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Accurate estimation of forest biomass and carbon stocks at regional to national scales is a key requirement in deter-
mining terrestrial carbon sources and sinks on United States (US) forest lands. To that end, comprehensive assess-
ment and testing of alternative volume and biomass models were conducted for individual tree models employed
in the component ratio method (CRM) currently used in the US’ National Greenhouse Gas Inventory. The CRM applies
species-specific stem volume equations along with specific gravity conversions and component expansion factors to
ensure consistency between predicted stem volumes and weights, and additivity of predicted live tree component
weights to match aboveground biomass (AGB). Data from over 76 600 stem volumes and 6600 AGB observations
were compiled from individual studies conducted in the past 115 years - what we refer to as legacy data - to per-
form the assessment. Scenarios formulated to incrementally replace constituent equations in the CRM with models
fitted to legacy data were tested using cross-validation methods, and estimates of AGB were scaled using forest
inventory data to compare across 33 states in the eastern US. Modifications all indicated that the CRM in its present
formulation underestimates AGB in eastern forests, with the range of underestimation ranging from 6.2 to 17 per
cent. Cross-validation results indicated the greatest reductions in estimation bias and root-mean squared error could
be achieved by scenarios that replaced stem volume, sapling AGB, and component ratio equations in the CRM. A
change in the definitions used in apportioning biomass to aboveground components was also shown to increase
prediction accuracy. Adopting modifications tested here would increase AGB estimates for the eastern US by 15
per cent, accounting for 1.5Pg of C currently unaccounted for in live tree aboveground forest C stock assess-
ments. Expansion of the legacy data set currently underway should be useful for further testing, such as whether

similar gains in accuracy can be achieved in estimates of regional or national-scale C sequestration rates.

Introduction

Accurate estimates of forest biomass and carbon (C) stocks at
regional to national scales are needed in policymaking and
research related to the role of forest ecosystems in the global C
cycle and related efforts to mitigate greenhouse-gas emissions
through increasing forest C sinks. For example, reporting of forest C
stocks is an administrative requirement for participants in the
United Nations Framework Convention on Climate Change (IPCC,
2006; Tomppo, 2009). In countries where national forest inventor-
ies (NFI) are maintained, year-to-year differences in forest biomass
and C stocks are used to estimate C flux and sequestration rates
on forest lands (Dunger et al,, 2012; Fang et al., 2014; U.S. EPA,

2014). To meet this requirement with maximum accuracy, ongoing
efforts focus on testing and improving procedures used in estimat-
ing forest C stocks and their year-to-year differences for estimating
C fluxes (Smith et al., 2013; Westfall et al., 2013; Woodall, 2012).
Forests in the eastern US currently store an estimated 8.5 Pg
(1Pg (petagram) is equivalent to 10*° g or 1 billion (10°) metric
tons) of C in the aboveground components of live growing stock
(Miles, 2016), roughly 20 per cent of all C stored in living and
dead plants and soil organic matter in forests of the contermin-
ous United States (US). Data collected and maintained by the
Forest Inventory and Analysis (FIA) program of the US Forest
Service provide the basis for C stock estimates across a range of
spatial scales (Domke et al., 2014). Forest vegetation surveys
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conducted by FIA personnel provide the statistical means for
unbiasedly estimating many parameters of forest resource attri-
butes (McRoberts et al., 2010). In addition, allometric models of
individual-tree volume and biomass contents are applied to field
measurements, especially in the estimation of the aboveground
components of live trees. Consequently considerable accuracy is
required in the individual-tree volume and biomass models used
in national-scale forest biomass and C stock estimation proce-
dures (Domke et al., 2012; Duncanson et al., 2015).

Because many NFIs were designed with the estimation of
growing stock volumes as a primary goal, estimates of biomass
and C stocks are often obtained using secondary conversion and
expansion functions known as biomass conversion and expansion
factors (BCEF), or the somewhat simpler biomass expansion fac-
tors (BEF) (Soares and Tomé, 2012). The term BEF is used differ-
ently in some contexts; however, a widely-adopted convention
defines BEF as a unitless number representing the ratio of the bio-
mass contained in the merchantable stems of trees to the same
trees’ aboveground biomass (AGB) (IPCC, 2006; Skovsgaard and
Nord-Larsen, 2012). BEFs may be defined on either per-tree or
per-unit-area bases and these bases are sometimes used inter-
changeably or left unspecified. BCEF is equivalent to BEF times
wood density defined on a dry weight to green volume basis;
therefore, BCEF can be used to determine AGB directly from stem
wood volumes - typically merchantable volumes (IPCC, 2006).

BEFs are a type of component ratio (CR) - quantities that
express the biomass contents in one component of a tree, e.g.
stem, crown or foliage, in proportion to the tree’s total biomass or
AGB (Jenkins et al., 2003). CRs, along with wood density or specific
gravity (SG; dry weight per unit of green volume, expressed in rela-
tion to density of water at 4°C) values, are used in the component
ratio method (CRM) to calculate AGB from stem volumes of indi-
vidual trees using measurements, e.g. stem diameter, collected in
the US NFI (Heath et al., 2009; Woodall et al., 2011). The com-
bined use of wood density information and stem wood CRs pro-
vides a means to ensure consistency between estimates of wood
volume and AGB in NFIs (Domke et al., 2012).

Despite the extensive body of knowledge that contributes to
the workings of the CRM, comprehensive evaluation of the
method’s performance to date has been limited by a paucity of
data suitable for such a task (Domke et al., 2012; MaclLean
et al, 2014; Westfall, 2012; Zhou and Hemstrom, 2009). To
address this need, two objectives were pursued here. The first
involved assessing accuracy of CRM predictions using a large
collection of tree biomass data and related measurements
compiled from legacy sources. The second objective was aimed
at testing alternative models to reduce uncertainties in CRM-
based predictions and examining the alternative models’ effects
on AGB estimates for eastern US forests. By design the CRM
method provides consistent estimates of stem wood volume,
tree biomass components, and AGB obtained by summing the
AGB components; accordingly, alternative models for each of
the constituent equations or their fitted coefficients were exam-
ined for their ability to improve AGB prediction accuracy.

Materials and methods

The geographic scope of the study was limited to 33 states in the US that
lie completely east of 100° west longitude, excepting Texas and

Oklahoma, which were included in the study despite ranging west of the
100" meridian. These states are grouped into the following four FIA
regions where different gross cubic volume models and coefficients are
assigned for AGB determination: Central States; Lake States; Northeastern
States; and Southern States (Figure 1).

A large collection of ‘legacy’ tree measurements was compiled for
this work from past studies conducted over the past 115 years where
various aboveground attributes were observed on standing or felled
trees, including volumetric, weight, and basic wood properties measure-
ments (Radtke et al., 2016). Some harmonization of legacy measure-
ments from different studies was necessary, mainly where stump
heights and top-diameter measurement limits differed among studies.
Details of the data and methods used to harmonize their measure-
ments are arranged into three general categories: (1) data used to
determine stem volumes; (2) weight measurements from tree compo-
nents and AGB; and (3) wood or bark properties used to convert volu-
metric measurements to stem weights.

Stem volume data

The largest and most extensive collection of data compiled for this work
included stem profile or taper measurements - paired height and diam-
eter measurements from base to the tip of individual tree stems - com-
piled from 63 published and unpublished studies (Supplementary data,
Table A1). Taper measurements from legacy trees allowed for the deter-
mination of individual tree stem volumes based on a specified stump
height and diameter at the top of the usable portion of the stem. The
CRM standard ‘merchantable’ stem volume specification refers to inside-
bark (ib) volume from a 0.305m (1 ft) stump to a 10.2 cm (4 in) outside-
bark (ob) top diameter. This standard is widely used for forest inventories
and assessments aimed at wood fibre production in the US and was
thus adopted by Jenkins et al. (2003) in their development of national
scale stem biomass equations. The same trees were used in assessing
an alternative merchantability standard adopted here that includes the
whole stem, i.e. the ib volume from groundline to the tip of the main
stem. In order to be useful in this work, any trees included in the volume
data collection were required to include measurements of both diam-
eter at breast height (dbh; 1.37 m) and total tree height.

The most useful taper measurements for our purposes included both
ib and ob diameter measurements at multiple heights up the stem;
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Figure 1 Areas where FIA regional volume equations are adopted for
use in the CRM.
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however, some legacy data - especially those measured on standing
trees using optical dendrometers - only included ob diameters. For data
from two such studies (Martin, 1980; Westfall and Scott, 2010) ib dia-
meters were predicted from the ob taper measurements given the avail-
ability of suitable bark-thickness models for a number of northeastern
US tree species (Hilt et al.,, 1983; Li and Weiskittel, 2011; Wingerd and
Wiant, 1982). In total, 76 610 trees from 80 species or species groups
were available for volume and taper determination, with an average of
14 taper measurements per tree from stump to merchantable top
(Supplementary data, Table A2; see also, Table A2 for all species names
used in this work).

Aboveground biomass data

Data were also compiled from past studies where aboveground compo-
nent biomass had been observed (Supplementary data, Table A3).
Because of the importance of AGB in the CRM framework, the most useful
observations came from trees that had been felled and weighed or other-
wise measured to obtain estimates of AGB, including stem wood and
bark, branches and foliage. Weights of dead branches were excluded
where they were separately recorded. Unless otherwise noted, recorded
aboveground dry weights were assumed to have included no dead
branches. Trees with any recorded hollow or decayed stem sections were
omitted. Despite missing one or more aboveground component measure-
ments, trees from a number of studies were usable for evaluating a sub-
set of CRM-related biomass attributes, e.g. stem wood, stem bark,
branches or foliage. Depending on how components were defined for any
particular study, it was sometimes possible to obtain only a subset of the
CRs defined in the CRM. For example, if an author defined the crown as a
component, making no distinction between branches - i.e. branch wood
and bark - and foliage, the measured AGB and stem wood and bark com-
ponents were still used in model testing and revision. A total of 6617
trees from 31 species or genera were included in the AGB and component
model test data set (Supplementary data, Table A4).

Wood and bark properties

Measurements of wood and bark properties were compiled from subsets of
records in the stem volume and biomass data sets described above. Stem
bark:wood volume ratios were calculated from ib and ob stem volumes as
defined by Miles and Smith (2009). Profile data from 71907 trees on 76
species groups having ib and ob stem taper measurements were used for
this purpose (Supplementary data, Table A5). Bark and wood basic SG were
calculated from legacy tree records having both dry weight and green vol-
ume measurements of wood and bark. These were generally available only
on the subset of legacy records on 33 species groups that had cross-
sectional disks cut, measured for volume, and dried before weighing (see
supplementary data, Table A6). The numbers of observations available for
wood and bark SG determination - 10672 and 7228, respectively - were
greater than AGB sample sizes because they included data from a number
of studies focused on stem weights but not AGB.

Component ratio method

Baseline predictions of AGB were generated using the CRM method
adopted in the US forest inventory, which is briefly described here and
diagramed in Figure 2, with the steps described here each referring to
steps numbered in the diagram (Figure 2). In step 1 merchantable stem
wood volumes (Vimerch, M) were predicted for those trees having dbh >
12.7cm (5in) using species-specific regional volume equations (Hahn,
1984; Hahn and Hansen, 1991; Oswalt and Conner, 2011; Scott, 1981).
Merchantable stem bark volumes were subsequently predicted (step 2)
using species-specific tree-level average bark volumes, expressed as ratios

dbh212.7 cm dbh <12.7 cm
ATTRIBUTES
COMPONENTS Volume Biomass Biomass
3
Stem wood ®| spp, dbh, H, ... }——>| spp I—— na
2 5
a4 |
Stem bark spp spp na
Foliage na spp group na
7 (©
Aboveground na spp group spp, dbh, H

Figure 2 Overview of component ratio method (CRM) applied to individ-
ual trees in the US national forest inventory for volume and biomass
estimation. Unshaded boxes list variables used to estimate volume and
biomass attributes by component. Circled numerals 1, 6, and 8 indicate
attributes predicted from regression equations. Noncircled numerals and
arrows indicate the sequence and dependencies of calculations:
(1) regional volume equations; (2) bark:wood volume ratio; (3 and 4)
wood and bark specific gravity coefficients; (5) add wood + bark bio-
mass; (6) division by stem:aboveground component ratio (CRyg + CRyx);
(7) multiplication by foliage:aboveground component ratio (CRz); (8)
species or species-group specific biomass equations. Note that only the
aboveground component biomass attribute is estimated for saplings, i.e.
trees with dbh < 12.7 cm.

of stem bark : wood volumes (Miles and Smith, 2009). Species-level
averages for wood and bark SG from Miles and Smith (2009) were applied
in steps 3 and 4 to convert predicted merchantable stem wood and bark
volumes to dry weights. Stem wood and bark dry weights were summed
in step 5. Next, the CR regression model [1] from Jenkins et al. (2003) was
used to predict the fraction of each tree’s AGB allocated to stem wood
(CRwg) and bark (CR,x) components. The summed merchantable stem
wood and bark dry weights were divided by the sum (CR,4 + CRy) in step
6 to arrive at CRM predictions of AGB (Woodall et al., 2011). Other bio-
mass components were predicted by multiplying AGB by the correspond-
ing CR; for example, foliage biomass was calculated by multiplying AGB x
CRr (step 7). Finally, AGB for sapling-sized trees (dbh < 12.7 cm) was pre-
dicted directly from a generalized allometric model multiplied by a
species-specific sapling adjustment factor (SAP.q) to ensure a smooth
transition at the 12.7cm dbh merchantability threshold (step 8; Heath
et al., 2009; Jenkins et al., 2003).

In(CR) = B, + ﬁl(%) (€Y

where, CR = component:aboveground dry-weight ratio; D = dbh, cm; fo
and p; are the model coefficients.

Two adjustments to calculated AGB were made in accord with the
CRM, one that subtracts the foliage component biomass from AGB and
another that adjusts stump biomass to ensure consistency with the pre-
dicted volume and dry weight contents of the merchantable stem wood
and bark.

Alternative model formulations

Seven alternative scenarios were formulated for evaluating the effects
that adopting alternative constituent models in the CRM would have on
FIA state and regional estimates of live tree AGB in the eastern US. The
existing CRM was denoted as the baseline scenario, or scenario 0. In
scenarios 1-7 the definitions of CR,4 and CRpx were modified to reflect
ratios of total stem wood and bark to AGB rather than the merchantable
stem wood and bark ratios defined in the baseline scenario. This
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modification was based on the work of DeYoung (2014), who noted a
somewhat extreme nonlinear pattern in stem CRs for trees close in size
to the 12.7 cm dbh threshold that FIA uses to distinguish between sap-
lings and trees. The foliage component definition was left unchanged;
however, the branch component ratio (CRy,) was redefined in scenarios
1-7 to exclude any part of the main stem, i.e. topwood or stump, thus
ensuring that stem, branch, and foliage CRs sum to one. In the
approach proposed by Jenkins et al. (2003) CRs were assured to sum to
one by fitting Eq. (1) separately to CRyq, CRuk, and the foliage component
ratio (CRyy), then calculating CRy, by subtraction from one, i.e. CR,, =1 -
(CRwd + CRpx + CRfm).

The comparatively flexible nonlinear Chapman-Richards functional
form [2] was proposed as a potential improvement over Eq. (1) for pre-
dicting biomass CRs.

CR = a(1—etDyc )

where, e = the base of the natural logarithm; a, b and ¢ are the model
coefficients.

To ensure that aboveground components summed to one Eq. (2)
was first fitted separately to data from all four aboveground CRs, then
adjusted by dividing each fitted equation by the sum of all four compo-
nents. For example, the adjusted foliage component (CRgy;) was calcu-
lated as  CRpis =CRroi/ (CRwd + CRuk + CRor + CRe). Newly  fitted
component-ratio regression models based on the modified CR defini-
tions and the Eq. (2) were implemented in scenario 1. To maintain a
smooth transition for trees near the sapling size dbh = 12.7 cm thresh-
old, SAP.y was recalculated for each species as the national average
ratio of the CRM-calculated AGB divided by AGB predicted from the
Jenkins et al. (2003) biomass equation for all 5-in trees, as described by
Heath et al. (2009). Other than the new CR model and sapling adjust-
ment factors, scenario 1 was equivalent to the baseline CRM (Table 1).

Scenario 2 differed from Scenario 1 in that the newly fitted
component-ratio regression model [2] used a predictor consisting of the
product of dbh-squared (D?) and total height (H, m) instead of using dbh
alone (Table 1). As in scenario 1 and all subsequent scenarios, new sets
of sapling adjustment factors were calculated to maintain a smooth
transition between saplings and larger sized trees.

Scenario 3 included a further modification, the replacement of the
allometric AGB models from Jenkins et al. (2003) with species and
species-group-specific segmented regression models as in Eq. (3) follow-
ing Clark et al. (1985) fitted to legacy tree AGB observations.

214\b-
AGB:{G(D H)P; D <D &

a(DHP=<(D)°H?; D > Dy

where, D = dbh, cm; H = total height, m; D, = segment joint point 12.7 cm;
a, b and c are the model coefficients (Coefficient symbols g, b, ¢, etc., not
intended to signify equivalence in differently numbered equations).

Two possible improvements were sought in this modification. First,
including both dbh and height in the AGB model was seen as a way to
improve prediction accuracy compared with using dbh as the only pre-
dictor. Second, residual plots of log(AGB) vs either log(dbh) or log
(dbh? x H) regression models (not shown here) showed some systematic
over- or underprediction of AGB across the range of tree sizes, with
biases being most evident in small trees. Model fits were assessed using
the pseudo R? fit index described by Parresol (1999) and a relative root-
mean squared error (RMSE) based on per cent errors calculated from
observed (obs) and predicted (pred) AGB as in Eg. (3) (Supplementary file
Eq 3 AGB Coeffs Sl.csv).

{(obs — pred)/obs}?

4
n-p @

RMSE_Percent_Error = \/

where, n = number of trees fitted to regression model; and p = number
of regression parameters.

While models relying on both dbh and height as predictors were fitted
for this purpose, a supplementary model for sapling-sized trees was also
fitted that relied only on dbh (Supplementary file Eq_3_Sapling AGB D_
Coeffs_SLcsv). This was needed to make predictions for roughly 50 per
cent of saplings in the FIA database that have no recorded total heights.

Scenario 4 included a further modification, replacing the regional
Vmerch Prediction equations with an alternative regression model fitted
to volume data from legacy tree measurements. A segmented Vimerch
regression Eg. (5) following Clark et al. (1985) was adopted with dbh
joint points D; = 22.9cm (9in) for softwoods and D, = 27.9cm (11in)
for hardwoods. No distinction was made for trees observed in different
regions, meaning only one model was fitted for a given species or spe-
cies group regardless of the geographic distribution of the species and
the data representing it in the legacy database.

a(D’Hyb; D<D
Vimerch =

5
a(DHP=¢(DIHL; D > D) ©

Table 1 Scenarios tested for implementing alternative CRM model formulations in FIA statewide aboveground biomass (AGB) estimates. A sequence
of modifications was adopted in steps, including how the stem component was defined, what CR model and predictor were used, the choice of AGB
and merchantable volume (Vrmerch) €quations, sources of wood and bark specific gravity (SG) averages, and the source and choice of model used to

estimate stem bark:wood volume

ID Description Stem component CR AGB model  Vinerch Wood, Bark SG Bark:wood vol.
0  Baseline CRM Merchantable stem  dbh®  Jenkins FIA regional  Miles and Smith Miles and Smith
1 New CR (dbh) Whole stem dbh " ! ! !
2 New CR (D?H) " D?H " " " "
3 New CR (DZH); AGB " " Eq. (3) " " "
4 New CR (D?H); AGB; Virerch " " " Eq. (5) " "
5 New CR (D?H); AGB; Vinerch; Wood/bark " " " ! Observed data means  Obs. data means
SG means
6  New CR (D?H); AGB; Vinerch; wood/bark " " ! ! ! Eq. (7)
SG means; new bark:wood model
7 AGB only na na Eq. (3) na na na

1Baseline scenario used CR regression models from Jenkins et al. (2003). All others used Eq. (2) (Chapman Richards).
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where, D = dbh, cm; H = total height, m; D, = segment joint point,
22.9 cm for softwoods, 27.9 cm for hardwoods; a, b and ¢ are the model
coefficients.

In scenario 4 and all other scenarios 1-6, Vmerch predictions from
either the regional FIA volume equations or the newly developed models
based on Eqg. (5) were subsequently adjusted using species-specific
regional taper equations to expand Vyecn to the corresponding total
stem volume (V,;) before converting volumes to dry weights and AGB
(Clark et al., 1991; Li et al., 2012; Westfall and Scott, 2010). This adjust-
ment was needed to match the redefinitions of stem components that
affected CRyq, CRpx and CRp,.

Vol(0, H1D,H)

(6
Vol(0.305, Hio21 D, H)

Viot = Vmerch X

where, Vit = predicted total stem ib volume; Vmerch = predicted merchant-
able stem ib volume; Vol(hy, holdbh, H) = stem ib volume between heights
hy and h, (hy < hy, m), calculated from the integral form of a suitable taper
model; Hqg> is the height (m) of the stem to a 10.2-cm ob diameter.

We assumed that SG and bark:wood volume values presented by Miles
and Smith (2009) were suitable for either merchantable or total stem con-
tents. As such, converting ib volumes from either Vperch Of Vior to stem
wood and bark biomass could be accomplished using the same SG and
bark:wood volume coefficients regardless of how the stem CR was defined.

Scenario 5 replaced published values of wood and bark SG and the
average bark:wood volume percentages from Miles and Smith (2009)
with values observed from legacy data. A further refinement adopted in
scenario 6 was the replacement of species averages for stem bark:wood
volume percentages with values predicted from species-specific regres-
sion equations based on the Weibull cumulative distribution function fit-
ted to legacy data (Table 1).

stem bark : wood volume (%) =100% x ( 1 —e*”Db) @)

For emphasis we restate here that the reformulation of CRs to represent
whole stem biomass contents in scenarios 1-6 did not eliminate the initial
step of predicting tree Vipecn either with FIA regional volume
equations (scenarios 1-3) or from Eq. (5) fitted to legacy tree volumes (scen-
arios 4-6; Table 1). It did, however, require the use of suitable taper functions
for calculating stem ib volumes from Vol(h,, h,ldbh, H) in Eq. (6). Because we
considered the development of a comprehensive set of taper models for
eastern US tree species to be outside the scope of this work, and because a
number of regional taper models were already available for use here, we
relied on published taper equations to perform taper-based volume adjust-
ments in Eq. (6) (Clark et al., 1991; Li et al., 2012; Westfall and Scott, 2010).

In scenario 7 AGB was predicted using only species-specific allometric
Eq. (3) fitted to legacy biomass tree data. No stem wood or volume predic-
tions, conversions from volume to biomass using SG, or expansion of stem
biomass to AGB using CRs were employed. Because of its relative simplicity
and direct modelling of AGB, scenario 7 was expected to achieve the high-
est accuracy of any scenarios tested. As such it would serve as a bench-
mark for evaluating the accuracy of the other scenarios that included
steps needed to ensure consistency between volume and AGB estimates.

Model evaluation

Legacy tree and component observations were used to evaluate the
accuracy of tree-level predictions of volumes, wood and bark properties,
CRs and AGB. With this suite of variables, up to nine intermediate pre-
dicted attributes used in the CRM could be compared with observed
values for any particular tree; however, most trees in the legacy data-
base had only a subset of the variables of interest observed on them.
The primary variable of interest here was AGB; however, CRM predictions
for intermediate attributes were compared with observed data to

identify possible ways to increase their accuracy while maintaining opti-
mal accuracy of AGB.

Given the large number of volume and biomass models employed in the
CRM, it seemed likely that some models were originally developed using
data being treated here as legacy observations. No effort was made to avoid
reusing any legacy observations that had previously been involved in devel-
opment of regional volume equations or other models that are part of the
baseline CRM (Jenkins et al., 2003; Miles and Smith, 2009). In newly devel-
oped alternative models, however, legacy data formed the basis for evaluat-
ing prediction accuracy. Both bootstrap and tenfold cross-validation
procedures were employed, selecting some legacy observations for model
fitting and others for model testing (Efron, 1983; Kuhn and Johnson, 2013,
pp. 72-73). This ensured some degree of independence between data used
for developing new models and those used for model validation. In addition
to graphical diagnostics, e.g. inspection of bootstrap prediction errors, two
accuracy statistics - mean bias and RMSE - were calculated from bootstrap
prediction errors. Accuracy statistics were tabulated and examined at vari-
ous levels of aggregation including species, region, tree size and overall to
gauge whether improvements at one level may have reduced accuracies in
some of the subgroups formed at finer levels of aggregation.

Since each scenario relied on different sets of calculations to obtain
CRM-based and allometric-model-based AGB predictions, a different set
of SAP.q factors was calculated for application in each scenario
(Supplementary data, Table A7).

Results

Stem wood and bark volume

The accuracy of Vierch €quations used in the CRM varied consid-
erably by FIA region when compared with legacy tree volume
measurements across all species (Table 2). Southern States FIA

Table 2 Merchantable volume prediction errors = 100%(predicted -
observed)/observed for legacy tree observations compared with
predictions from regional volume equations and newly developed Eq. (5)

Region Model N Prediction error (%)
Mean Std. dev.
Central States FIA 1735 -19.2 20.9
Clark R9 6.7 13.3
Burk and Ek 2.1 14.2
[5]* -7.3 12.1
Lake States FIA 7444 -15.0 10.6
Clark R9 8.8 12.4
Hahn (1984) -12.8 19.6
Stone -12.7 10.4
Burk and Ek 1.2 16.8
[5]* 1.6 16.6
Northeastern FIA 9910 -6.0 14.5
States Clark R9 2.4 12.0
Burk and Ek -2.7 14.2
[5]* -2.8 13.9
Southern States FIA 59 151 -0.7 17.7
Clark et al. =23 13.3
[5]* 0.9 18.2

Prediction errors for Eq. (5) calculated from bootstrap out-of-bag
observations.
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A paper birch
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Figure 3 (A, B) Stem bark:wood volume ratios from paper birch and red maple showed nearly constant relationships across a range of tree sizes. (C,
D) Decreasing trends were evident for several thick-barked species including white oak and longleaf pine. Dashed lines represent species-specific
average bark ratios from published values (Miles and Smith, 2009) and the means of the legacy data shown.

volume equations resulted in smaller prediction biases than
other regional FIA equations, especially those used in Central
States and Lake States regions, which underpredicted by 15 per
cent or more on average. The Northeastern region FIA volume
equation was intermediate in prediction bias compared with the
other regions’ equations. Comparison to alternative models
showed the possibility of improving accuracy in predicting mer-
chantable volumes in all FIA regions, with the possible exception
of the Southern States. No single model tested here proved to
be most accurate in every region.

The profile-based model of Clark et al. (1991), including a
variant used by the US Forest Service (2011) for species in its
Eastern Region (R9, Table 2) showed relatively high precision as
measured by prediction error standard deviation. However, con-
siderable biases in the R9 variant for Central and Lake States
regions indicated some need for additional testing or develop-
ment before implementing it widely across those regions. The

approximation of Gevorziantz and Olsen’s (1955) volume and
taper tables implemented by Burk and Ek (1999) was most
accurate of any existing merchantable ib volume models for
Central and Lake States regions. In contrast, the models of
Hahn (1984) and Stone (cf. Hahn, 1973; Hahn, 1984) were
among the most heavily-biased of any models tested.

The Vperch model of Eq. (5) fitted to legacy tree taper data
(Supplementary file Eq_5_ Merch_Vol_Coefs_SI.csv) represented
improvements over Central, Northeastern, and Lake States
regional FIA volume models; however, it did not consistently
result in smallest prediction biases nor variance when compared
with other models evaluated (Table 2). Detailed analysis of
model prediction accuracy among regions for various species
and species groups showed a range of results (Supplementary
file Error_Vol Species.csv). Among them, we noted potentially
useful relationships between model prediction variance and
sample sizes that could help to inform future efforts to balance

37


http://FORESJ.oxfordjournals.org/lookup/suppl/doi:10.1093/forestry/cpw047/-/DC1
http://FORESJ.oxfordjournals.org/lookup/suppl/doi:10.1093/forestry/cpw047/-/DC1
http://FORESJ.oxfordjournals.org/lookup/suppl/doi:10.1093/forestry/cpw047/-/DC1

Forestry

costs with accuracy requirements in volume prediction applica-
tions (Duncanson et al., 2015).

Observed bark:wood volume ratios showed varying relation-
ships with stem dbh. Some species with thin, smooth bark, e.g.
American beech, paper birch and quaking aspen (cf. Borger,
1973), showed nearly constant bark ratios across a range of tree
sizes (Figure 3A). Thin, scale-barked species like balsam fir, red
maple, and red, white and black spruces exhibited weak correla-
tions and slightly decreasing bark volume ratios with tree size
(Figure 3B). Thick, scale- and furrowed-bark species including
many pines and hardwoods showed more-pronounced decreases
in bark volume ratios with increasing stem dbh, despite there
being considerable variability in the data (Figure 3C,D).

Observed bark:wood volume means were nearly all larger
than published values, with largest discrepancies in several
southern yellow pine and gum species (Nyssa sylvatica, N.

biflora, Liquidambar styraciflua). The same species were gener-
ally the ones with the highest observed mean bark volume
ratios (Table 3). Reduction in RMSE using species-specific non-
linear regression models showed the potential for predicting
bark volume ratios more accurately using dbh as a predictor, as
compared with simply using species means (Table 3). Southern
yellow pines, oaks and hickory showed the greatest gains when
modelling bark volume ratios from dbh, but sweetgum and
white spruce also showed reductions in RMSE of up to 10 per
cent compared with using species means (Table 3).

Specific gravity

Observed species averages for whole-stem wood SG were
strongly correlated (p = 0.945) with published values from Miles

Table 3 Stem bark-to-wood volumes and root mean-squared errors (RMSE) of observed (Obs.) vs predicted values for 35 species, calculated by
bootstrap cross-validation. Species shown comprise 80% of aboveground estimated live-tree biomass in the Eastern US

Species Mean bark:wood volume (%) RMSE (%)
N Obs. Miles and Smith Obs. mean Miles and Smith Weibull

Balsam fir 788 12.6 12 35 3.6 35
White spruce 919 111 13 3.1 3.9 3.0
Black spruce 901 12.8 13 3.2 2.9 3.1
Jack pine 1591 11.6 14 4.2 4.3 4.1
Sand pine 468 13.5 15 53 5.8 53
Shortleaf pine 4559 27.1 16 11.3 15.8 9.6
Slash pine 6273 37.0 18 13.2 235 11.5
Longleaf pine 4290 27.1 14 9.5 16.7 8.6
Red pine 1456 13.1 16 4.5 5.3 4.5
Pitch pine 451 303 13.4 9.2 19.9 8.2
Pond pine 1000 35.9 13.4 12.7 27.2 11.3
Eastern white pine 1798 16.9 16 6.6 6.1 6.6
Loblolly pine 12 209 27.0 16.6 10.1 14.4 8.9
Virginia pine 1805 16.7 13.4 8.5 9.4 8.2
Pondcypress 436 27.1 20 10.7 13.4 10.3
Red maple 1928 15.7 8.6 5.9 9.7 5.8
Sugar maple 574 15.7 15.6 6.2 5.0 6.1
Yellow birch 508 13.1 9.8 4.2 4.7 4.2
Paper birch 588 13.7 12.6 4.5 3.8 4.6
Hickory spp. 1809 26.7 16 8.3 14.6 7.8
American beech 597 10.1 6 L4 5.7 4.5
Sweetgum 2569 24.5 15 9.7 13.9 8.7
Yellow-poplar 2522 25.2 18 7.7 9.7 7.4
Blackgum 514 28.7 14 7.9 16.7 7.8
Swamp tupelo 983 26.2 14 8.2 15.1 8.1
Quaking aspen 439 15.6 14.4 6.2 5.9 6.2
White oak 2933 22.3 16 7.4 9.8 7.1
Scarlet oak 1182 223 22 7.3 6.8 6.4
Southern red oak 900 25.8 22 7.3 7.4 6.8
Laurel oak 502 17.7 16 6.2 6.4 6.0
Water oak 795 17.1 16 53 5.1 5.1
Chestnut oak 1549 30.1 23 9.4 13.4 8.6
Northern red oak 1277 20.2 20 59 5.8 55
Post oak 651 25.7 22 7.8 7.7 7.1
Black oak 1184 27.2 18.5 8.1 11.4 7.3
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and Smith (2009). For 33 species having at least n = 50 trees in
the legacy data set, observed wood SG means by species aver-
aged just 2 per cent greater than published values. The largest
difference was noted in quaking aspen with an observed mean-
tree wood SGyps = 0.44 (n = 88) compared with the published
value SGpp = 0.35. Other notable differences were observed for
southern red oak (SGops = 0.59; SGpuy = 0.52; n = 81), elm
(SGops = 0.595; SGpu»y = 0.54; n = 55), chestnut oak
(SGops = 0.62; SGpy, = 0.57; n = 100) and water tupelo
(SGops = 0.41; SGpyp = 0.46; n = 150).

Compared with wood SG, bark SG values observed here were
less strongly correlated (p = 0.846) with values reported by
Miles and Smith (2009). For 27 species having at least n = 50
trees in the data set, observed bark SG was lower than pub-
lished values by about 14 per cent (Table 4). Only shortleaf pine
had an observed mean bark SG larger than the species’ pub-
lished value. Observed variation in bark SG among trees of a
given species was generally low, with coefficients of variation
(CV) between 5 and 20 per cent in all but two species studied,
longleaf and loblolly pines (Table 4). Scatterplots (not shown)
generally showed no relationship between bark SG and tree
dbh; however, weak correlations - either positive or negative -
were noted in some hardwoods including sweetgum, yellow
poplar, and several oak species.

Component ratios

In baseline analyses stem CR,,4 and CRpc both showed steep
drops toward zero as tree dbh values decreased toward the
CRM-specified merchantable top diameter (Figure 4A,B). This
pattern matched the CRM merchantability limits; namely, any
tree having a stump diameter equal to the CRM-specified top
diameter would, by definition, contain no stem wood or bark
biomass (Heath et al., 2009). A contrasting pattern - owing to
the additivity of merchantable stem and branch components -
was observed in CRyy, which increased sharply toward 1.0 where
dbh approached the merchantable top diameter limit
(Figure 4C). Similar trends were noted in both hardwoods and
conifers, with only data from conifers shown in Figure 4.

Considerable changes in CR trends with dbh were noted after
reformulating them so stem wood and bark components were
based on total rather than merchantable stem biomass
(Figure 4D-F). The decreasing pattern of the CR,4 with dbh
became less steep, with minimum values of wood biomass gen-
erally not falling below 20 per cent of AGB, even in trees as
small as 3 cm dbh (Figure 4D). Total stem bark comprised a lar-
ger share of AGB in small-diameter softwoods than in larger
trees, a trend opposite of that observed in merchantable stem
bark (Figure 4B,E). Branch biomass component relationships to
dbh also changed markedly following the whole stem compo-
nent reformulation. In contrast to the existing CRM branch CRs,
which approached 100 per cent of AGB in small trees, branch
biomass under the new formulation did not exceed 50 per cent
of AGB in any of the eastern conifers observed here (Figure 4F).
Reformulated CRy, often appeared flat over a wide range of tree
sizes in conifers (Figure 4F); however, gradual increases in
branch biomass ratios with dbh were noted in relatively large
trees of some species - both hardwoods and conifers (some
plots not shown).

Table 4 Bark specific gravity summary statistics from species having
n > 50 trees in the legacy data set

Common name n Miles and Observed Observed
Smith mean CV (%)
Sand pine 138 0.45 0.42 9
Shortleaf pine 361 0.35 0.36 17
Slash pine 831 0.35 0.35 14
Spruce pine 75 0.45 0.37 12
Longleaf pine 625 0.45 0.38 25
Pond pine 100 0.33 0.28 11
Eastern white 76 0.47 0.35 17
pine
Loblolly pine 1808 0.33 0.32 33
Virginia pine 110 0.54 0.38 10
Pondcypress 63 0.5 0.35 15
Red maple 193 0.6 0.52 10
Hickory spp. 160 0.62 0.53 10
Flowering 56 0.58 0.37 8
dogwood
Ash spp. 271 0.46 0.41 8
Sweetgum 732 0.42 0.37 19
Yellow-poplar 228 0.38 0.38 11
Water tupelo 150 0.58 0.36 7
Swamp tupelo 142 0.51 0.41 18
Poplar spp. 112 0.46 0.32 11
White oak 282 0.56 0.53 14
Scarlet oak 99 0.71 0.63 6
Southern 81 0.68 0.65 8
red oak
Water oak 202 0.62 0.59 15
Chestnut oak 100 0.54 0.52 8
Northern 95 0.68 0.63 5
red oak
Black oak 83 0.6 0.57 8
Elm spp. 55 0.43 0.35 16

Examination of biomass CRs vs the combined variable
dbh? x total height (D?H) indicated some potential for improv-
ing predictions using both dbh and height as predictors, as
compared with dbh alone (Figure 5). Replacing dbh with D?H in
Eq. (2) reduced RMSEs by 6 per cent on average over 32 species
having observations from n > 50 trees (Table 5). The gains in
models of stem CR,4 were comparatively modest at under 2
per cent reduction of RMSE. The accuracy of fitted CRyx and
CRpr models were improved only slightly by adding height as a
predictor. Their RMSE reductions averaged < 1 per cent across
all species; nonetheless, some species’ RMSE were reduced as
much as 8 and 14 per cent for bark and branch CRs, respect-
ively (Table 5).

Aboveground biomass

Examination of legacy tree data indicated some potential for
improving the accuracy of AGB models over those developed by
Jenkins et al. (2003) and Chojnacky et al. (2014). The most
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notable discrepancies between observed and predicted AGB
were in pines (Figure 6A). Smaller differences were noted
between observed data and published model predictions in
hardwood species groups (Figure 6B,C). The fir and hemlock
model, which agreed well with observed data showed little need
for improvement (Figure 6D). Allometric models of AGB fitted
here all predicted higher biomass than the models of Jenkins
et al. (2003) currently used in the CRM.

AGB estimation scenarios

All seven alternatives tested as potential modifications to the
CRM produced AGB estimates higher than the baseline (scenario
0) estimate of 17.1 Pg. The magnitudes of increases over scen-
ario 0 ranged from 6.6 to 20.1 per cent, corresponding to
between 1.1 and 3.4Pg of additional live-tree biomass
(Figure 7). Cross-validation prediction errors from n = 6480 trees
indicated that RMSE could be reduced from the baseline value
of 39.5 per cent by any of the scenarios tested. Scenario 7 net-
ted the greatest reduction in RMSE by replacing the CRM
approach with predictions from species-specific AGB allometric

Eq. (3) (Figure 7). Scenarios 1-6, all of which functioned within
the existing CRM framework were able to improve prediction
accuracy, with the greatest overall improvement achieved by
adopting scenario 5, which resulted in RMSE for AGB predictions
of 28.8 per cent.

The baseline scenario exhibited an average bias of 12.2 per
cent, meaning CRM predictions underestimated legacy tree AGB
by this amount (Figure 7). Alternative scenarios also exhibited
some underprediction bias, but none as large as scenario O.
Several scenarios resulted in underprediction biases smaller
than 5 per cent, including scenario 5, which, at 2.5 per cent,
exhibited the smallest bias of any scenario tested (Figure 7).

Despite its having the smallest per cent bias and second-
smallest per cent RMSE of any scenarios tested, scenario 5 was
not particularly accurate in predicting biomass for sapling-sized
trees (Table 6). Biomass predictions for saplings were generally
less accurate as measured by RMSE compared with merchant-
able sized trees (Table 6). Detailed breakdowns of cross-
validation accuracy statistics by species and size classes (not
shown) indicated that a relatively small number of species con-
tributed to the high variance and bias noted for saplings.
Included in this group were species: red spruce (Picea rubens

40



Improved accuracy of aboveground biomass and carbon estimates

A bigtooth aspen
0.8 - 5 o
° G ©F 0o
E o b
o 07 - O%O (@] 0]
2 o %) &°® o o
= 9 o&® 0O © 0o g
<] (CIN®) o O
go6-
= (@]
£
]
®» 05-
O ' L 1 L}
10 20 30 40
DBH (cm)
C white spruce
@]
0.5 -
g, %8
5 04 - ® 0]
o O
< 03- ® @ g
o @ O O ®
fo2- %o KPLTH S
& o ®o O&) ®» ©F
0.1 - o ©O O O o]
O EJCB & 00
0 5 10 15 20 25
DBH (cm)

B bigtooth aspen
0.8 -
° o @09 o o =
[
= N O
< ® o ® (@] o
S 06 -
g D
£
[0}
o 05-
(I) ' L]
0 20000 40000
DBH-squared * height (cm? * m)
D white spruce
O
0.5 -
£
©
= 04 -
o
8 . EPe
w034 (@] (@)
o 000 0]
o SREAS £o o o0
0.1 - Qb OdD o® © Eg o
0 2000 4000 6000 8000

DBH-squared * height (cm? * m)

Figure 5 Prediction models for CRs were less precise when fitted to dbh alone (A, C) than when fitted to a variable combining dbh and total height
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Sarg.); eastern white pine (Pinus strobus, L.); water and swamp
tupelos (Nyssa aquatica L., N. biflora Walter); chestnut oak
(Quercus prinus L.) and northern red oak (Q. rubra L.). In this
group only water tupelo, with n = 85 sapling-sized trees in the
legacy database had a sample size > 50.

Discussion

Several findings of this study demonstrate the potential for
improvement of live-tree AGB estimates obtained by linking CRM
predictions with field-plot data from the U.S. Forest Service FIA
NFI data. In Lake States and Central States regions merchant-
able volume equations are among the constituent parts of the
CRM that can likely be improved without undue effort (Miles and
Hill, 2010). The cubic foot volume equation of Stone is a notable
candidate for improvement (Hahn, 1984), as it was originally
developed from cordwood volumes and adapted for cubic
volumes using multiplication by a single conversion factor,
2.24m? (79 ft°) per cord. Regional volume equations from the
Central and Northeastern States relied on tree volumes imputed
from volume tables, such as those developed by Gevorkiantz
and Olsen (1955) and Bickford (1951), rather than on regression
models developed directly from observed stem volumes and
associated predictor variables (Barnard et al., 1973; Hahn and
Hansen, 1991; Scott, 1981). Where existing models can be vali-
dated for accuracy in regional applications, it may be possible to
improve CRM accuracy using existing volume estimators (e.g.
Burk and Ek, 1999). Where no such models currently exist

improving CRM Ve predictions should be an attainable goal
assuming sufficient sample data can be obtained for developing
new equations (e.g. Westfall and Scott, 2010).

Defining BEFs according to merchantable stem biomass is a
preferred approach in national C assessments conforming to
Intergovernmental Panel on Climate Change good practice
guidelines (IPCC, 2006). This definition was found to be problem-
atic when applied to individual trees at or near the 12.7 cm sap-
ling DBH threshold (Figure 4). Even after reformulating CR
definitions based on whole stem rather than merchantable
stem biomass contents, the equation form used by Jenkins
et al. (2003) was found to be insufficiently flexible to adequately
represent observed CR patterns across a range of tree sizes.
Other work has found nonlinearities like those noted here in
BEFs computed in forests comprised of small-sized trees (Soares
and Tomé, 2012). Sapling adjustment factors likely contribute to
biases unresolved by modifications to the CRM examined here
(Nelson et al., 2014).

Felled tree studies have often collected stem profile data for
both ob and ib diameters, from which accurate models of wood
and bark volume can be developed (Li and Weiskittel, 2011). We
noted that bark:wood volume ratios from legacy trees (Table 3)
agreed with results reported by Gevorkiantz and Olsen (1951)
better than those reported by Miles and Smith (2009) for 24
Lake States species. This agreement may be due in part to con-
sistency of definitions, as Gevorkiantz and Olsen (1951) were
clear in noting that their bark volumes were calculated using ob
diameters, which include airspaces in bark (MacFarlane and Luo,
2009). Laboratory determination of bark volumes is often done
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Table 5 Chapman Richards model Eq. (2) root-mean squared errors
(RMSE) as percentages of biomass CRs predicted from D?H, for 32
species comprising 65% of biomass in eastern US Forests

Common name Stem components Crown components

n RMSE (%) n RMSE (%)
Wood  Bark Branches  Foliage
Balsam fir 97 117 7.7 99 7.1 6.5
White spruce 73 9.4 1.5 83 59 8.1
Black spruce 69 9.3 1.6 69 69 6.1
Red spruce 64 9.6 1.9 49 8.2 4.4
Shortleaf pine 438 5.6 2.8 221 4.2 32
Slash pine 473 5.8 34 270 4.2 35
Longleaf pine 603 6.0 29 330 51 3.8
Red pine 73 60 07 73 4.0 3.4
Eastern white pine 116 9.5 32 119 8.8 5.7
Loblolly pine 1184 74 36 867 57 5.7
Virginia pine 86 10.4 3.0 90 83 6.8
Red maple 283 88 23 289 738 3.1
Sugar maple 130 8.5 2.8 109 6.2 1.8
Paper birch 53 7.6 2.3 67 7.6 33
Amer. hornbeam 61 10.0 1.5 61 9.4 2.1
Hickory spp. 133 84 42 133 75 1.9
Flowering dogwood 56 87 1.6 56 8.7 2.8
Ash spp. 287 6.8 25 287 69 1.9
Sweetgum 665 5.8 2.8 665 5.4 2.4
Yellow-poplar 142 53 29 143 56 1.8
Water tupelo 148 33 1.5 148 3.3 1.3
Swamp tupelo 142 7.6 33 142 6.7 1.1
Populus spp. 111 3.4 2.6 131 6.0 3.3
Bigtooth aspen 58 4.4 2.7 75 4.8 2.0
Quaking aspen 105 4.3 2.6 120 53 1.5
White oak 249 6.8 25 262 71 1.5
Scarlet oak 73 7.2 2.5 73 75 1.3
Southern red oak 52 6.8 2.8 52 7.1 1.5
Water oak 193 8.2 26 193 83 2.6
Chestnut oak 78 7.3 3.6 78 8.4 1.1
Northern red oak 50 6.8 3.7 50 7.1 2.2
Elm spp. 55 7.6 3.0 55 83 2.8

using water displacement, which excludes airspaces in the vol-
ume measurement (Phillips and Taras, 1987). Any revisions to
the bark volume quotients used in the CRM should be developed
to ensure consistency of definitions, but also to account for the
large number of species for which FIA requires accurate bark
volume quotient information.

Our observations showed somewhat distinct patterns in how
bark:wood volume ratios varied in trees of differing sizes and
species (Figure 2). Smooth-barked species such as paper birch
and quaking aspen tended to maintain a relatively constant
bark:wood volume ratio over a range of tree dbh, while furrowed
and scale type barks such as oaks and pines tended to show
decreasing bark:wood volumes with increasing dbh. These pat-
terns are consistent with shedding characteristics of various
bark types; while smooth barked species shed little material

over time under ideal growing conditions, shedding is continual
and typical in other bark types (Borger, 1973; Kaufert, 1937).
These details notwithstanding, direct accounting of bark:wood
volume ratio relationships to dbh in scenario 6 did not lead to
appreciable improvement in overall accuracy of AGB predictions
in the CRM framework compared with using species averages
(Table 1, Figure 7).

Published SG values for North American tree species date at
least as far back as Fernow (1897), with numerous studies hav-
ing been conducted in past century (Antony et al., 2015; Newlin
and Wilson, 1917; Wahlgren et al., 1966). One challenge in
working with published SG summaries is that the variability in
sample data is not always well characterized, whether it be
in terms of variation among specimens collected from a single
tree, variation among trees from a particular study site or
region, or variation across species’ geographic ranges. Another
challenge is that many wood properties surveys were limited to
clear wood specimens, so the suitability of using their SG mea-
surements as standing-tree BEFs should be tested (Markwardt,
1930). Also, since bark SG relies on laboratory measurements of
green volume, the method of bark volume determination -
either including airspaces or not - directly affects results. Bark
SG determined using water displacement for green volume
determination will necessarily overestimate bark biomass on
standing trees unless the standing-tree bark volume measure-
ment is adjusted to exclude airspaces (MacFarlane and Luo,
2009).

Notable improvement in CRM accuracy was achieved by
revising bark and wood properties to match observed values
from legacy felled-tree studies, including a threefold reduction
in prediction bias between scenarios 4 and 5 (Table 1, Figure 7).
Wood and bark properties are known to vary with tree size and
tissue position in stems, with different silvicultural practices, and
across space; however, the quantification of these patterns is
not always straightforward because the same relationships that
hold for one species may not be present in others (Antony et al.,
2015; Tasissa and Burkhart, 1998; Wiemann and Williamson,
2014).

Despite the relatively complex formulation of volume, SG,
and CR models used to obtain volume and biomass estimates in
the CRM under alternative scenarios 1-6, results showed poten-
tial for reducing RMSE and bias to levels comparable with the
relatively simple formulation tested in scenario 7. Although
scenario 7 achieved greater precision than any of other alterna-
tives tested it has some notable limitations. One is that it relies
entirely on species or species-group-specific AGB allometric
equations, with no accounting for stem volumes, component
relationships, or wood properties in forest trees. Another is that
the use of AGB allometric equations alone does not ensure any
consistency between estimates of wood volume and AGB. In
multiresource inventories like NFIs, such consistency is often
needed (Weiskittel et al., 2015). The overall reduction of appar-
ent bias in scenario 5 is also a favourable outcome compared
with the other scenarios tested since bias is an overriding con-
cern in estimators that are applied to large data sets in NFI
applications (Roxburgh et al., 2015).

It is important to note that RMSE and bias values reported
here pertain to legacy data rather than biomass and AGB esti-
mates reported by the US Forest Service FIA program. Errors in
regional carbon estimates are subject to many factors including
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sampling error and model prediction errors that can be investi-
gated using a number of analytical techniques (McRoberts and
Westfall, 2014), all of which employ certain assumptions that
must be considered. A key assumption in the errors reported
here is that suitable model forms were chosen for volume, CR,
and AGB equations. Another concern is whether data compiled
from legacy volume and biomass studies adequately characterize
the ranges of tree form, wood and bark properties, component
relationships, and AGB that arise in forests of the eastern US.
Legacy data undoubtedly include fewer trees of poor form than
trees in larger populations due to longstanding recommendations

Table 6 Per cent RMSE and bias from 10-fold cross-validation on legacy
trees show relatively poor performance of biomass prediction methods
for saplings (dbh < 12.7 cm; n = 2306) compared with larger
merchantable sized trees (dbh > 12.7 cm; n = 4174)

dbh <12.7cm dbh >12.7cm

Scenario RMSE Bias RMSE Bias

0 51.5 -30.8 28.4 -11.9
1 46.5 -20.0 25.7 -10.0
2 48.2 -20.0 26.7 -10.9
3 48.2 9.3 26.7 -10.9
4 46.6 22.6 25.7 -9.4
5 40.8 29.8 22.5 -39
6 43.7 35.2 24.2 -5.8
7 34,5 0.7 19.1 -3.7

that forked, broken, leaning or scarred trees be excluded from
mensurational studies (Behre et al., 1926). Destructive sampling
for volume and biomass is often limited to areas where road
access is good to accommodate equipment needs and specimen
collection (Williams et al., 1999). These and other concerns about
the data used here apply in most applications of allometric mod-
el development.

Notwithstanding the extraordinary collection of legacy bio-
mass equations and wood properties information compiled for
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the development of US national-scale biomass and C estima-
tors currently in use (Jenkins et al., 2004; Miles and Smith,
2009), the magnitudes of prediction errors observed here indi-
cated considerable room for improvement. Legacy tree data
may serve a vital role in future research, both in testing exist-
ing methods and developing new models that may ultimately
prove superior in national forest C assessments (MacFarlane,
2015; Ung et al,, 2008; Weiskittel et al., 2015). The work car-
ried out here points to a possible reduction in prediction biases
of nearly 80 per cent over the baseline CRM, and reduction
of overall prediction RMSE of more than 25 per cent (Figure 7).
The need for additional research on improving national scale
biomass estimators seems clear given the impact such
improvements will have on C stock estimates for NFIs in the
US and other countries.

Even though AGB can be predicted accurately for many spe-
cies using conventional allometric modelling, substantial chal-
lenges remain in predicting stem volume, AGB, and biomass
components simultaneously (Castedo-Dorado et al., 2012;
Enes and Fonseca, 2014). Recent work has shown advances in
the development of regression equations that maintain addi-
tivity in biomass component predictions (Affleck and Diéguez-
Aranda, 2016; Dong et al., 2015; Poudel and Temesgen, 2016;
Zhao et al., 2015). Past work has also demonstrated positive
results in the simultaneous estimation of volume and biomass,
although primarily in stem wood and bark (Brooks et al., 2007;
Jiang and Brooks, 2008; Parresol and Thomas, 1995). To meet
the information needs for both volume and biomass inventor-
ies, further work is needed to identify suitable approaches for
combining information on both attributes (Weiskittel et al.,
2015).

While this work focused on models used to estimate AGB
and C stocks in forests of the eastern US, additional work is
needed to determine how revisions to CRM biomass estimators
might affect regional estimates of C stock change (Magnussen
et al., 2014). Stock change is a primary determinant of forest C
sequestration or emissions over time, e.g., in tier 2 and 3 meth-
ods adopted in the United Nations’ Good Practice Guidance for
Land Use, Land-Use Change, and Forestry (IPCC, 2006). The US
NFI includes remeasured data for all the states studied here,
which will facilitate the determination of what effects the
alternatives proposed here may have on estimates of C stock
change. Despite the findings here that C stocks are presently
underestimated in eastern US forests, a similar finding for
sequestration rates is not assured (Domke et al, 2012;
Woodall, 2012). Aside from land use and land-use changes,
forest C sequestration rates are affected by many factors
including the mixtures of tree species, ages, and size classes.
How these factors interact in forest C sequestration is a subject
of ongoing investigation (Coulston et al., 2015; Woodall et al.,
2015).
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