenarios (p = 1), the detection rate γ = 0.7 and the proportion of the site covered by surveys β = 1. The objective function

minimized the expected program cost (i.e., F = 1) and was computed with sets of 20 independent replicates with increasing numbers of scenarios, S = 400,

800, 1200, 1800, 2400 and 3000.

Number of scenarios, S Lower bound (�L), 95% confidence interval Upper bound ( �U), 95% confidence interval Optimality gap*

400 16670611 ± 86508.3 18013682 ± 75871.6 8.06%

800 19307048 ± 89452.9 20317904 ± 88144.9 5.24%

1200 20952310 ± 89724.6 21672209 ± 48226.4 3.44%

1800 22385237 ± 90386.8 22787222 ± 30790.8 1.80%

2400 23333257 ± 91223.4 23629602 ± 55014.0 1.27%

3000 23864635 ± 92225.0 24119056 ± 48244.8 1.07%

*The optimality gap is ð�U � �LÞ=�U [74].

https://doi.org/10.1371/journal.pone.0181482.t002

Table 3. Basic description of the program costs and survey and tree removal components for differing numbers of spread scenarios. The program

cost values are mean estimates based on 20 independent replicates with increasing numbers of scenarios, S = 400, 800, 1200, 1800, 2400 and 3000. See

Table 1 for the model parameter settings.

Number of scenarios,

S

Scenario-based program costs, $M Survey cost, $M Number of removed trees

Expected cost VaR0.95 CVaR0.95 Worst-case scenario Mean over S scenarios Worst-case scenario

400 18.0 24.4 26.4 31.0 8.1 9907 22896

800 20.3 26.8 28.9 35.7 10.4 9881 25340

1200 21.7 28.0 30.1 36.7 11.7 9925 25006

1600 22.8 29.3 31.3 38.4 12.9 9871 25518

2400 23.6 30.1 32.2 40.5 13.8 9889 26798

3000 24.1 30.5 32.5 40.4 14.2 9884 26502

https://doi.org/10.1371/journal.pone.0181482.t003
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yield much benefit in terms of precision or accuracy, but would greatly increase computing

time.

The number of scenarios affected the spatial patterns of the surveyed sites. Fig 3a shows the

survey selection pattern (averaged for 20 optimization runs) based on 400 scenarios, while

Fig 3b shows the difference between the average selection patterns based on 400 and 2400 sce-

narios. More scenarios increased the number of surveys established at distant locations with

low risk of infestation. The survey pattern at distant locations was stabilized for 2400 or more

scenarios, which indicates that 2400 scenarios is sufficient to represent the majority of plausi-

ble outcomes from our model formulation, predicted by the stochastic spread model.

The number of spread scenarios also influenced key survey characteristics (Table 3).

Increasing the number of scenarios from 400 to 3000 increased the proportion of sites sur-

veyed from 39.4% to 71.3%, and also increased the proportion of the total budget devoted to

survey from 45% to 59%. By including more long-distance dispersal events, a larger number of

scenarios provides a more complete depiction of where ALB is likely to spread through time,

and in turn, requires more sites to be surveyed.

General model behaviour

The proportional allocation of the program budget to surveys and tree removal is influenced

by the eradication success constraint in Eq 8. The summation sign in Eq 8 makes it dependent

on the size of the regulated area (J), the detection rate (γ) and the total number of host trees

that are left after removal (Nj−Rjs). This indicates that the model’s optimal solutions are likely

Fig 3. Survey allocation patterns. (A) Mean allocation of surveys based on 20 independent replicates with 400

scenarios. (B) Differences in mean survey allocations, 2400 vs. 400 scenarios, based on 20 independent

replicates. The blue polygon depicts the initial quarantine area defined when ALB was discovered in Mississauga

in 2013.

https://doi.org/10.1371/journal.pone.0181482.g003
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to be influenced by the parameter values, so we explored the model’s general behaviour in the

parameter space {J, γ, β, θjs, Nj}.
We first evaluated the optimal solutions for different values of β, which defines the propor-

tion of the area of each selected site that is surveyed. We tested a range of possible values from

0 to 1; β = 1 implies that all host trees (i.e., the entire area) at the selected sites are surveyed,

while β = 0 indicates that a decision-maker chooses preventive tree removal at the selected

sites without performing surveys of the regulated area. Although preventive removal of trees

without prior surveys may seem counterintuitive, this strategy was adopted for previous ALB

eradication efforts in the GTA to reduce costs. Fig 4 depicts the expected program cost as a

function of β for two different values of the pest detection rate γ and with the regulated area

J = 80 ha. (While we estimated the solutions for a range of parameter combinations, we only

show examples that illustrate major changes in the model behavior).

When the regulated area J is small and the detection rate γ is high (as in Fig 4a), surveys of

each site’s entire area (i.e., β = 1) with subsequent tree removal yield the lowest expected cost.

In this case, the surveys provide information about the presence of infested trees, which, in

turn, helps reduce the cost of tree removal. When a larger proportion of a site is surveyed,

there is less chance of infested trees going unsurveyed. Consequently, fewer susceptible host

trees have to be removed to protect against the possibility that an undiscovered infestation will

facilitate future spread.

While information gained from the surveys can thus help reduce the number of trees that

must be removed, the capacity of the surveys to find infested trees depends on the detection

rateγ. When γ is low, more infested trees are overlooked, and so more susceptible (i.e.,

possibly infested) trees must be removed to satisfy the eradication success constraint in Eq 8.

With respect to our ALB example, when the detection rate is set to a comparatively low value

(γ = 0.7), the lowest expected cost occurs at β = 1, meaning that the optimal solution in this

case is to allocate all of the available budget to tree removal only (Fig 4b). An increase in the

size of the regulated area J has similar impact: When J becomes very large, it is no longer opti-

mal to survey the sites before tree removal, so instead the entire program budget should be

allocated to preventive tree removal. In those conditions, information gained from the surveys

provides only a marginal reduction of the total tree removal cost and therefore does not justify

the cost of the surveys.

Switching between the "survey-and-remove" and "remove" policies

The model behavior illustrated in Fig 4 suggests two alternative optimal management policies

depending on the combination of the model parameter values. The "survey and remove" policy

prescribes delimiting surveys in the regulated area J, with 100% coverage of the selected survey

sites (i.e., β = 1) and subsequent removal of host trees based on the outcomes of the surveys.

The "remove only" policy allocates the entire program budget to preventive tree removal—

according to the model optimal solution—without undertaking prior surveys. We further

explored the model parameter combinations that cause the policy to switch. We depicted the

switch between the "survey and remove" and "remove only" as a boundary curve in the dimen-

sions of the size of the regulated area J and the pest detection rate γ (Fig 5). The area above the

boundary curve corresponds to the parameter combinations for which the "survey and

remove" policy is optimal, and the area below the boundary corresponds to the parameter

combinations for which the "remove only" policy is preferred.

A lower pest detection rate restricts the optimality of the "survey and remove" strategy to

small areas. However, the size of the regulated area for which “survey and remove” is optimal

increases when the safety margin p or the eradication success threshold d is relaxed (Fig 5), i.e.,
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when a decision-maker has lower aspirations about eradicating the pest from regulated area J.
For instance, for the eradication success threshold d = 0.9, the boundary curve stabilizes

around γ = 0.94, which implies that "survey and remove" policy is optimal for detection rates

above that rate. For the empirical ALB detection rate in the GTA, γ = 0.7, the "remove only"

policy is the only optimal choice. Similar to what occurs with lower values of the proportion of

each site surveyed (β), lower detection rates translate to a higher number of infested trees that

Fig 4. Total program costs and tree removal costs vs. the proportion of a site that is surveyed, β. (A)

Example with the pest detection rate γ = 0.95, when survey of 100% of each selected site’s area (i.e., β = 1)

yields the lowest cost. (B) Example with the pest detection rate γ = 0.7, when preventive tree removal without

surveys (i.e., β = 0) yields the lowest cost. Regulated area J = 80 ha, safety margin p = 1 and eradication

success threshold d = 0.95 for both examples.

https://doi.org/10.1371/journal.pone.0181482.g004
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Fig 5. Optimal management policy in dimensions of the detection rate, γ, and the size of the regulated

area, J. The solid blue line depicts the policy switch boundary for solutions with the safety margin p = 1, and

the solid green line depicts the boundary for solutions with the safety margin p = 0.95. The horizontal dotted

line indicates the current detection rate for ALB in GTA, γALB = 0.7. The intersection between the line at γALB

and each boundary curve indicates the maximum size of J where it is optimal to survey before tree removal.

https://doi.org/10.1371/journal.pone.0181482.g005
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are left undetected. When the number of infested trees that are left undetected is too high, sur-

veys are not sufficiently able to reduce the number of trees that must be removed, since a large

number of susceptible host trees have to be removed to prevent spread from undetected

infestations.

Other model parameters, such as the expected proportion of trees that are infested (θjs) and

local host density (Nj), also influenced the optimal policy choice (S1 Fig). In general, lower

infestation rates make the "survey and remove" policy attractive for larger regulated areas (J)
or, alternatively, for lower detection rates (γ) (S1 Fig). The impact of decreasing the host den-

sity is similar: Lower host densities make the "survey and remove" policy attractive for larger

areas because fewer trees will need to be removed in all cases. Lower host densities (or infesta-

tion rates) shift the policy switch curve down (S1 Fig). Note that this impact is only noticeable

when the detection rate is high (i.e., γ> 0.9), in which case surveys can detect most of the

infested trees. At lower detection rates (such as γ = 0.7 and below), the "remove only" policy is

the only preferred choice.

Impacts of controlling the extreme program cost on the optimal policy

Recall that the objective function formulation in Eq 14 minimizes a combination of two objec-

tives, the expected program cost and the CVaRα, which depicts the extreme cost in the right

tail of the program cost distribution. Different decision-making preferences between minimiz-

ing the expected cost versus the extreme cost can be explored by changing the weighting factor

F. When F = 0, the objective function minimizes the expected cost only. Increasing the F value

above 0 places more emphasis on minimizing the cost in the right tail of the cost distribution.

A decrease of the extreme cost causes the expected cost to increase. This penalty is expected:

The only way to decrease the cost with respect to worst-case scenarios is to survey more sites.

The total reduction of the extreme cost depends on the chosen values of the detection rate γ,

eradication success threshold d and the safety margin p in the constraint Eq 8: a higher rate γ
(or lower d and p values) lead to a greater reduction of the extreme cost. In a geographical con-

text, the additional surveys in the solutions with CVaRα selected distant locations where the

probability of spread is very low (Fig 6). Although these additional sites had considerably

lower probabilities of ALB spread, they had higher host densities than the rest of the surveyed

sites (Fig 7). These sites represent low-risk locations in terms of spread, but because of their

abundant host, infestations could be severe and require costly eradication if they were to be

invaded.

Controlling the extreme cost also influences the optimal management policy. In the current

model setup, the only way to reduce the extreme cost is to survey more sites with respect to the

worst-case scenarios. Thus, controlling the extreme program cost is only possible by increasing

the number of surveys, i.e., by implementing the "survey and remove" policy. Nevertheless, the

choice of the optimal policy also depends on how a decision-maker perceives the risk of incur-

ring high program costs. Controlling the extreme cost adds a penalty to the expected cost,

which makes the "survey and remove" policy less attractive when a decision-maker is risk-neu-

tral and therefore aspires to minimize the expected cost (Fig 8, dotted lines). In this case, the

boundary between the "survey and remove" and the "remove only" policies shifts towards

higher detection rates, meaning that a risk-neutral decision-maker probably will not adopt the

“survey and remove” policy unless the likelihood of detection is very high. In contrast, when a

decision-maker perceives the worst-case costs as a reasonable proxy of the true program costs,

the boundary shifts downward (Fig 8a and 8b, dashed lines), making the "survey and remove"

policy attractive for lower detection rates and larger regulated areas. For the specific example

of ALB in the GTA, with a detection rate γ = 0.7 and high expectations of eradication success
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(i.e., with an eradication success threshold d = 0.9 and safety margin p = 0.95; see Fig 8b), the

"survey and remove" policy remains a preferred choice for regulated areas approximately

160 ha or less in size. However, for regulated areas larger than 500 ha, the "survey and remove"

policy is optimal only if the detection rate γ is 0.8 or greater (Fig 8b, dashed line).

Discussion

Eradication of invasive species often requires costly investments. Agencies tasked with manag-

ing biological invasions face various budget and regulatory constraints that prevent them from

undertaking full-scale eradication. When the need to eradicate an invasive species conflicts

with a poor capacity to detect it, or when decision-makers face limited budgets, management

policies can be developed that attempt to attain a desired level of eradication while meeting the

budget and detection capacity constraints. The primary methodological contribution of our

Fig 6. Additional survey sites in solutions with minimization of the extreme cost in the objective

function via CVaR vs. solutions based on minimizing the expected cost only. Colored (black, red, or

orange) hexagons show survey sites that appeared in solutions with CVaR (F = 0.5) but not in solutions that

minimized the expected cost (i.e., F = 0). Light green hexagons denote sites with high host density (> 1200

trees per survey site). An outline depicts the sites with the probability of ALB spread, pj est, above 0.003.

https://doi.org/10.1371/journal.pone.0181482.g006
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work is a resource allocation model that can help decision-makers working in terrestrial set-

tings to develop cost-effective site survey and host removal strategies in areas under threat of

invasion. Our model setup generally conforms to the current decision-making environment

for managing ALB in the GTA, and depicts the management program as a two-step decision-

making process. First, delimiting surveys are allocated over sites in a defined management area

at the beginning of the survey season. The distribution of the pest within this management

area, and the extent of damage, is uncertain at that point in time, and is modeled with a large

set of stochastic scenarios, where each scenario depicts one possible outcome of the invasion.

In the second stage at the end of the survey period, subsequent actions are applied to eradicate

Fig 7. Differences in host density, Nj, and the probability of ALB spread, pj est, between the subset of survey sites that were

selected only in solutions with CVaR vs. sites that were selected both, in solutions with CVaR and based on minimizing the

expected cost (i.e., F = 0). (A) differences in host density (Nj). (B) differences in the probability of ALB spread (pj est). Solutions for

the parameter combination of γ = 0.7 and 0.9, β = 1, d = 0.95 and p = 0.95 are shown; other parameter combinations revealed similar

differences. The lower and upper whiskers are the 5th and 95th percentile points, respectively. 1 –survey selections that appear in the

solutions with CVaR but absent in the solutions based on minimizing the expected cost; 2 –survey selections that appear both in

solutions with CVaR and based on minimizing the expected cost value. The survey selection sets in 2 were randomly sampled to

match the size of the sets in 1.

https://doi.org/10.1371/journal.pone.0181482.g007
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Fig 8. Impact of controlling the right tail of the program cost distribution with CVaR on the choice of

management policy. The optimal management policy is shown in dimensions of the pest detection rate, γ,
and the size of the managed area, J. Dashed lines depict the policy switch boundary based on minimization of

the expected cost value and solid lines show the policy choices in the solutions with the control of the worst

case program costs. The scenarios use the safety margin, p = 0.95. Horizontal dotted line indicates the

current detection rate for ALB in the GTA, γALB = 0.7. The intersection between the line at γ = 0.7 and the

curves indicates the maximum size of the managed area J where it is optimal to survey before tree removal.

(A) The policy choice based on the expected cost value. (B) The policy choice is based on the extreme cost

values in the right tail of the program cost distribution at CVaR0.99.

https://doi.org/10.1371/journal.pone.0181482.g008
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infestations that are discovered at the surveyed sites. The model involves a set of constraints

that focus regulatory decisions on two key parameters in particular: the desired level of eradi-

cation success and the margin of safety. These parameters are value judgments and define a

decision-maker’s aspirations regarding eradication and tolerance for program failure. Our

model offers a practical approach to estimating the costs of these value judgments. The model

formulation is generalizable and can be applied to other geographical regions and species of

concern.

Our analyses revealed two alternative optimal management policies for ALB. The first

choice prescribes delimiting surveys within a regulated area, with subsequent removal of host

trees at infested sites based on the outcomes of the surveys, while the second choice prescribes

preventive removal of infested and susceptible host trees at selected sites in the regulated area

without prior delimiting surveys. Which policy is optimal depends not only on the value judg-

ments mentioned above, but also on the combination of key assumptions, such as the capacity

to detect the pest, the size of the regulated area, the expected infestation rates and local host

densities. It turns out that the policy of preventive tree removal is optimal for the typical sizes

of regulated areas that have previously been established to manage the ALB outbreak in the

GTA (i.e., on the order of 46 km2). Moreover, our results agree with past and current manage-

ment practices for ALB in the GTA, where removal of infested and nearby susceptible host

trees was initiated without delimiting surveys.

The optimal policy also depends on how decision-makers perceive the risk of eradication

failure. In our ALB example, if a decision-maker strives to minimize the cost with respect to

the worst-case invasion scenarios, delimiting surveys appear to be optimal for a larger size

of regulated area than if the decision-maker perceives the expected program cost to be a rea-

sonable representation of the true cost. The only way to reduce the cost with respect to the

worst-case invasion scenarios is to survey more sites and more trees, which provides more

opportunities to find infested trees and reduces the number of susceptible trees that must be

removed to protect against overlooked infestations. However, the policy of minimizing the

chance of a worst-case scenario imposes extra costs, thus making the expected program cost,

on average, appreciably higher than the policy that strives only to minimize this expected cost.

The need for adequate control of the risk of high program costs

Generally, decision-makers tasked with containing the spread of an invasive species desire to

achieve successful eradication of the invader with minimum costs. Yet, there is always some

risk that the costs of eradication could be very high. This aspect can be problematic for decision-

-makers, who may have low tolerance for incurring high costs and may agree that control of the

risk of high program costs is important, even if this comes with a necessary increase in the over-

all costs. The level of risk that can be tolerated often depends on the type of organism, its capac-

ity to spread and cause damage to economically viable hosts, as well as the objectives of the

management program. We believe that adequate control of the risk of high program costs is an

important part of a successful pest management program. A typical approach to manage risk in

financial and national security applications is to estimate and control value at risk of high losses,

costs or damages with a specified confidence level, such as 95% [53, 79].

Adequate control of the risk of high program costs also depends on an analyst’s ability to

predict the outcomes of future invasions and management actions and to quantify other key

factors that influence the species’ ability to invade novel habitats. While the outcomes of ALB

management actions in our GTA study (i.e., complete removal of host trees in an urban envi-

ronment) were straightforward and well-understood, assessment of the outcomes of ALB inva-

sion in natural ecosystems would require better understanding of factors that control the
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species’ capacity to invade and establish a viable population, such as an ability to displace other

species from their habitats or interspecific interactions, e.g., competition with native wood-

and bark-boring insects for host resources [6,80].

Our study was primarily focused on quantifying human-mediated dispersal of ALB.

Human activities are known to be major contributors to rates of spread for many invasive

insects [81]. In our case, the natural spread capacity of ALB by biological means is known to

be poor [42, 43] and the pattern of recently discovered ALB infestations in North America has

been attributed largely to human-assisted movement [64, 66], so we felt justified in our focus

on tracking the human-mediated spread. Accounting for biological spread would be critical

for an invasive pest species with strong flight capability that could cover long distances by its

own means.

Spread rates may also be affected by other abiotic factors, such as climatic variation [82, 83].

In our case, the study area was very small and the forecast horizon was relatively short (i.e., less

than five years within GTA city limits), so therefore we did not account for site-to-site or tem-

poral climatic variation and its potential impact on the rate of spread. Accounting for the

impact of spatial and temporal climatic variation on the spread rates would be important for

cases with long forecast time horizons when species are expected to spread over long distances.

Our study illustrates how the safety-rule approach with controlling the conditional value-at

risk for program costs can be formulated as a mathematical programming problem. In our

case, a linearized formulation of CVaR enabled solving the model with a linear programming

solver for a large number of spatial cases and spread scenarios. Notably, minimizing the CVaR

requires substantially greater computational effort than minimizing the expected cost. The

CVaR metric is sensitive to the shape of the distribution tail above the chosen confidence level

α, and the tail configuration affects the solution times. Nevertheless, our approach appears to

be suitable for large-scale geographical applications and enables representation of the uncer-

tainty of a pest’s future spread in large regions via a large set of discrete scenarios.
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