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ABSTRACT
The WorldView-3 (WV-3) sensor, launched in 2014, is the first high-
spatial resolution scanner to acquire imagery in the shortwave infra-
red (SWIR). A spectral ratio of the SWIR combined with the near-
infrared (NIR) can potentially provide an effective differentiation of
wildfire burn severity. Previous high spatial resolution sensors were
limited to data from the visible and NIR formapping burn severity, for
example using the normalized difference vegetation index (NDVI).
Drawing on a study site in the Pine Barrens of New Jersey, USA, we
investigate optimal processing methods for analysing WV-3 data,
with a focus on the pre-fire minus post-fire differenced normalized
burn ratio (dNBR). Although the imagery, originally acquired with a
3.7 m instantaneous field of view, was aggregated to 7.5 m pixels by
DigitalGlobe due to current licensing constraints, a slight additional
smoothingof the datawas nevertheless found tohelp reduce noise in
the multi-temporal dNBR imagery. The highest coefficient of deter-
mination (R2) of the regressions of dNBR with the field-based compo-
site burn index was obtained with a dNBR ratio produced with the
NIR1 and SWIR6 bands. Only a very small increase in R2 was found
whendNBRwas calculated using the average of NIR1 andNIR2 for the
NIR bands, and SWIR5 to SWIR8 for the SWIR bands. dNBR calculated
using SWIR1 as the NIR band produced notably lower R2 values than
when either NIR1 or NIR2 were used. Differenced NDVI data was
found to produce models with a much lower R2 than dNBR, empha-
sizing the importance of the shortwave infrared region formonitoring
fire severity. High spatial resolution dNBR data fromWV-3 can poten-
tially provide valuable information on finer details regarding burn
severity patterns than can be obtained from Landsat 30 m data.
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1. Introduction

The launch of DigitalGlobe’s WorldView-3 (WV-3) sensor on 13 August 2014, opened
new opportunities in satellite-borne mapping of wildland fire burn severity (Keeley 2009)
using short wave infrared (SWIR; 1.4–2.5 µm) data at a finer spatial resolution than has
been previously possible. A long history of research suggests that mapping of forest fire
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burn severity is generally most effective with a spectral ratio that combines near-infrared
(NIR; 0.7–1.4 µm) and SWIR (e.g. Garcia and Caselles 1991; Key and Benson 1999; Key
2006; Parks, Dillon, and Miller 2014). This ratio is especially successful if applied to
imagery acquired immediately before and after the burn (Key and Benson 2006). The
WV-3 sensor acquires eight visible (0.4–0.7 µm) and NIR bands, and unlike any previous
high-spatial resolution sensor, can in addition acquire a further eight longer wavelength
bands in the NIR and SWIR region (Table 1) (Kruse, Baugh, and Perry 2015; DigitalGlobe
2016). The eight visible and NIR WV-3 bands have a 1.2 m instantaneous field of view
(IFOV), whereas the eight NIR and SWIR bands have an IFOV of 3.7 m, though currently
this latter group of bands is degraded for the general public to 7.5 m pixels in
accordance with licensing restrictions. Thus, WV-3 is significant both for its finer spatial
resolution and its increased spectral resolution.

The importance of having access to high resolution SWIR data for mapping burn severity
is demonstrated by Figure 1, which shows both the WV-3 bands and spectral reflectance

Table 1. WorldView-3 band centre wavelengths.
Band name Band number Centre wavelength (nm) Spectral regiona

Coastal Blue 1 426 Visible
Blue 2 481 Visible
Green 3 547 Visible
Yellow 4 605 Visible
Red 5 661 Visible
Red Edge 6 724 NIR
NIR1 7 832 NIR
NIR2 8 948 NIR
SWIR1 9 1210 NIR
SWIR2 10 1572 SWIR
SWIR3 11 1661 SWIR
SWIR4 12 1730 SWIR
SWIR5 13 2164 SWIR
SWIR6 14 2203 SWIR
SWIR7 15 2260 SWIR
SWIR8 16 2329 SWIR

See also Figure 1.
a For the purpose of this article, we define the visible as 0.4–0.7 µm, NIR 0.7–1.4 µm, and SWIR 1.4–2.5 µm.

Figure 1. WorldView-3 band spectral response functions (left axis) by band (see numbers at the top
of the graph) (DigitalGlobe 2016) and comparison to field spectral reflectance measurements of key
cover types from the Penn State Forest.
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field measurements of various land cover materials relevant for forest fire mapping.
Compared to green pine needles, scorched pine needles show effects across the entire
spectrum: increased blue and red, decreased NIR, and increased SWIR reflectance. Burnt
plant matter, including litter and bark, which is black to the naked eye, has a generally low
and featureless spectrum, although it does show a characteristic rise at longer wavelengths,
resulting in characteristically SWIR reflectance that can be higher than that of green
vegetation. The combination of reduced NIR and increased SWIR is, therefore, generally
very effective for mapping burn severity (Key and Benson 1999, 2006).

Prior burn severity mapping has beenmostly carried out using Landsat Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), andOperational Line Imager (OLI) sensors, all
with 30 m IFOV in the SWIR region (Garcia and Caselles 1991; Key and Benson 2006). Other
satellite-borne sensors with SWIR bands that have been used for fire mapping include the
Moderate Resolution Imaging Spectroradiometer (MODIS) with 500 m pixels (Chen, Sheng,
and Liu 2015), the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), with 30 m SWIR pixels (Holden et al. 2010), Satellite Pour l’Observation de la
Terre (SPOT) 4 and 5 sensors with 20 m SWIR pixels (Polychronaki and Gitas 2012) and the
European Space Agency’s Multispectral Imager (MSI) on the Sentinel-2A satellite, also with
20 m pixels (Fernández-Manso, Fernández-Manso, and Quintano 2016). Thus, even with a
degraded spatial resolution of 7.5 m, WV-3 data represents a substantial increase in
potential detail over previously available satellite-borne sensors.

High spatial resolution mapping of burn severity from space-borne sensors could be
particularly valuable for improved understanding of fire behaviour and for ecological
restoration work, particularly for studying smaller fires in areas regarded as having high
ecological value. For example, high resolution mapping could be useful for prescribed
fires for forests close to inhabited areas, where the fires, though small, may be con-
tentious and difficult to implement (Clark, Skowronski, and Gallagher 2015; Skowronski
et al. 2015). Prior high spatial resolution sensors, such Airbus Defense & Space’s Pléiades
and DigitalGlobe’s WorldView-2 (WV-2) sensors were limited to four, or at most eight,
spectral bands, but crucially the bands were entirely within the visible to NIR range,
typically no further than about 1.0 µm. Prior high spatial resolution sensors were there-
fore limited to mapping burn severity using visible and NIR wavelengths, for example
using ratios such as the normalized difference vegetation index (NDVI; Rouse et al. 1974).

With its multiple high-spatial resolution SWIR bands, WV-3, therefore, offers sig-
nificant opportunities for mapping burn severity. However, this new sensor also raises
many questions that need to be addressed prior to routine use of the data. In
particular, the choice of specific bands to use in developing the burn ratio is of
some importance given that there are seven WV-3 SWIR bands and three NIR bands
to select from. A related question is whether it is better to aggregate the SWIR bands,
potentially to increase the signal to noise ratio, an approach that could be useful for
winter acquisitions, when solar illumination is weak (Warner, Nellis, and Foody 2009).
Furthermore, the eight visible and NIR bands are not necessarily provided as a
package with the eight longer wavelength bands, raising another important issue
as to whether effective burn severity mapping can be achieved using only the latter
group of bands alone, especially since this group includes a NIR band at 1.2 μm. If a
researcher only needs to purchase the eight longer wavelengths bands, this could
result in considerable cost savings. In addition to addressing these methodological
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questions, we also ask whether, at least within the context of our study site, burn
severity products generated at 7.5 m provide potentially more useful information
than what can be discerned at 30 m, for example in a typical Landsat product. Finally,
we also compare ratio products that use the SWIR band to NDVI, in order to confirm
that the SWIR data really is useful for studying forest fire burn severity in our study
area.

2. Background

The normalized burn ratio (NBR) is defined (Key and Benson 2006) as

NBR ¼ ρNIR � ρSWIR

ρNIR þ ρSWIR
; (1)

where ρ is reflectance, and the subscripts NIR or SWIR describe the spectral regions.
Generally, the 2.0–2.4 µm (e.g. Landsat TM band 7) atmospheric window is regarded as a
better choice for the SWIR band than the 1.5–1.8 µm (e.g. TM band 5) window (Van
Wagtendonk, Root, and Key 2004; Veraverbeke, Harris, and Hook 2011). There is a long
history of the use of using a differenced NBR product (dNBR) to map burn severity (Key
and Benson 2006; Escuin, Navarro, and Fernandez 2008):

dNBR ¼ NBRð Þpre�fire � NBRð Þpost�fire; (2)

where the subscripts pre-fire and post-fire refer to the timing of the acquisition of the
imagery. In this article, we will apply the term dNBR to any differenced ratio images,
employing NIR and SWIR bands, as defined earlier.

The dNBR measure has been found to be highly effective for mapping burn severity,
particularly in forested environments (Van Wagtendonk, Root, And Key 2004; Key and
Benson 2006). Nevertheless, variations on dNBR have been proposed to address short-
comings with the ratio. For example, a relative version of the dNBR can be used if there
are large differences in the pre-fire canopy density (Miller and Thode 2007; Parks, Dillon,
and Miller 2014). Another variation is to include spectral emissivity in the ratio
(Fernández-Manso and Quintano 2015). For comparisons between multiple fires, an
offset to the dNBR is sometimes applied to normalize the values so that they are
comparable between fires (e.g. Miller et al. 2009). Entirely different approaches, such
as machine-learning, have also been proposed where high spectral resolution data are
available (Hultquist, Chen, and Zhao 2014).

Despite its success in forested environments, dNBR has been found to be less
effective in other environments, such as grasslands (Lu, He, and Tong 2016). Similarly,
Roy, Boschetti, and Trigg (2006) found that the ratio is not optimal for mapping fire in
savannah vegetation.

Prior to the launch of WorldView-3, high spatial resolution sensors were generally
limited to visible and NIR wavelengths. Typically, studies using such data have employed
NDVI (Rouse et al. 1974) or similar vegetation indices. NDVI is defined as

NDVI ¼ ρNIR � ρRed
ρNIR þ ρRed

; (3)
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where, as before, ρ is reflectance, and the subscripts NIR or Red describe the spectral
regions. A differenced NDVI index (dNDVI) can also be generated, as with dNBR, by
differencing pre-fire and post-fire images. Many variations of NDVI and similar indices
have been proposed to improve the effectiveness of using NIR and visible bands for
mapping burn severity (Chuvieco, Martin, and Palacios 2002; Boelman, Rocha, and
Shaver 2011).

Although NDVI is very reliable for measuring the presence of vegetation, the effect of
burning can be confused with other losses of vegetation, and using NDVI to monitor
burn severity is less effective if imagery is acquired when the vegetation has senesced.
Many studies that have evaluated the use of high resolution dNDVI products have found
them less effective than Landsat dNBR products (e.g. Escuin, Navarro, and Fernandez
2008). However, Holden et al. (2010) found that a differenced enhanced vegetation
index (a modified version of NDVI) derived from QuickBird data produced a higher
coefficient of determination (R2) for regression models of field measures of burn severity
than was achieved with Landsat TM dNBR data for a ponderosa pine study area in New
Mexico, USA. Furthermore, Wu et al. (2015), in a study of ponderosa, pinyon, juniper, and
oak forests in Arizona, USA, found that Landsat-derived dNDVI resulted in a higher R2

than Landsat dNBR, or indeed than indices from WV-2 high-spatial resolution data, when
regressed against burn severity.

In an important study using a radiative transfer model, Chuvieco et al. (2006) showed
that a spectral ratio of NIR and red is potentially the most effective combination for
mapping recent fires, where charcoal dominates the spectral signal. In contrast, ratios
using NIR and SWIR provided the highest potential accuracy for a wider range of fires,
both recent and older, and where soil, charcoal, and both green and brown leaves are
present.

3. Study area

The study area is the Penn State Forest (Figure 2), in the New Jersey Pinelands National
Reserve (PNR). Forests in this study area are primarily: ‘pine–oak forests’, consisting of
pitch pine with mixed oaks in the overstory; ‘pine–scrub oak forests’, dominated by
pitch pine with understory scrub oaks (Q. ilicifolia Wang. and Q. marlandica Muench.)
in the understory (McCormick and Jones 1973; Lathrop and Kaplan 2004); or ‘pine
plains’ which have a similar species assemblage to ‘pine-scrub oak forest’ but are
characterized by very short statured stems (<2 m). Ericaceous shrubs are the major
understory component of all of these forest types, primarily huckleberry (Gaylussacia
bacata (Wang.) K. Koch, G. frondosa (L.) Torr. & A. Gray ex Torr.) and blueberry
(Vaccinium spp.). The soils are sandy and acidic (La Puma, Lathrop, and Keuler 2013),
and the topography is generally flat.

This landscape of the PNR is characterized by a high frequency and intensity of
wildfires relative to other forest ecosystems in the northeastern USA. The study area
has had a history of periodic wildfire events, with the largest occurring in 1948 and 1982
(La Puma, Lathrop, and Keuler 2013). These fires both burned a significant portion of
Penn State Forest and there have been several smaller fires as well, most prior to 1982.
Prescribed fire has been intermittently introduced to small, peripheral, stands within the
study area with little effect on canopy fuel loading (H. Somes, New Jersey Forest Fire
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Service Division Fire Warden (retired), personal communication, 18 August 2016). For this
study, nearly the entirety of Penn State Forest was burned on several days between 29
February and 18 March 2016. These burns were conducted under a wide range of
meteorological conditions and fuel moistures with ignition patterns varying from back-
ing, heading, and plastic sphere aerial ignition (many interior spot fires). An additional
150 ha within the study area burned in a wildfire on 10 March 2016.

4. Methods

4.1. Field methods

A total of 156 random samples were selected over the study site (Figure 2(b)).
Although prior studies have selected samples using a stratified approach based on
dNBR values (Key and Benson 2006) or site conditions (Kasischke et al. 2008), we
chose a purely random approach combined with a relatively large number of samples
to provide the simplest, direct, and most reliable estimate of the accuracy of the
remotely sensed fire severity map. Our site is characterized by large areas of relatively
low, moderate and intense burn intensities, making a purely random approach
feasible. On the other hand, in an area without much variation in burn severity, a
stratified approach might be necessary. Furthermore, we did not bias our selection to

Figure 2. WorldView-3 false colour imagery (bands 16, 7, 5 as RGB) of Penn State Forest, New Jersey
Pine Barrens. (a) Pre-burn image, acquired on 8 December 2015. (b) Post-burn image, acquired on 13
April 2016. Locations of field samples and associated Total CBI class are also indicated.
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areas of relatively homogeneous burn severity, as is recommended by Key and
Benson (2006). The disadvantage of our approach is that error in the georeferencing
of the image or field sample locations will potentially translate into increased appar-
ent spectral burn severity error, and result in an unnecessarily conservative estimate
of overall accuracy. Nevertheless, we argue that it is highly possible that burn
severity-estimation error is more common in mixed pixels, and therefore a sampling
approach that systematically avoids areas of potential error would seem to be likely
to generate an overly optimistic estimate of accuracy. For all these reasons, we argue
that the approach we adopted produces the highest possible confidence in the
accuracy estimates, and that, if anything, our approach is conservative.

The field measurements were made between 12 March and 6 April 2016, immediately
after areas were burnt. Field procedures for estimating the composite burn index (CBI)
employed the Key and Benson (2006) field data sheet. One key difference, however, is
that we modified the diameter of the field plot from the recommended 30 m, to 15 m, in
order to accommodate the finer scale of the WV-3 data compared to Landsat.

The CBI encompasses estimates of burn severity for five main strata of the vegetation:
substrate, including litter and duff; herbs, low shrubs, and trees less than 1 m tall; tall
shrubs and trees 1–5 m; intermediate trees, including sub-canopy and pole-sized trees;
and big trees, including canopy, dominant and co-dominant trees (Key and Benson
2006). Within each stratum, burn-severity for each component within that stratum is
estimated on a 0.0–3.0 scale. By averaging the burn severity values within each stratum,
an index is obtained for that stratum. The values for the strata are then averaged to
produce integrated understory, overstory, and overall burn indices.

Field spectra, shown in Figure 1, were collected on 12 March 2016, using a FieldSpec-
2, portable field spectrometer (ASD Inc., Boulder CO, USA). A portable lamp provided by
ASD was used for illumination, and spectra were normalized to a Labsphere (North
Sutton, NH, USA) Spectralon barium sulphate reflectance standard (Asmaryan et al.
2013).

4.2. Image acquisition, pre-processing and analysis

A pre-fire image, including all 16 visible, NIR and SWIR bands, was acquired on 8
December 2015. (For convenience, we will refer to the bands by the numbers from
1–16, please refer to Table 1 for the associated wavelengths and the names given to the
bands by DigitalGlobe.) As a winter scene, the sun elevation was 26.8°, and the mean off-
nadir viewing angle was 6.3°. A post-fire image was acquired on 13 April 2016, with a
notably higher sun elevation of 57.9° and a mean off-nadir viewing angle of 12.3°. The 4
month interval between the pre- and post-fire burn images is less than optimal in that
any phenological changes in that time will likely reduce the accuracy of burn severity
mapping. However, the acquisitions were timed to be after leaf senescence in the fall,
and prior leaf expansion in the spring, and therefore plants were dormant in both
images. In any case, given the challenges of acquiring snow-free and cloud-free images
in the winter and early spring in the eastern United States, this period of time between
acquisitions was the best we could achieve, and may be representative of what an
operational fire monitoring programme would have to accommodate.
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The images were imported in to ENVI 5.3 (Exelis Visual Information Solutions, Boulder,
CO, USA). The images were converted into radiance, and then surface reflectance using
the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) module within ENVI
(Cooley et al. 2002). FLAASH is built around the MODTRAN radiative transfer model, and
is able to deal with the non-nadir viewing effects.

The reflectance images were then imported into ERDAS Imagine 2015 (Hexagon
Geospatial Inc., Norcross, GA, USA), and co-registered using the Imagine Autosync
feature, which matches images using automatically generated tie-points. The images
were then used to generate a variety of WV-3 dNBR ratio products, using bands 7, 8, or 9
as the NIR band, and one of the bands between 10 and 16 as the SWIR band (see Table 1
for the band designations, see Table 2 for the ratio combinations developed). In addi-
tion, two NDVI products (with band 6 for red and 7 or 8 as NIR) were generated. Broad-
band NBIR ratio products were developed by averaging values across multiple NIR and
SWIR bands, prior to calculating the ratios.

Table 2. Summary statistics for various dNBR products for describing composite burn index (CBI)
values.

Coefficient of determination (R2)

Spectral ratioa CBI (total) CBI (overstory only) CBI (understory only) Comment

(7 – 10)/(7 + 10) 0.810 0.852 0.474
(7 – 11)/(7 + 11) 0.696 0.722 0.421
(7 – 12)/(7 + 12) 0.828 0.844 0.521
(7 – 13)/(7 + 13) 0.833 0.860 0.513
(7 – 14)/(7 + 14) 0.841 0.866 0.522
(7 – 15)/(7 + 15) 0.829 0.869 0.489
(7 – 16)/(7 + 16) 0.839 0.872 0.507
(8 – 10)/(8 + 10) 0.822 0.867 0.482
(8 – 11)/(8 + 11) 0.683 0.807 0.455
(8 – 12)/(8 + 12) 0.830 0.846 0.527
(8 – 13)/(8 + 13) 0.828 0.856 0.510
(8 – 14)/(8 + 14) 0.839 0.865 0.520
(8 – 15)/(8 + 15) 0.828 0.870 0.488
(8 – 16)/(8 + 16) 0.836 0.870 0.506
(9 – 10)/(9 + 10) 0.728 0.737 0.469
(9 – 11)/(9 + 11) 0.710 0.724 0.452
(9 – 12)/(9 + 12) 0.727 0.700 0.524
(9 – 13)/(9 + 13) 0.768 0.772 0.504
(9 – 14)/(9 + 14) 0.774 0.778 0.509
(9 – 15)/(9 + 15) 0.780 0.803 0.481
(9 – 16)/(9 + 16) 0.795 0.811 0.502
(7 – (10:12))/(7 + (10:12)) 0.810 0.842 0.487
(7 – (13:16))/(7 + (13:16)) 0.844 0.876 0.513
(7 – (13:15))/(7 + (13:15)) 0.843 0.876 0.510 Similar to Landsat 8 dNBR
(8 – (10:12))/(8 + (10:12)) 0.830 0.865 0.500
(8 – (13:16))/(8 + (13:16)) 0.841 0.875 0.511
(9 – (10:12))/(7 + (10:12)) 0.763 0.763 0.506
(9 – (13:16))/(9 + (13:16)) 0.795 0.807 0.509
((7:8) – (10:12))/((7:8) + (10:12)) 0.828 0.847 0.498
((7:8) – (13:16))/((7:8) + (13:16)) 0.844 0.865 0.513
(7 – 5)/(7 + 5) 0.693 0.735 0.398 NDVI
(8 – 5)/(8 + 5) 0.647 0.680 0.381 NDVI

a See Table 1 and Figure 1 for key to band numbers.
The ‘:’ symbol is used to indicate the average of a range of bands, e.g. ‘7:8’ means bands the average of bands 7 and 8.
Minimum and maximum R2 values for single band ratios are shown, respectively, underlined and in bold. The
maximum values R2 for broad band ratios (using averages of multiple bands) are shown in bold italics.
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Despite the Autosync co-registration, small differences between the December and
April images could still be seen, when the images were overlaid. These appear to be real
differences, reflecting differences in the shadowing and parallax effects from the differ-
ent view angles and the varying tree heights. We, therefore, also developed a smoothed
product, in addition to the raw dNBR images. The smoothed image was produced using
a low-pass filter, where the values in a 3 × 3 pixel kernel follow a Gaussian curve, with a
one-standard deviation (σ) of 0.85 (Brandtberg et al. 2003). We also used pixel aggrega-
tion to generate a dNBR product with a 30 m pixel size, to simulate the spatial resolution
of Landsat imagery. We chose this approach of simulating a coarser resolution imagery,
rather than using real Landsat data, in order to produce comparison images that only
differed in spatial resolution.

For visualization of the images we followed a standardized procedure to develop a
consistent mapping from dNBR to image colour. A linear stretch on a scale of 0–255 was
applied to the dNBR values between a dNBR of 0 and the 99.95 percentile; values
outside that range were saturated at 0 and 255, respectively. A standard ERDAS
Imagine pseudo colour palette was then applied to the scaled values for all values
above an empirically chosen threshold of 85; values below that value were shown in
grey scale.

Two procedures were investigated for relating the dNBR values from the WV-3
imagery and the field samples. The key issues were that the centre of the field samples
were not necessarily in the centre of a pixel and the field sampling was done over a
15 m diameter area, compared to the 7.5 m size of the pixels. The first method used the
spectral values of the single pixel of Gaussian smoothed imagery, as discussed earlier, in
which the point fell. The second approach used an area-weighted approach applied to
the original, unsmoothed data. In this approach, a 15 m diameter circle was drawn
around the centre of the field sample location. The proportion of the circle in each of the
underlying pixels was then multiplied by the associated pixel reflectance, and the values
summed. The two approaches produced almost identical results when the spectral
values were regressed against CBI values. Although the low pass filter approach is
much easier to implement, we chose the area weighted approach as being conceptually
more appealing.

The various differenced WV-3 ratio data were regressed against the CBI data. Visual
inspection indicated that the variables were non-linearly related, therefore, an exponen-
tial model was chosen.

5. Results and discussion

5.1. Quantitative results

Figure 3(a) summarises the average reflectance of the field sites, as measured in the 8
December 2015 WV-3 imagery, prior to the burn. The spectra are grouped based on the
severity of burn, as estimated in the field, after the fire. The graph indicates the field sites
were on average mostly similar, at least spectrally. However, the pixels that were
classified as having the highest burn severity (i.e. CBI values of 2.5–3.0) had noticeably
higher average SWIR reflectance prior to the burn, possibly indicating drier conditions in
those areas (Van Leeeuwen 2009).
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Figure 3. Average reflectance from WV-3 imagery for different classes of CBI. The numbers refer to
the WV-3 band numbers (see Table 1). (a) Spectral reflectance from WV-3 imagery of 8 December
2016 (pre-fire). (b) Spectral reflectance from WV-3 imagery of 13 April 2016 (post-fire). (c) Change in
spectral reflectance, from 8 December 2015 (pre-fire) to 13 April 2016 (positive values indicate
reflectance increase).
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Figure 3(b) shows the post-fire WV-3 reflectance spectra for the sample plots, also
grouped by CBI value. Figure 3(c) shows the difference in reflectance between before
and after the fire. Ideally, Figure 3(c) should show no change at all for the CBI class of 0.0,
but in the SWIR bands in particular a reflectance change of approximately 0.04 is apparent.
This could indicate real phenological changes in the 4 months between the two acquisi-
tions as well noise, for example, due to uncertainties in the conversion to reflectance.

The results shown in Figure 3 are broadly consistent with the field spectra of Figure 1. In
particular, the effect of fire is small and inconsistent in the visible, especially the red (band
5; 0.66 µm), where, with increasing CBI value, red reflectance first increases, most likely due
to scorching of needles, but then decreases, as charred vegetation dominates. In contrast,
in the NIR, particularly bands 7 (0.83 µm) and 8 (0.95 µm), there is a generally large and
consistent decline in reflectance as CBI increases. For the NIR band 9 (1.2 µm) the change
in reflectance is smaller than in the other NIR bands, and there is some inconsistency.
For example, CBI class 0.5–1.0 is associated with a lower average reflectance than pixels
with a CBI class of 1.0–1.5. The SWIR region also generally is associated with a large and
consistent increase in reflectance as the CBI class increases, with the change greater in the
longer 2.1–2.3 µm region (bands 13–16) than the shorter SWIR wavelengths of 1.6–1.7 µm
(bands 10–12), particularly for the higher CBI value classes (i.e. more intensely burnt areas).

In summary, Figure 3 suggests that for the study area, NDVI is unlikely to be a useful
measure of burn severity, particularly due to the relatively large and inconsistent change
in red wavelengths. Furthermore, the NIR bands, 7 and 8 are likely to provide a more
useful estimate of burn severity than 9. Of the SWIR bands (bands 10–16), the longer
wavelength bands 13–16 appear to be the most useful.

Examples of the exponential regression models are shown in Figure 4; the complete
results are listed in Table 2. Using CBI as the independent variable, and the differenced
individual band dNBR data as the dependent variable, the exponential regression
models resulted in coefficient of determination (R2) values that vary from a low of
0.696 (using bands 7 and 11 as the NIR and SWIR bands, respectively) to a high of
0.841 (using bands 7 and 14). Notably, differencing using NDVI, the only option available
in prior civilian high-resolution sensors, results in a much lower R2 values of 0.647 and
0.693. These low R2 values are consistent with the prediction of likely inconsistent NDVI
changes with varying burn severity, as indicated by Figure 3.

Integrating adjacent NIR and/or adjacent SWIR bands was generally beneficial, so that
overall the highest R2 value of 0.844 was obtained where the NIR bands was band 7 alone or
integrated with 8, and the SWIR bands was the average of bands 13–16. However, the
difference in R2 values between the single band and the broad band ratios is very small,
only a matter of 0.004. The combination of bands designed to be similar to the spectral
response of Landsat 8 OLI (band 7 for the NIR, and the average of bands 13–15 for the SWIR)
results in a regression model with an R2 very similar to the values for the data generated with
the other broad-band differenced ratios.

The CBI is a summary measure based on both overstory and understory components.
When the regression model is developed using the overstory component only, there is a
small, but consistent increase in the R2 values. The regression models built entirely on the CBI
understory component have much greater scatter (Figures 4 (e) and (f)), and consequently a
lower R2, typically around 0.5 (Table 2). These results are not surprising; the understory is
generally partially or totally obscured from the satellite view by the overstory. The overstory
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clearly dominates in the satellite signal. One potential way of addressing this issue in future
research would be to employ the GeoCBI of de Santis and Chuvieco (2009), which adjusts the
estimate of CBI by fraction of cover of each layer. Such an approachmight possibly result in an
improved correlation between field and image estimates of burn severity.

5.2. Visual analysis

Figure 5(a) shows an example dNDVI image, and Figure 5(b) an example dNBR image.
The dNDVI patterns are notably different from that of the nNBR image, and visually do

Figure 4. Scatterplots of CBI value versus example dNBR image ratios. Note that ‘d’ in the ratio is
used to imply the before and after fires are differenced. (a), (c), and (e): Single band ratio using
bands 7 and 14. (b), (d), and (f): Ratio using band 7 and integrated values from bands 12 to 14.
(RMSE stands for root mean square error.)
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not appear to correspond well to the field burn severity measurements (Figure 2(b)). In
particular, some of the largest dNDVI values, which are shown in red, have only small to
moderate CBI changes. There is also a distracting change in NDVI in the lake in the
southwest corner of the image (i.e. an area which was not burnt at all).

Figure 5. Differenced ratio images (pre-fire minus post-fire). (a) NDVI. (b) NBR using bands 7 and the
average of bands 13–15 (i.e. d(7 – (13:15))/(7 + (13:15))). (c) The same as (b), only with a smoothing
applied, to reduce noise. (d) The same as (b) only with 30 m pixels, to simulate the lower spatial
resolution of Landsat 8 data. Rectangle A indicates the areas shown in detail in Figures 6 (a) and (b)
and B indicates areas shown in Figures 6(c) and (d).
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The differenced image at the original resolution (Figure 5(b)) has small, isolated areas
of moderate values scattered throughout the unburnt area, which could be confused
with a low severity burn. The Gaussian low pass filter suppresses much of this noise,
whilst preserving the majority of the spatial patterns (Figure 5(c)). The fact that smooth-
ing is apparently necessary, even though the WV-3 SWIR data are provided at 7.5 m

Figure 6. Detail of dNBR images. (a) and (c) show the ratio images with 7.5 m pixels. (b) and (d)
illustrate the level of detail with 30 m pixels, equivalent to the spatial resolution of Landsat 8. (See
Figure 5 for location information.)
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resolution instead of the original 3.7 m IFOV, suggests that, at least for fire applications,
the degradation of resolution to conform with the US licensing requirements may not
matter greatly. Indeed, if at a future stage higher spatial resolution SWIR data is released,
it is likely that users will need to apply an even greater smoothing prior to calculating
the dNBR.

Other areas of moderate dNBR values that incorrectly indicate a low severity burn can
be found in the southeast corner of Figure 5(c), where small, generally geometric regions
of dominantly purple colour can be seen. Reference to Figure 2 indicates these areas are
associated with changes in the water status in cranberry bogs, most likely due to
drawing down of water levels in preparation for spring bud break.

Finally, we consider whether WV-3, with 7.5 m pixels, provides useful additional
spatial information for monitoring wildland or prescribed fires. This is explored in the
zoomed areas in Figure 5, shown in Figure 6. Figures 6(a) and (c) show the 7.5 m
smoothed data, and Figures 6(b) and (d) the same areas, except with 30 m pixels. The
7.5 m data clearly shows the patterns in both high severity burns as well as the lower
severity burn areas are much clearer. For example, in Figure 6(a), the fire spread patterns
in the centre of the triangular field can be discerned with the 7.5 m pixels, but not 30 m
pixels. Similarly, south of diagonal road, the 7.5 m data clearly shows two separate arms
of high severity burn areas, which then coalesce. In the 30 m data, only a single high
severity pixel is indicated. The 7.5 m data also shows notably more detail of burn
patterns in low severity areas, sometimes in linear patterns possibly relating to differ-
ences in moisture or species composition, for example along drainage lines. This level of
detail would be beneficial to studies focused on linking fine-scale environmental drivers
of fire behaviour to the resulting severity.

6. Conclusions

The results of this study broadly indicate the value of WV-3 high spatial resolution
(7.5 m) SWIR bands for monitoring burn severity. The high R2 value (up to 0.844) for
the regression of field-measured CBI values and the ratioed WV-3 data incorporating the
SWIR bands provides strong empirical support that the fine detail of patterns observed
in the imagery, such as in Figure 6, provides meaningful information about fine scale
variations in burn severity. The NDVI-based mapping of burn severity was not a suitable
alternative for this site.

The WV-3 SWIR data have an IFOV of 3.7 m, but were degraded to 7.5 m in terms of
the DigitalGlobe licensing agreement. At some future date, the higher resolution data
may be released. Our experience, in which a light smoothing using a Gaussian filter was
important for reducing noise in the differenced ratio product, suggests that resolution
finer than 7.5 m may open new challenges. At the very least, a more intense smoothing
than that used in our work may be needed.

The eight bands acquired as part of the WV-3 SWIR package include-band 9 in the
NIR, at 1.2 µm. It would, therefore, seem attractive to use this band as the NIR band in
calculating the burn ratio instead of bands 7 or 8, from the VNIR bands, which poten-
tially require a separate purchase. However, the best R2 obtained with band 9 was 0.795,
0.049 lower than the 0.844 maximum obtained using band 7, or 7 and 8 combined. Thus,
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at least for this study site, there appears to be a distinct benefit in obtaining all 16 bands
and not just the eight so-called SWIR bands.

Our recommendation is to use band 7 for the NIR band and 14 for the SWIR band, in
the calculating dNBR. These two bands had the highest overall coefficient of determina-
tion using single bands, with an R2 of 0.841. This was very close to the best R2 when
band 7, or 7 and 8 combined, were used as the NIR band and bands 13–16 combined as
the SWIR band. In addition, the simulated broad-band Landsat OLI ratio resulted in a
very similar R2. Together, these results suggest that for burn severity mapping, the
narrow bands of WV-3 produce potentially similar results to those of sensors with
broader bands, such as Landsat 8 OLI or similar sensors. Thus, from the perspective of
the user, it is probably simpler to use single bands, rather than to combine them.
However, an important caveat is that, in our study, the topography was essentially
flat. In rugged terrain, we recommend evaluating whether combining WV-3 bands 7
and 8 for the NIR band and 13–16 for the SWIR band improves the mapping of burn
severity on poorly illuminated slopes (Veraverbeke et al. 2010).

WV-3 is a commercial satellite, and therefore purchasing the data require consider-
able financial outlay, unlike Landsat. This will of course constrain the use of data.
Nevertheless, for fires of relatively small spatial extent, but of high value for ecological
research or restoration or even perhaps for monitoring fires that encroach on structures
in urban areas, the high resolution of the WV-3 data could be very valuable. High spatial
resolution burn severity could be useful for relating to subsequent regrowth in leaf area
index (Rachels et al. 2016), or for relating to other sensors, such as lidar (Skowronski et al.
2015), in order to study the linkages between fuel structure and loading to fire severity
in ways that are not possible at a coarser resolution. This level of detail potentially
provides important differentiation of fire spread patterns, and information that could be
used for studying fire recovery.

An added benefit of WV-3 data is that the satellite is pointable, with a revisit time of
potentially less than 1 day at 40° latitude, though this is reduced to 4.5 days if the off-
nadir viewing angle is limited to less than 20°. This acquisition flexibility is valuable
(Lippitt, Stow, and Riggan 2016), since in humid areas, such as the US East Coast, suitable
pre- and post-fire Landsat data may not always be available due to clouds.
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