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Abstract.   In terms of adult tree mortality, harvesting is the most prevalent disturbance in 
northeastern United States forests. Previous studies have demonstrated that stand structure and 
tree species composition are important predictors of harvest. We extend this work to investigate 
how social factors further influence harvest regimes. By coupling the Forest Inventory and 
Analysis database to U.S. Census and National Woodland Owner Survey (NWOS) data, we 
quantify social and biophysical variation in the frequency and intensity of harvesting throughout 
a 20-state region in the northeastern United States. Among social factors, ownership class is most 
predictive of harvest frequency and intensity. The annual probability of a harvest event within 
privately owned forest (3%/yr) is twice as high as within publicly owned forests (1.5%/yr). Among 
private owner classes, the annual harvest probability on corporate-owned forests (3.6%/yr) is 
25% higher than on private woodlands (2.9%/yr). Among public owner classes, the annual prob-
ability of harvest is highest on municipally owned forests (2.4%/ yr), followed by state-owned 
forests (1.6%/yr), and is lowest on federal forests (1%/yr). In contrast, corporate, state, and 
municipal forests all have similar distributions of harvest intensity; the median percentage of 
basal area removed during harvest events is approximately 40% in these three owner groups. 
Federal forests are similar to private woodlands with median harvest intensities of 23% and 20%, 
respectively. Social context variables, including local home prices, population density and the 
distance to a road, help explain the intensity, but not the frequency, of harvesting. Private wood-
lands constitute the majority of forest area; however, demographic data about their owners (e.g., 
their age, educational attainment, length of land tenure, retired status) show little relationship to 
aggregate harvest behavior. Instead, significant predictors for harvesting on private woodlands 
include live-tree basal area, forest type, and distance from roads. Just as with natural disturbance 
regimes, harvest regimes are predictable in terms of their frequency, intensity, and dispersion; and 
like their natural counterparts, these variables are determined by several important dimensions of 
environmental context. But in contrast to natural disturbance regimes, the important dimensions 
of context for harvesting include a combination of social and biophysical variables.

Key words:   coupled human and natural systems; disturbance ecology; Forest Inventory and Analysis 
Plots; land use; maximum-likelihood estimation; National Woodland Owner Survey; temperate forests; 
timber harvest regimes.

Introduction

The composition and structure of forest ecosystems in 
the United States is strongly affected by anthropogenic 
disturbances (Masek 2011). In the northeastern United 
States, harvesting is a larger cause of adult tree mortality 
than all other natural and anthropogenic causes com-
bined (Canham et al. 2013). Despite its ubiquity, regional-
scale ecological analyses often exclude harvests when 
quantifying regional patterns and consequences of tree 
mortality in eastern North America (Lines et  al. 2010, 
Dietze and Moorcroft 2011, Vanderwel et al. 2013). In 
doing so, such analyses discount the dominant distur-
bance agent that, like other important causes of mor-
tality, varies with respect to forest composition and 

biomass, and produces stands of varying age structure 
and species composition. The choice to exclude har-
vesting from regional disturbance analyses seems also to 
be motivated by an expectation that global change will 
alter rates and patterns of temperate tree mortality (Van 
Mantgem and Stephenson 2007). But this assumption 
fails to recognize the potential for global change to 
influence harvest regimes. We posit that just like “natural” 
disturbance regimes, harvest regimes are key drivers of 
meso-scale ecological dynamics and that an under-
standing variation in harvest regimes is critical for antic-
ipating future forest dynamics.

Canham et al. (2013) quantifies the widespread use of 
partial harvesting in the northeastern United States and 
its important role in structuring forest ecosystems. By 
interpreting the statistical properties of the harvest 
regime, i.e., the frequency and intensity of events, the 
work assimilated harvesting regimes and their biophysical 
correlates into the framework of ecological disturbance 
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theory (sensu Pickett and White 1985), which has typi-
cally been relegated to the study of natural disturbance 
regimes. But unlike natural disturbances, harvesting is a 
product of human decisions. Therefore, understanding 
regional variation in harvest regimes requires a full 
accounting of both biophysical and social influences on 
harvest activity. Here, we build on Canham et al. (2013) 
to more fully explain variation in regional harvest regimes 
and thereby help to fill a critical knowledge gap con-
cerning human-induced changes in terrestrial ecosystems 
(Erb et al. 2016).

Across the region, a complex ownership mosaic overlays 
an mosaic of forest composition, which together influence 
attributes of the harvest regime (Jin and Sader 2006, 
Healey et al. 2008). Different classes of ownership  (i.e., 
federal, state, municipal, corporate, private woodland, 
etc.) are constrained by different policies and normative 
standards and manage their forests to achieve different 
goals. For example, federally owned National Parks in the 
eastern United States prohibit timber harvesting and, as a 
result, have distinct forest structure and more biomass 
than surrounding forests (Miller 2016); similarly, public 
forestland across all federal agencies have higher stocks of 
aboveground biomass as compared to privately owned 
land (Zheng et al. 2010). Patterns of forest ownership vary 
at both coarse and fine scales in the United States (Butler 
et al. 2014). Eighty percent of forests in the northeastern 
United States are privately owned and 70% of private 
forests are owned by non-corporate, private, woodland 
owners (hereafter, private woodland owner sensu Silver 

et al. [2015], Fig. 1). To date, however, few studies have 
examined regional variation in the frequency and intensity 
of forest harvesting by detailed ownership classes (i.e., 
more resolved than public/private).

Across ownerships, other social factors related to the 
broader context of a forest or landowner may affect 
attributes of harvest regimes. For example, the average 
stumpage price (i.e., the per unit price paid for a species 
of tree) may affect the decision to harvest, though, in 
practice, typical fluctuations in stumpage, such as those 
seen over the past 30 yr in the northeast, are an unreliable 
predictor of aggregate harvest activity (Kittredge and 
Thompson 2016). At a broad scale, harvesting is more 
frequent in rural as opposed to suburban settings and, 
more generally, in regions with lower human population 
density (Wear et al. 1999, Munn et al. 2002, Kline et al. 
2004, McDonald et  al. 2006, Thompson et  al. 2011). 
More locally, the distance from a harvest site to a road 
affects the operational logistics and costs of logging, and 
therefore can affect the probability that a harvest will 
occur and the intensity of a harvest when it does (Kline 
et al. 2004). A better understanding of the relationship 
between these and other social factors will, in turn, lead 
to a better understanding of the harvest patterns and the 
regional ecological dynamics they produce.

At the scale of individual harvest events, the social 
factors that affect the probability of a harvest are complex 
and include a mixture of economic, amenity, and policy 
influences (Davis et al. 2000, Beach et al. 2005). A recent 
review of 129 studies describing private woodland owners’ 

Fig.  1.  (A) Distribution of U.S. Forest Service Inventory and Analysis plots color coded based on (B) owner group and 
(C) forest type. [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


944 Ecological Applications 
 Vol. 27, No. 3JONATHAN R. THOMPSON ET AL.

attitudes toward harvesting found that parcel size, harvest 
revenue, and the owner’s level of educational attainment 
are consistently and positively associated with owners’ 
intention to harvest; absentee ownership and the age of 
the owner are consistently but negatively associated with 
the intention to harvest; the owner’s income and whether 
or not the forest is part of a farm have been significantly 
correlated with harvest intentions in several studies, but 
the direction of the correlations has been mixed (Silver 
et al. 2015). This review also highlighted how few studies 
(<4%) measure actual harvest behavior as opposed to 
owners’ attitudes and intentions. This is an important dis-
tinction because attitudes and intentions often do not 
align with planned behavior (Young and Reichenbach 
1987). As such, an understanding of harvest regimes as 
ecological disturbances should be based on observed 
harvest activity, not intentions.

Our objective in this paper was to extend Canham et al. 
(2013) analysis of biophysical variation in regional harvest 
regimes by quantifying the role of the social attributes of a 
site and landscape in determining probability and intensity 
of harvesting. Using data from the U.S. Forest Service’s 
Forest Inventory and Analysis (FIA) and its National 
Woodland Owner Survey (NWOS), we quantified vari-
ation in harvest frequency and intensity through the north-
eastern United States relative to a suite of social and 
biophysical variables. We examined variables that had 
been previously associated with harvest activity (see cita-
tions above Canham et al. 2013, Silver et al. 2015, Kline 
et al. 2004, Wear et al. 1999, McDonald et al. 2006) and 
for which there existed spatially extensive data sets that 
could be merged with the FIA and NWOS. Specifically, we 
addressed the following three questions: (1) How does the 
frequency and intensity of timber harvest differ on forests 
managed by different classes of landowners, including 
federal, state, municipal, corporate, and private woodland 
owners? (2) How does the frequency and intensity of 
timber harvest vary in relationship to the social setting 
(e.g., population density, average household income) and 
the biophysical setting (e.g., forest type, basal area)? (3) Is 
harvest frequency and intensity on private woodlands 
associated with personal characteristics of the forest owner 
(e.g., income, education level, size of property)?

Methods

We used the FIA database to analyze the regional 
harvest regime in two distinct phases. To question our first 
two research questions, we used the full FIA database to 
analyze harvest activity on all ownership classes within a 
20-state region encompassing the northeast and several 
upper mid-western states (Fig.  1). To address the third 
question, we analyzed harvest activity on a subset of FIA 
plots across the same region that occur on private wood-
lands land and for which the NWOS data exist and describe 
landowner attitudes and demographics. Our analytical 
techniques differed between the two phases due to the dif-
ferences in the data structures; we describe both below.

To address questions 1 and 2, we analyzed all forested 
FIA plots that had been subject to at least two measure-
ments using the post-2000 national FIA protocol and 
were not in areas where logging is legally restricted 
(n = 39 684). Consistent with Canham et al. (2013), we fit 
statistical models using two dependent variables that 
describe fundamental components of the harvest regime: 
(1) the annual probability of a harvest event occurring on 
the site and (2) the intensity of harvest when it occurs, 
measured as the fraction of live-tree basal area removed. 
Plots were coded as harvested when any tree >12.7 cm 
diameter at breast height was recorded by FIA staff as 
“removed,” i.e., “cut and removed by direct human 
activity related to harvesting, silviculture, or land 
clearing” (Woudenberg et al. 2010) between the two most 
recent measurements. Note that harvesting in this context 
includes all types of removals, from firewood to com-
mercial clear-cuts.

We evaluated a series of regression models character-
izing the relationships between our two dependent vari-
ables and several potential independent variables based 
on parsimony and explanatory power. We selected a dis-
creet number of what we term “site-level” and “context-
level” independent variables that were not significantly 
intercorrelated (|r|  <  0.4; [Dormann 2013, ]), had been 
previously shown to influence harvest behavior, as 
reviewed in Introduction, and could be estimated at all 
FIA plot locations across the study region. We examined 
three site-level attributes: (1) Live-tree basal area (in m2) 
measured during the initial field survey. This was the 
most predictive variable in the Canham et  al. (2013) 
analysis. (2) Forest type group, which is a classification 
of forestland based on the tree species forming a plurality 
of live tree stocking (Table 1; Woudenberg et al. 2010). 
Note that we separated the spruce–fir forest type group 
into “lake states” and “other states” based the sub-
regional differences observed in Canham et al. (2013). (3) 
Ownership class using the FIA program’s refined private 
owner land codes, which are typically confidential but 
were made available for this study (five classes; Fig. 1; see 
Acknowledgments for FIA MOU information).

We examined three “context-level” independent vari-
ables: (1) Median household income was extracted at the 
plot location from the 2010 U.S. Census block group. 
Many studies have found an association between har-
vesting and landowner affluence or income (see Silver 
et al. [2015] for a review). Median income at the census 
block group (600–3000 people) offers the best seamless 
approximation of variation in income across the region. 
(2) Population density at the U.S. Census block group 
was extracted at the plot location to capture potential 
variation in harvest probability between urban, sub-
urban, and rural landscapes, which has been identified as 
an important predictor of harvest activity in other studies 
(Wear et al. 1999, Munn et al. 2002, Kline et al. 2004, 
McDonald et  al. 2006, Thompson et  al. 2011). (3) 
Distance from the nearest road calculated as the minimum 
Euclidian distance from a public access road, which has 
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also been previously linked to harvest probability and 
harvest intensity (Kline et  al. 2004). We included all 
public access roads, i.e., TIGER road levels S1200, 
S1400, and S1500.

We used a model comparison protocol that tested a 
hierarchy of models of increasing complexity using an 
information theoretic approach and the Akaike infor-
mation criterion (AIC; sensu Burnham and Anderson 
2002). We first fit a null model (i.e., a “means model”); we 
then compared it to models that included only site-level 
attributes: live BA (in m2), forest type (five classes; Fig. 1), 
and ownership class (five classes); then we individually 
examined each of the three variables that describe the 
context of the site by adding to the best site-level model 
to see if any improved the fit to the data. If the context 
variables improved the model, we then fit a full model 
with all the explanatory variables that individually 
improved the site-level model.

We estimated the annual probability of harvest within 
each of the owner and forest type classes by fitting logistic 
regression models with the binomial probability estimated 
by likelihood methods as described below (i.e., what prob-
ability would generate the observed number of successes 
[harvests], given the number of trials [plots], where the 
model predicted annual probability of being logged, 
raised to the time interval between re-measurements). 
Following Canham et al. (2013), we used an exponential 
model to describe the probability of being harvested: 

where Xi is adult tree basal area (m2/ha) at the beginning 
of the census interval in the ith plot, Ni was the census 
interval (in years) for that plot, and a, m, and b were esti-
mated parameters. As a result of raising the function to 
the power Ni, the parameters specify the effective annual 

probability of harvest as a function of plot basal area. 
Alternate models specified the a, m, and b parameters as 
functions of combinations of the site and context inde-
pendent variables. The likelihood function for the fre-
quency models was 

We summarized harvest intensity by owner and forest 
type by calculating the percentage of live BA removed 
from a plot within each class. When comparing models of 
the harvest intensity, we used the negative exponential 
form in Canham et  al. (2013): BAR

i
=a exp (−mX

b

i
), 

where BAR is the basal area removed (in percent), Xi is 
adult tree basal area (m2/ha) at the beginning of the 
census interval in the ith plot, and a, m, and b were esti-
mated parameters. The likelihood function for the 
intensity models was gamma distributed. Again, alternate 
models specified the a, m, and b parameters as functions 
of combinations of the site and context independent var-
iables. We visually examined histograms of harvest 
intensity by ownership classes and saw no meaningful 
evidence of differences in the slopes of the relationship 
between BA and harvest intensity. There were, however, 
obvious differences in the intercepts of that relationship 
so we focused our model comparison on models including 
a separate intercept term.

We solved for the maximum-likelihood values of the 
parameters in both sets of models using 20 000 iterations 
of simulated annealing, a global optimization routine, in 
the likelihood library (Murphy 2015) for the R statistical 
software package (R Development Core Team 2011). We 
evaluated the goodness-of-fit of the models using the R2 

(1)Prob(logging
i
)=1− [ae

−mX
b

i ]Ni

(2)

Loglikelihood=

∑

i

log (1−Prob(logging
i
)) if plot i was not logged

log (Prob(logging
i
)) if plot i was logged

Table 1.  Description of the forest groups used in this analysis.

Forest group Description

Aspen–birch Forests in which aspen, paper birch, or gray birch, singly or in combination, make up a plurality of 
the stocking; common associates include red maple, white pine, red oaks, and white ash.

Northern hardwood Forests in which sugar maple, beech, yellow birch, black cherry, or red maple, singly or in 
combination, make up a plurality of the stocking; common associates include white ash, eastern 
hemlock, basswood, aspens, and red oak. Also called maple–beech–birch.

Northern pines–hemlock Forests in which eastern white pine, red pine, or eastern hemlock, singly or in combination, make 
up the plurality of the stocking; common associates include red maple, oak, sugar maple, and 
aspen. Also called white–red pine.

Oak–hickory–pine Forests in which hickory or upland oaks make up a plurality of the stocking and in which pines or 
eastern redcedar contribute 25–50% of the stocking. Also called oak–pine. Also forests in which 
upland oaks, hickory, yellow-poplar, black locust, sweetgum, or red maple, singly or in combination, 
make up a plurality of the stocking and in which pines or eastern redcedar make up <25% of the 
stocking; common associates include white ash, sugar maple, and hemlock. Also called oak–hickory.

Spruce–fir, other states Forests outside of the lake states in which red, white, black, or Norway spruces, balsam fir, 
northern white-cedar, tamarack, or planted larch, singly or in combination, make up a plurality 
of the stocking; common associates include white pine, red maple, yellow birch, and aspens.

Spruce–fir, Lake States As above, except within the states of Michigan, Wisconsin, or Minnesota, USA.
Bottomland forests Bottomland forests in which tupelo, blackgum, sweetgum, oaks, or southern cypress, singly or in 

combination, make up a plurality of the stocking and in which pines make up <25% of the 
stocking; common associates include cottonwood, willow, ash, elm, hackberry, and maple. Also 
called oak–gum–cypress.

Note: Descriptions adapted from Northern Forest Inventory and Analysis Methodology; http://www.fs.fed.us/ne/fia/methodology/ 
def_ah.htm

http://www.fs.fed.us/ne/fia/methodology/def_ah.htm
http://www.fs.fed.us/ne/fia/methodology/def_ah.htm
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statistic for the intensity models and a pseudo-R2 the fre-
quency models. The pseudo-R2 was calculated by fitting 
a line through the predicted proportion of plots as com-
pared to the observed proportion of plots across 50 
evenly spaced bins spanning from zero to the maximum 
predicted probability (sensu Canham and Murphy 2016). 
We compared the strength of evidence for alternate 
models based on the AIC and the Akaike weights (wi), 
which are the weight of evidence in favor of model i being 
the best model, given the suite of models examined.

To address our third research question, we analyzed 
FIA harvest patterns in conjunction with data from the 
NWOS, which is the Forest Service’s social science com-
plement to their biophysical Forest Inventory and 
Analysis (Butler et al. 2015). NWOS instruments are sent 
to approximately one-third of private landowners who 
host one or more FIA plots on their property (though the 
landowners do not know the precise locations of plot(s)). 
The NWOS uses a self-administered mail questionnaire 
to solicit information on landowners’ attitudes, behaviors, 
and demographics. Between 2011 and 2013, 5601 private 
woodland owners from across the study region partici-
pated in the NWOS. The overall cooperation rate across 
the region was 56% (Butler et  al. 2015). We coupled 
NWOS surveys to the remeasured FIA field plots to link 
the characteristics of private woodlands to the proba-
bility and intensity of harvesting. Landowners frequently 
do not answer every question within the survey, so that 
the number of responses varies widely among questions. 
We summarized the percent of harvested plots associated 
with all the received responses to each of the NWOS 
questions. Due to the abundant and irregular pattern of 
missing data and the potential for false inferences asso-
ciated with making multiple comparisons from the data 
set, we opted to present the data without estimating the 
statistical significance of any differences.

We then used regression tree analysis (RTA) to examine 
(1) the probability of a harvest event occurring between 
measurements and (2) the intensity of harvest when it 
occurred in relationship to the NWOS-derived and other 
variables listed above. Unlike the regression model fitting 
and comparison techniques used to answer the first two 
questions, RTA is robust to missing values. It is a non-
parametric technique that recursively partitions a data 
set into subsets that are increasingly homogeneous with 

regard to the response (De’ath and Fabricius 2000). RTA 
results in a dendrogram that shows the hierarchical rela-
tionships among predictors and between predictors and 
the response. We used an implementation of RTA called 
conditional inference trees, which requires a significant 
difference (P < 0.1, as determined from a Monte Carlo 
randomization test) in order to partition the data, which 
minimizes bias and prevents over-fitting and the need for 
pruning (Hothorn et al. 2006).

Results

The average remeasurement period for the FIA plots 
was 4.8 yr (SD = 0.5). During this time, 12% of the plots 
were subject to some level of harvest. Across the 20-state 
study region, the annual probability of harvest was 2.6%/ yr 
(Table  2). Northern hardwoods had the highest annual 
probability of harvest (3.9%/yr), followed by northern 
pines–hemlock (3.5%/yr). The annual probability of 
harvest on corporate owned land (3.6%/yr) was 25% higher 
than private woodlands (2.9%/yr). Privately owned lands 
were harvested more frequently than public, with cor-
porate lands (3.6%/yr) harvested more than three and half 
times more frequently than federal lands (1%/yr). Harvest 
probability on municipally owned lands was an exception, 
in that the frequency of harvest was more similar to pri-
vately owned lands than to the other public land classes.

Based on the AIC weights, the best model describing 
the annualized probability of harvesting included all of 
the site-level variables (basal area, owner class, and forest 
type) but none of the context variables (Table 3). Model 
coefficients and two-unit support intervals for the fitted 
parameters are given in the Supporting Information 
(Appendix S1: Table S1). This model suggests that, in 
most forest types, corporate private woodland owners 
have a similar probability of harvesting and the proba-
bility increases with the amount of basal area on the site 
(Fig.  2; Appendix S1: Table S1). In the three most 
abundant forest types (i.e., northern pines–hemlock, 
northern hardwood, and oak–hickory–pine), state and 
federally owned forests have similar and markedly lower 
probability of harvesting than do privately or munici-
pally owned forests, across the range of basal area.

In terms of disturbance intensity, the median percent of 
live basal area removed within harvest events was 40% on 

Table 2.  Annual probability of harvest by forest type and owner group.

Forest type
Private woodland 

owners Corporate State Federal Municipal All

Aspen–birch 0.029 0.028 0.018 0.008 0.023 0.022
Northern hardwood 0.042 0.051 0.019 0.015 0.041 0.039
Northern pines–hemlock 0.045 0.053 0.026 0.021 0.036 0.035
Oak–hickory–pine 0.028 0.029 0.014 0.010 0.025 0.024
Spruce–fir, Lake States 0.016 0.010 0.007 0.002 0.009 0.008
Spruce–fir, other states 0.037 0.029 NA NA NA 0.031
Bottomland forests 0.014 0.019 0.006 0.006 0.004 0.013
All 0.029 0.036 0.016 0.010 0.024 0.026

Note: NA indicates insufficient sample (<100 plots).
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state-owned land, 40% on corporate owned land, 39% on 
municipal land, 23% on federal land, and 20% on private 
woodlands (Fig. 3). Aspen–birch was the only forest type 
for which high intensity harvests (i.e., >80% of the basal 
area removed) outnumber low-intensity harvests (i.e., 
<20% of the basal area removed), however, this pattern 
only holds when observing all owners in aggregate. The 
majority of aspen–birch harvests on private woodlands 
are low intensity. This pattern was consistent across all 
forest types, i.e., the majority of private woodland har-
vests were in the low-intensity class and the distribution 
follows a “reverse J” shaped curve. While corporate, state, 
and municipal forests tend to be harvested more intensely, 
they are still overwhelmingly partial harvests.

Based on the AIC weights, the best model describing 
the intensity of harvest included all the site variables and 
all the context variables (Table 4). This model includes a 
separate intercept term for each combination of owner by 
forest type. Corporate, state, and municipally owned 
aspen–birch forests have the highest modeled harvest 
intensity (Fig.  4; Appendix S1: Table S2, Table S3). 
Private woodland and federally owned forests had among 
the lowest modeled harvest intensity. Modeled harvest 
intensity decreased with increasing live basal area, with 
increasing household median income, and (less so) with 
increasing population density; harvest intensity increased 
as the distance to the nearest road increased (Fig. 4).

The NWOS data coupled to harvest data revealed few 
individual owner demographic characteristics associated 
with harvest frequency (Fig. 5). Aggregate data describing 
the age of landowners, their level of educational 
attainment, whether they are retired, their ownership 
size, or how long they owned their land all lack an 
apparent association with the frequency of harvesting. 
The owner’s income is one potential exception, as the 
probability of harvest generally declined as the owner’s 
income increased.

The RTA of harvest frequency identified five signif-
icant partitions using three different predictor variables, 
none of which came from the NWOS survey (Fig. 6). The 
first partition was based on whether plots had more or 

less than 16.9 m2/ha of live basal area. The group with 
more live biomass had higher probability of harvest and 
was further portioned based on forest type and again on 
distance from road. Sites with the highest probability of 
harvest came from the spruce–fir, northern hardwood, 
aspen–birch or northern pines–hemlock and were within 
131 m of a road. Overall, sites with the lowest probability 
of harvest were those with <4.8 m2/ha of live basal area.

The RTA of harvest intensity using the 478 NWOS 
respondents for which a harvest had occurred during the 
previous remeasurement period identified four significant 
partitions, one of which, area of woodland owned, came 
from the NWOS (Fig. 7). The first partition was based on 
whether plots had more or less than 7.8  m2/ha of live 
basal area. Overall, sites with the most intense harvests 
had >7.8 m2/ha of live basal area, were in the aspen–birch 
group, and were >275  m from the nearest road. On 
average, harvests at these sites removed 90% of the basal 
area. Non-aspen–birch sites with >7.8  m2/ha of basal 
area were further partitioned based on whether the land-
owner owned >2900 ha of forests, with the large land-
owners harvesting much more intensely; however, this 
group was represented by only seven FIA plots.

Discussion

An earlier analysis of the regional inventory data 
showed that forest type and basal area were important 
predictors of harvest frequency and intensity, and here, 
analyzing the same data, we show that social variables, 
particularly ownership class, are at least as important for 
characterizing regional harvest regimes. Indeed, the prob-
ability of harvest within a forest type can vary by as much 
as 700% depending on the owner class. Since harvest is, by 
far, the largest cause of tree mortality in the region, this 
refined understanding of the factors affecting the harvest 
regimes is critical for understanding regional variation in 
forest structure, composition, and carbon dynamics.

A significant ecological question emerges from this 
analysis: How do modern harvest regimes, with their mix 
of social and biophysical drivers, influence and interact 

Table 3.  Models evaluated for frequency of harvest.

Model and variables included No. parameters Pseudo-R2 AIC wi Rank

Null
None, means model 1 0.206 28 708.11 0.0 8

Site-level models
Basal area 2 0.625 27 562.21 0 7
Basal area, forest type 16 0.846 27 142.62 0.0 6
Basal area, owner 10 0.853 26 937.36 0.0 5
Basal area, owner, forest type 70 0.91 26 686.19 1.0 1

Best site-level model + context variables
Basal area, owner, forest type, HHMI 105 0.956 26 735.65 0.0 2
Basal area, owner, forest type, population 105 0.959 26 737.65 0.0 3
Basal area, owner, forest type, distance 105 0.943 26 739.22 0.0 4

Notes: Boldface type highlights the best model based on the Akaike information criterion (AIC). Note that the pseudo-R2 is 
based on a comparison of the predicted vs. observed proportion of plots harvested across 50 evenly spaced bins spanning zero to the 
maximum predicted probability of harvest. (Basal area refers to live basal area [m2/ha] at the time of the first measurement.) HHMI, 
household median income; wi, Akaike weight.
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with natural disturbances and processes? Natural distur-
bances are uncommon in northeastern forests, as com-
pared to other regions in North America (Vanderwel 
et al. 2013). Therefore, the most important factor driving 
change in northeastern forests is probably the protracted 
recovery from colonial-era land use, when much of the 
region was deforested or heavily cut over. Relative to the 
pre-colonial period, modern forests are comparatively 

even aged, lacking in dead wood, and in dominance of 
late-successional tree species (D’Amato and Orwig 2008, 
Keeton et al. 2011, Runkle 2013, Thompson et al. 2013, 
McGarvey et al. 2015). Given this, there are a few ways 
in which the modern harvest regime could accelerate a 
trajectory toward that pre-colonial forest structure, 
which is often cited as a coarse filter conservation goal. 
Indeed, since at least the mid-1990s, many scientists and 

Fig. 2.  Estimated annual probability that a plot is subject to harvest as a function of the live basal area at the time of the first 
plot measurement for seven forest types and five owner groups. Note that no line is plotted where insufficient data were available 
(n < 100). [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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foresters have argued that harvests should more closely 
resemble natural disturbances at stand to regional scales 
(Hunter 1993, Seymour et  al. 2002, Thompson et  al. 
2006). The modern harvest regime is similar to natural 

disturbance regimes insomuch as it results in a spatially 
and temporally variable pattern of partial stand 
replacement, and the low-intensity partial harvests create 
gaps that promote vertical heterogeneity and a more 

Fig. 3.  Distribution of harvesting intensity (i.e., percentage of basal area removed) by forest type and land owner class. Gray 
bars show the percentage of basal removed across all owner classes. [Color figure can be viewed at wileyonlinelibrary.com]

Table 4.  Models evaluated for intensity of harvest.

Models and variables included No. parameters R2 AIC wi Rank

Null
None, means model 2 0 42 497.51 0.0 10

Site-level models
Basal area 3 0.016 42 440.11 0.0 9
Owner type 6 0.083 42 148.09 0.0 7
Forest type 8 0.102 42 210.79 0.0 8
Owner, forest types 36 0.171 41 920.3 0.0 6

Best site-level model + context variables
Distance to road, owner, and forest types 37 0.170 41 903.81 0.0 5
HHMI, owner, and forest types 37 0.167 41 903.45 0.0 4
Population density, owner, and forest types 37 0.172 41 888.02 0.0 2
Basal area, owner, and forest types 37 0.176 41 896.55 0.0 3

Full model (all context variables)
Basal area, population density, HHMI, distance to road, 

owner, and forest types
40 0.181 41 841.99 1.0 1

Notes: Boldface type highlights the best model based on AIC. Basal area refers to live basal area (m2/ha) at the time of the first 
measurement. HHMI, household median income; wi, Akaike weight.

http://wileyonlinelibrary.com
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complex age structure. On corporate-owned aspen and 
spruce forests, where the harvest regimes are more 
intense, the natural disturbance regimes (fire and 
budworm) are also more intense (Fig.  3), which may 
lessen the difference between harvesting and natural dis-
turbance. Comparing our analysis to Vanderwel et  al. 
(2013), who quantified mortality rates due to natural dis-
turbances, suggests that the rates of partial harvest exceed 
rates of tree mortality caused by wind and ice by a factor 
of 2–10 depending on ownership and forest type.

In many other ways, however, the modern harvest 
regime is diverting the forests’ trajectories away from the 
historical condition, particularly through the removal of 
large trees and dead wood, which were abundant in pre-
colonial forests. Compositionally, harvesting is somewhat 
neutral in its effects on restoring the historical species mix 
due to its focus on a suite of merchantable species that 
happen to be characteristic of early to mid-succession 
forests (with the important exception of sugar maple; 
Canham et al. 2013). Species that are underrepresented in 
the region relative to pre-colonial forests, such as shade-
tolerant hemlocks and beech, are not preferentially 

harvested (Canham et  al. 2013). Ongoing research is 
quantifying how social attributes influence the compo-
sition (species and size) of what is removed and what is 
left on site and, in turn, how this affects continued forest 
recovery dynamics.

Unlike the biophysical factors, social factors affecting 
harvest regimes lack analogs in natural disturbances. The 
owner mosaic, the road networks, and human demo-
graphical variability do not vary spatially along ecologically 
meaningful contours. This may be problematic for forest 
managers or policy-makers hoping to mitigate potential 
ecological impacts of harvesting by emulating natural dis-
turbances. Alternatively, there may be ways to use the 
socially driven variability in harvesting to achieve regional-
scale ecological objectives. For example, forest practice pol-
icies may need to look across ownerships and rely on public 
lands to provide areas with lower levels of disturbance and 
older forest while looking to private lands to provide early 
seral habitat conditions, as has been done in the Pacific 
Northwest (e.g., Thompson et al. 2009). Of course, this may 
be impossible where there is little owner-class diversity 
within a forest type, as is the case for the oak–hickory–pine 

Fig. 4.  Estimated intensity of harvesting on plots as a function of social and biophysical predictors based on the full model 
detailed in Table  3. Note that separate intercept terms were fit for each combination of owner and forest type but, to ease 
interpretation, a weighted mean intercept for each owner and forest type is shown. Please see Appendix S1: Table S2 for the full list 
of 35 intercept terms. [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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type, which is overwhelmingly controlled by the private 
woodland owner classes (Fig. 1). Beyond owner class, our 
analysis suggests that knowledge about the social context 
for harvesting would have to guide the intensity of harvests 
as opposed to their frequency. Indeed, all the context vari-
ables we examined—household median income, distance to 
nearest road, population density—were included in the best 
model of harvest intensity, while none were in the best 
model of harvest frequency.

Of the social factors considered, ownership class was 
the most predictive for both the frequency and the 

intensity of harvest regimes. But ownerships are 
ephemeral; so the future of the harvest regime may be 
strongly influenced by changes in ownership and the 
resulting changes in harvest behavior. Institutional forest 
ownership in the region has changed significantly in 
recent decades. For example, between 1980 and 2005 
approximately 10 million hectares in Maine were divested 
by vertically structured timber or wood products com-
panies selling to Timber Investment Management 
Organizations (TIMOs) and Real Estate Investment 
Trusts (REITs; Daigle et  al. 2012). Whereas industrial 

Fig. 5.  Estimated annual probability of plots included within the National Woodland Owner Survey (NWOS) being subject to 
harvest. All plots are on privately owned woodland. All variables included above were used as potential predictors within the 
conditional inference tree analyses shown in Figs 6, 7. Variables with a dagger (†) are taken from the NWOS.
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owners were motivated by the consistent production of 
fiber for nearby mills, harvest by investment organiza-
tions is influenced by global-scale markets and investor 
rate of return on short (10–15 yr) time horizons (Zhang 
et  al. 2015). As such, there is great concern that the 
transfer of industrial forests to TIMOs and REITs could 
lead to abrupt changes in harvest regimes that could 
transform the structure and dynamics of the region’s 
forests (Jin and Sader 2006, Daigle et al. 2012).

Private woodlands dominate the ownership mosaic so it 
is significant to learn the extent to which they differ in 
harvest practices from other owner-classes. Private 
woodland owners harvest somewhat less frequently than 
do corporate owners; the primary difference between these 
two owner-classes relates to the intensity of harvests when 
they occur. Private woodlands are harvested less intensely 
than other owner-classes in the same forest type. Indeed, 
in every forest type, the majority of private woodland 
owner harvests remove <20% of the live basal area. Beyond 

these higher-level comparisons between private woodland 
owners and other owner-classes, we found little predictive 
information either from the FIA, census, or NWOS data 
to explain harvest behavior within the private woodland 
owner-class. Such unpredictable harvest behavior is con-
sistent with Kittredge (2004), who presented a decision 
cycle for private woodland owners (i.e., family forests 
owners in his parlance), whereby the owner is satisfied with 
the amenity benefits the land provides (e.g., privacy, 
beauty, recreation) until an exogenous event potentially 
unrelated to the land itself (e.g., medical expenses, college 
tuition, etc.) occurs that stimulates an interest in financial 
income. Faced with an unexpected expense, harvesting 
may generate the required income. This type of decision 
cycle would be undetectable by the type of demographic 
data collected by NWOS and speaks to the larger variation 
within the private woodland owner category. In light of 
these results, it seems that aggregate private woodland 
owner harvest behavior may be a source of significant 

Fig. 6.  Conditional inference tree showing the annual probability of National Woodland Owner Survey field plots being subject 
to harvest after partitioning the data using the predictors shown in Fig.  5. P values at each node are from a Monte Carlo 
randomization test. In order for a split to occur, the P value must be <0.05. Note that units given in the terminal nodes have been 
converted to annual probabilities for ease of interpretation and consistency, but the actual analyses were done based on the 
percentage of plots harvested within the remeasurement period. Abbreviations are NP-H, northern pines–hemlock; A-B, aspen–
birch; SF-LS, spruce–fir, lake states; SF-OS, spruce–fir, other states; NH, northern hardwood; O-H-P, oak–hickory–pine; BLF, 
bottomland forests.



HARVEST REGIMESApril 2017 953

uncertainty in future development of stand structure. The 
inherent variation in the relatively large private woodland 
owner class, and their reactive harvest behavior due to 
external stimuli or unplanned financial need, confounds 
the ability to predict future conditions in a consistent way, 
relative to other owner classes. This finding has value, as 
one might otherwise conclude that private woodland 
owners behave uniformly according to their professed atti-
tudes (e.g., consistent and prevalent ownership attitudes 
favoring privacy, aesthetics, and nature would suggest 
negligible harvest), or follow other predictable rationales 
(e.g., private woodland owners of lower affluence will 
harvest more due to higher financial need).

Conclusion

In the northeastern United States, forest harvesting is a 
dominant ecological disturbance, yet is often excluded 
from regional analyses of forest change. Based on recent 
forest inventory data, we estimate that 2.6% of the region’s 
forests are subjected to some level of harvest each year, 

but the frequency of harvesting varies widely based on 
biophysical and social factors. Forest ownership type 
explains much of the variation; private forests are har-
vested twice as frequently as public forests. Harvests 
throughout the region are overwhelmingly partial distur-
bances, and many remove just a small fraction of the 
available biomass. Unlike harvest frequency, though, 
there is no clear divide between public and private forests 
in terms of harvest intensity. In fact, harvesting on private 
corporate-owned land is, on average, most intense while 
harvesting on private woodlands (i.e., family forests) is 
least intense. Public-land harvest intensities all fall in 
between. More than one-half of the region’s forests are 
private woodlands. As such, a better understanding of the 
social attributes related to harvest behavior on these lands 
is necessary for developing a predictive understanding 
regional-scale forest dynamics. Unfortunately, the 
detailed demographic information regarding private 
woodland owners we examined offered little insight into 
aggregate harvest frequency or intensity. Nonetheless, 
our analysis shows how coupling social and biophysical 

Fig. 7.  Conditional inference tree showing the intensity of harvesting on National Woodland Owner Survey field plots after 
partitioning the data using the predictors shown in Fig. 5. P values at each node are from a Monte Carlo randomization test. In 
order for a split to occur, the P value must be <0.05. Plots at terminal nodes show the intensity of harvest as percent basal area 
removed. Boxplots are constructed such that the dark line is the median, the box is the inner quartile range, whiskers are 90th 
percentile, and the dots are outliers.
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variables can be used characterize variation in harvest 
regimes within the context and rubric of ecological distur-
bance theory and, thus, increase our understanding of 
regional-scale socioecological dynamics.
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