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A B S T R A C T

Ash (Fraxinus L.) species are currently threatened by the emerald ash borer (EAB; Agrilus planipennis Fairmaire)
across a growing area in the eastern US. Accurate mapping of ash species is required to monitor the host re-
source, predict EAB spread and better understand the short- and long-term effects of EAB on the ash resource.
Hyperspectral remote sensing technologies have been used to successfully map forest species, although most
efforts are focused on healthy canopies for relatively homogeneous forested stands. This study uses imagery
collected by the NASA Goddard LiDAR, Hyperspectral and Thermal (GLiHT) airborne imager to map ash species
at the tree level in an EAB infested urban setting. The overall goal of the study is to understand how canopy
condition impacts species mapping accuracy and identify data collection and image processing techniques to
more accurately map the location of ash species in infested regions.

Results indicate that while overall independent validation mapping accuracy of ash and non-ash trees was
81%, correct identification of ash canopies dropped from 62% for vigor 1 trees to 22% for vigor 2 trees. To
minimize these errors, we developed a multiple endmember, spectral unmixing technique to overcome chal-
lenges presented by a spectrally complicated target in a complex urban environment. This hinges on the use of
endmember spectra from trees across a range of canopy condition, including the derivation of vegetation indices
to inform the spectral unmixing calibration. This approach was more accurate than calibrations performed using
traditional unmixing based only on pure endmember spectra.

Implications for this work suggest that urban forest managers may attain more accurate maps by conducting
remote sensing data collections prior to infestation while the trees are still healthy. Where this is not possible,
mapping efforts must reflect a range of canopy conditions and include vegetation indices concurrent with re-
flectance data. The resulting ash species maps provide urban forest managers spatially explicit products to help
estimate the extent of possible impacts in their communities, guide the implementation of management and
monitoring efforts and provide the basis for planning as EAB continues to spread.

1. Introduction

Biological invasions of non-native insects are both a threat to bio-
diversity and ecosystem stability (Pimentel et al., 2001; Simberloff,
2000). Approximately 360 non-native insects were established in
United States by the mid 1990's (Liebhold et al., 1995), reaching 455 by
2011 (Aukema et al., 2011). Phloem feeding and wood boring insects
are the most costly feeding guild resulting in approximately $1.7 billion
per year in local government expense and another $830 million in lost
property value (Aukema et al., 2011). Intercepting these invaders

before or during arrival is optimal. However, once arrival and estab-
lishment is achieved, early detection becomes critical in reducing the
impact of spread.

The emerald ash borer, Agrilus planipennis Fairmaire (EAB), is an
exotic phloem feeding woodborer (Coleoptera: Buprestidae) introduced
from Asia, and has become one of the most devastating insects to suc-
cessfully establish and spread in North America (Klooster et al., 2014).
Widespread ash, Fraxinus spp., mortality was reported in Southeastern
Michigan, USA, and Essex Co, Ontario, Canada in 2002 (Haack et al.,
2002) and has been confirmed in 30 American states, and Canadian

http://dx.doi.org/10.1016/j.rse.2017.07.027
Received 9 December 2016; Received in revised form 20 June 2017; Accepted 21 July 2017

⁎ Corresponding author.
E-mail address: Jennifer.pontius@uvm.edu (J. Pontius).

Remote Sensing of Environment 199 (2017) 360–369

0034-4257/ © 2017 Elsevier Inc. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00344257
http://www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2017.07.027
http://dx.doi.org/10.1016/j.rse.2017.07.027
mailto:Jennifer.pontius@uvm.edu
http://dx.doi.org/10.1016/j.rse.2017.07.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.07.027&domain=pdf


Provinces, Ontario and Quebec (www.emeraldashborer.info). Adult
EABs emerge in late spring and adult females lay eggs under the bark
(Bauer et al., 2004). Larval feeding scores the outer sapwood and dis-
rupts water transport in vascular tissue (Cappaert et al., 2005). Damage
increases with increasing EAB density causing decline and eventual tree
mortality (McCullough et al., 2009).

Management costs (treatment, removal and replacement of ash
trees) could reach $10.7 billion just for trees on developed land in
communities in the eastern US (Kovacs et al., 2010) and an additional
$13–26 billion in the Midwestern US (Sydnor et al., 2007) by 2019.
Given the severe economic impact of EAB to our urban areas in parti-
cular, accurate mapping of existing ash distribution and condition is
critical to help manage the economic impact of further establishment
and spread of this invasive insect.

Remote sensing data has been successfully used to map, not only
broad vegetation types (NLCD, USGS) but also the distribution of in-
dividual tree species (e.g., Martin et al., 1998; Ustin and Xiao, 2001;
Pontius et al., 2005a; Plourde et al., 2007). These efforts are usually
based on healthy and homogeneous forested stands. More recently,
Murfitt et al. (2016) mapped ash canopies in contiguous forest stands in
southeastern Ontario using high spatial resolution WorldView-2 ima-
gery. They classified ash trees with 60–63% accuracy using a multi-
band watershed level segmentation algorithm and random forest clas-
sifier. Zhang et al. (2014) used high spatial resolution aerial imagery,
commercial ground and airborne hyper-spectral data to map ash ca-
nopies in Ontario with 63% accuracy.

Urban species mapping presents additional complications due to the
influence of understory and groundcover on the spectral signatures of
small, open grown trees. In locations where EAB has caused widespread
decline and mortality, spectral identification of ash species becomes
even more complicated due to changes in foliar chemistry and canopy
structure in declining trees. None of these efforts explored how species
mapping accuracy changes across a range of canopy condition or how
to improve accuracy by modifying classifications to account for trees in
various stages of decline.

Because different tree species often have similar spectral char-
acteristics, even subtle changes in reflectance resulting from different
canopy conditions can lead to classification error. Such spectral

confusion is common in declining stands, where stress symptoms alter
foliar chemistry and canopy structure, resulting in uncharacteristic
spectral signatures for the target species. This is particularly proble-
matic for ash, which is spectrally similar to many of its co-occurring
species (Souci et al., 2009). In addition to classification error in-
troduced by canopies in various stages of decline, mapping species in
urban areas is confounded by the spatial heterogeneity and spectral
diversity found in developed environments. Canopies may be underlain
by either pavement, cement, dirt, grass or various mixes of ground
cover that influence the spectral signal, particularly for declining,
sparse trees.

To apply remote sensing technology to urban areas successfully,
especially in the face of declining forest health, sensors and image
processing techniques need to be developed that will overcome chal-
lenges presented by the urban environment. One promising image
processing technique called spectral unmixing (Keshava and Mustard,
2002) has the potential to help overcome issues caused by fine scale
spectral heterogeneity and mixed pixel effects characteristic of urban
environments. Spectral unmixing has been effective for detecting tree
species and other vegetation abundances using spatial resolutions ran-
ging from 17 m to 30 m (e.g., Small, 2001; Pontius et al., 2005a;
Plourde et al., 2007). However, successful spectral unmixing of fine
spatial resolution data (i.e., 1–3 m), has been largely limited to non-
forested areas (e.g., Miao et al., 2006).

This study uses imagery collected by the NASA Goddard LiDAR,
Hyperspectral and Thermal (GLiHT) airborne imager (Cook et al.,
2013) to map ash species at the tree level in an EAB infested, urban
setting. The combination of hyperspectral data combined with high
spatial resolution presents a “best case” approach to mapping a de-
clining species in a challenging urban setting. The overall goal of the
study is to understand how canopy condition impacts species mapping
accuracy and identify data collection and image processing techniques
that minimize these errors in EAB infested regions.

Fig. 1. Extent of the Bowie GLiHT imagery col-
lection with ash calibration canopies in red. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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2. Methods

2.1. Study area

Imagery and ground reference data were collected for the city of
Bowie, Maryland, USA in June of 2012 (Fig. 1). This temperate region,
along the eastern US coast, is typically dominated by oak-hickory-pine
forests. But urban and suburban regions such as Bowie are highly
landscaped with a mix of ornamentals and native species. At the time of
this study, the city itself was responsible for almost 9000 street trees. Of

these, Bowie reported over 800 city owned ash trees that were in
varying stages of decline due to the presence of EAB. The city has small
patches of dense mixed forests, but is predominantly composed of
sparsely forested suburban areas dominated by impervious surfaces.
The first detection of EAB in Maryland was on August 28, 2003, only
one year later than the first detection in the United States (www.
emeraldashborer.info). Infested nursery stock was the likely culprit and
initial eradication efforts were unsuccessful. In Bowie EAB was con-
firmed June 14, 2011 (Maryland Department of Agriculture, http://
mda.maryland.gov/plants-pests/Pages/eab-current.aspx).

Urban areas like Bowie are highly susceptible to forest pest in-
troduction and establishment because of their proximity to trade and
international commerce centers. Trees planted in urban forests may also
be imported nursery stock, another source for accidental introduction
(Niemelä and Mattson, 1996). There are also similarities in host fa-
milies and genera between North America, Europe and Asia that facil-
itate establishment potential (Niemelä and Mattson, 1996).

2.2. Ground reference data

Ground reference data for image calibration were collected within
one week of image data acquisition. Trees were selected for image ca-
libration to ensure that a range of ash vigor and understory composition
were captured, along with a broad spatial distribution across the study
area (Fig. 1). Additional criteria for calibration tree selection included:
canopy dominant or co-dominant status with crowns that were at least
2 m2. Selected trees were geo-located using a Trimble® GPS for direct
comparison to corresponding pixels within the imagery. Data collected
for each tree included: species; DBH; crown position (i.e., dominant, co-
dominant, or sub-canopy); and a suite of decline symptoms common to
EAB infestation (Pontius et al., 2008, Pontius and Hallett, 2014). We
used methods described by Cooke et al. (1996) to assign each tree to a
vigor class designed to capture the overall condition of the canopy
(where Vigor 1 = healthy, Vigor 5 = dead). This metric is based on the
percent of the canopy impacted by branch mortality, twig dieback,
foliage discoloration or dwarfed leaves. Because EAB shows no pre-
ference for the various ash species, species mapping was performed at
the genus level only—i.e., all Fraxinus species were agglomerated for
mapping.

The resulting calibration data set included 53 ash canopies re-
presenting a range of ash condition (twenty-two vigor 1, eleven vigor 2,
ten vigor 3 and ten vigor 4 canopies). Of these, a high-quality subset,
including only canopy dominant trees with crowns > 1 m diameter
that were clearly identifiable in the imagery, was created for end-
member collection to minimize georegistration error or mixing with
adjacent canopies. The resulting subset of 37 canopies for classification
calibration included: thirteen vigor 1, nine vigor 2, seven vigor 3 and
eight vigor 4 canopies. Dead trees were not included in calibration or
validation data sets.

2.3. Image data

In June 2012, The GLiHT sensor (http://gliht.gsfc.nasa.gov/about/)
mounted on a fixed wing aircraft collected 1 m resolution data over the
target area covering approximately 4800 ha. Input imagery was geo-
metrically corrected in house with a resulting accuracy of ~10 cm
(1 σ), Cook et al., 2013) with no additional corrections required to
match field GPS locations to image canopies. Radiometrically calibrated
reflectance data included 114 unique bands covering a spectral range of
approximately 400 nm to 1000 nm with 5 nm spectral resolution. In
addition, 41 common vegetation indices (Table 1) were calculated in
ENVI (v. 5.3) using ENVI's automated band math functions. These in-
dices were selected based on their documented importance in ash
condition mapping (Pontius et al., 2008; Pontius, 2014), or availability
of automated calculation algorithms in tools such as ENVI. Stacked
together, this resulted in a 155 band image for spectral unmixing

Table 1
Common broad and narrow-band vegetation indices stacked with hyperspectral wave-
lengths for the minimum noise fraction transform. Indices with asterisk are available
using ENVI's vegetation index tool.

Acronym Vegetation index Citation

Aoki Aoki Stress Aoki et al., 1981
ARI1* Anthocyanin Reflectance Index 1 Gitelson et al., 2001
ARI2* Anthocyanin Reflectance Index 2 Gitelson et al., 2001
CF Chlorophyll fluorescence Mohammed et al., 1995
CI Curvature Index Zarco-Tejada et al., 2002
CRI1* Carotenoid Reflectance Index 1 Gitelson et al., 2003
CRI2* Carotenoid Reflectance Index 2 Gitelson et al., 2003
CS1 Carter Stress 1 Carter, 1994
CS2 Carter Stress 2 Carter, 1994
Datt 1 Datt Stress 1 Datt, 1998
Datt 2 Datt Stress 2 Datt, 1999
DCI Derivative Chlorophyll Index Zarco-Tejada et al., 2002
DVI Difference Vegetation Index Tucker, 1979
EZ Elvide and Zhikang Stress Elvidge and Chen, 1995
FP Filella and Penuelas Stress Filella and Penuelas, 1994
GI Greeness Index Smith et al., 1995
GM Gitelson and Merzlyac Stress 1 Gitelson and Merzlyak,

1994
GMb Gitelson and Merzlyac Stress 2 Gitelson and Merzlyak,

1994
Mac Maccioni Stress Maccioni et al., 2001
MCARI Modified Chlorophyll Absorption

Ratio Index
Daughtry et al., 2000

MCARI2 Modified Chlorophyll Absorption
Ratio Index Improved

Haboudane et al., 2004

MRE NDVI Modified Red Edge Normalized
Difference Vegetation Index

Sims and Gamon, 2002

MRESR* Modified Red Edge Simple Ratio Sims and Gamon, 2002
MSR* Modified Simple Ratio
MTVI Modified Triangular Vegetation Index Haboudane et al., 2004
MTVI2 Modified Triangular Vegetation Index

- Improved
Haboudane et al., 2004

NDVI* Normalized Difference Vegetation
Index

Rouse et al., 1973

NPCI Normalized Pigment Chlorophyll
Index

Penuelas et al., 1994

NPQI Normalized Phaeophytinization Index Barnes, 1992
OSAVI Optimized Soil Adjusted Vegetation

Index
Rondeaux et al., 1996

PRI* Photochemical Reflectance Index Gamon et al., 1990, 1997;
Rahman et al., 2001

PSND1 Pigment Specific Normalized
Difference 1

Blackburn, 1998

PSSR2 Pigment Specific Normalized
Difference 2

Blackburn, 1998

PSRI* Plant Senescence Reflectance Index Merzlyak et al., 1999
RDVI Renormalized Difference Vegetation

Index
Roujean and Breon, 1995

RENDVI* Red Edge Normalized Difference
Vegetation Index

Gitelson and Merzlyak,
1994

REIP* Red Edge Inflection Point Baret et al., 1992
RGRI* Red Green Ratio Index Gamon and Surfus, 1999
RVI Ratio Vegetation Index Pearson and Miller, 1972
SIPI* Structure Insensitive Pigment Index Penuelas et al., 1995
SRPI Simple Ratio Pigment Index Penuelas et al., 1993
TVI Triangular Vegetation Index Broge and Leblanc, 2001
VOG* Vogelmann Stress Vogelmann et al., 1993
VREI1* Vogelmann Red Edge Index 1 Vogelmann et al., 1993
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algorithms.

2.4. Ash species classification

Spectral mixture analysis (Boardman and Kruse, 2011; Plaza et al.,
2009) is a technique used for vegetation mapping which determines
sub-pixel fractional abundance of target endmembers (Roberts et al.,
1998; Elmore et al., 2000; Small, 2001; Williams and Hunt, 2002; Miao
et al., 2006). This approach is particularly useful for coarse spatial re-
solution imagery where spectra for a given pixel are characterized by a
mix of constituents on the ground. We used a mixture-tuned matched
filtering (MTMF) spectral unmixing algorithm, which differs from tra-
ditional spectral mixture analysis in that it is based on spectrally “pure”
endmembers for only the target of interest, producing both likelihood
an infeasibility scores for endmember presence in each pixel (e.g.
Plourde et al., 2007; Pontius et al., 2005a).

In urban areas, high spatial resolution remote sensing data is re-
quired due to the spatial heterogeneity characterized by a mix of tree
canopy vegetation, woody materials and the understory beneath (lawn,
sidewalk, road, shrubs). This is particularly true for EAB infested ash
with noticeably thinning canopies. Given this complicated spectral
environment we chose to explore the usefulness of spectral unmixing
techniques to map ash canopies.

We set out to compare the use of MTMF-based spectral unmixing
based on either the hyperspectral reflectance only (HS) or the hyper-
spectral reflectance with the addition of a suite of vegetation indices
(HS-VI). In addition, we compared the accuracy resulting from various
endmember collection approaches. This included aggregating end-
member spectra as: 1) all ash canopies regardless of health (All Vigor),
2) vigor 1 ash canopies only (Vigor 1), and 3) separate endmembers for
each of the four vigor class polygons (Unique Vigor). This included 13,
9, 7 and 8 canopies for Vigor Classes 1–4 respectively. This combination
of two input imagery choices and three endmember collection techni-
ques resulted in 6 possible results to compare to determine the best
approach for classifying ash canopies.

2.5. MTMF-based spectral unmixing

Our Mixture-tuned match filtering (MTMF)-based spectral unmixing
begins with a minimum noise fraction (MNF) transform to maximize
signal:noise and reduce autocorrelation among input bands prior to
unmixing. Similar to a principal components transform, MNF (Green
et al., 1998; Boardman and Kruse, 2011) reduces the dimensionality of
hyperspectral reflectance data by reprojecting the data onto orthogonal
vectors that account for decreasing amounts of spectral variability in
the imagery. MNF includes an additional step that segregates noise
from data. The outcome is a new n-dimensional image, where the first
few bands include the most information and the latter bands include
progressively more noise.

The MNF transform was conducted on both the hyperspectral ima-
gery (HS) alone, and the hyperspectral imagery with vegetation indices
stacked (HS-VI) to determine if the inclusion of vegetation condition
specific indices improved classification. The ideal number of MNF
bands can typically be assessed using the spatial coherence threshold
plot and including only those bands that maintain a spatial coherence
greater than zero. Because spatial coherence decreases logarithmically
across MNF bands, we tested a range of MNF band numbers near that
zero threshold and determined that the first 25 bands from the MNF
transforms were ideal for capturing the full signal in both the hyper-
spectral and hyperspectral plus vegetation indices images. Therefore,
full unmixing and accuracy assessments for all 6 possible approaches
were limited to these 25 bands for subsequent classification steps.

Endmember spectra from the 37 calibration trees were extracted
from hand digitized canopy polygons (e.g. Fig. 2) to ensure that pixels
from the full canopy, minus any edge or gap pixels, were included for
calibration. This minimized registration errors and errors introduced by

mixed pixels.
Once endmembers were identified in each image, MTMF was per-

formed on the 25 band MNF outputs in ENVI (v. 5.0) image processing
software. Mixture-tuned matched filtering (Boardman and Kruse, 2011)
detects abundances of user-defined endmembers by “unmixing” the
pixels from “background” material. MTMF maximizes the response of
the endmember in the MNF image and suppresses the background, thus
“matching” the known signature. Because the background—e.g., any-
thing other than ash—is suppressed, it is not necessary to identify
endmembers of other non-interest targets. This process produces an
image where each pixel is assigned a matched filter (MF) score and an
infeasibility (INF) score for each represented endmember. The matched
filter score represents how well the pixel spectra match the endmember
(e.g., a value between 0 and 1.00, where 1.00 represents a perfect
match with the endmember). The accompanying infeasibility score can
be used to quantify the likelihood of false positives. Optimum MTMF
results to identify the species of interest are pixels with high matched
filter scores and low infeasibility scores.

Rather than use simple MF and INF thresholds to map ash, we used
logistic regression based on the full set of available ash calibration
canopies (53 tree canopies described above) to create a probability
function for ash based on input INF and MF values. This model provided
probability coefficients to apply to the MTMF imagery on a pixel by
pixel basis resulting in a raster with values from 0 to 1 representing the
probability that a given pixel contains ash. This logistic model was
repeated for each of the 6 possible imagery/endmember calibration
approaches.

2.6. Imagery segmentation

The high spatial resolution of the GLiHT imagery combined with the
highly variable nature of tree canopies with complex geometries and
differential illumination makes a pixel-based approach to tree canopy
delineation impractical. Instead, we used Definiens Developer (v. 7) to
segment the pixel-based raster to an object-based shapefile using a
multiresolution segmentation to differentiate forest/non-forest and a
watershed segmentation to delineate tree crowns within the forest class.
Segmentation is based on spectral homogeneity metrics in combination
with spatial and geometric parameters (size, shape, texture, etc.) to best
capture objects that realistically depict individual trees. Several seg-
mentation algorithms are commonly available (e.g. Yang et al., 2014a,
b), with segmentation parameters that vary by application. This re-
quires comparisons of various approaches to identify values that pro-
duce objects of the appropriate size and shape (Yang et al., 2015). We
used an iterative exploration of various spectral and shape weightings,

Fig. 2. Sample endmember canopy digitization (yellow) to capture full variability in the
target ash canopy (GPS point in black) while eliminating mixed-canopy, edge pixels. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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informed by previous literature, our knowledge of the typical canopy
size, shape, reflectance characteristics and spatial context, imagery re-
solution, and characteristics of the landscape to identify spectral
weights and segmentation settings to best capture individual tree ca-
nopies in this complex urban environment. We found that using blue,
green, red and NIR (weighted × 2) bands, with a scale parameter (35),
Shape = 0.7, Compactness = 0.9, Scale Parameter = 35, ensured that
tree canopies were consistently differentiated from non-forest objects
(Fig. 3). For all segmented objects, mean ash probability values from
the logistic model (described above) were used to classify all canopies
with an ash probability > 0.5 as ash and< 0.5 as non-ash canopies.

2.7. Accuracy assessment

To assess the accuracy of the resulting ash maps, we used an in-
dependent field inventory of street trees compiled by the city of Bowie,
Maryland for their Urban Greening Report (http://www.cityofbowie.
org/DocumentCenter/View/25). Main stems for street trees in the
Bowie tree inventory were identified by species and geolocated in the
field using a Trimble® GPS. From the over 8000 mapped trees across the
city a random subset of 290 tree canopies were selected representing
the ten most common species in Bowie, including 76 white or green ash
(Table 2, Fig. 4). Polygons for lawns/field and impervious surfaces were
also included to verify accuracy in distinguishing sick ash from the
common understory beneath them.

Contingency tables were created from these data that quantify user's
accuracy (the percentage of ash classified in the image pixels that were
truly ash) and producer's accuracy (the percentage of field ash canopies
correctly identified in the image; Congalton, 2001) as well as overall
map accuracy. In addition, accuracy for each of the 37 ash calibration
polygons was examined by field assigned vigor class to determine if
accuracy degraded with increasing ash decline symptoms.

3. Results and discussion

The side by side comparison of the six calibration approaches (HS
vs. HS-VI imagery and All Vigor, Vigor 1 or Unique Vigor endmembers)
allowed us to identify the most accurate approach for mapping ash
species when there is a broad range of ash condition in the target
mapping area.

3.1. Comparison of HS vs. HS-VI imagery

Across all three endmember configurations, the hyperspectral plus
vegetation imagery (HS-VI) resulted in marginally better logistic model
fits (Table 3), and significantly higher ash identification accuracy than
the hyperspectral imagery alone (t(37.62) = 3.55, p = 0.0005). Because
the number of input MNF bands was constant across these calibration
approaches, these results indicate that the inclusion of vegetation in-
dices is not simply an overfit, but instead provides information relevant
to species mapping that is not captured in the reflectance itself.

It is uncommon for hyperspectral classification efforts to include
vegetation indices in addition to the reflectance data. However, vege-
tation indices have been widely used in ecological assessments (Kerr
and Ostrovsky, 2003). The most common is the Normalized Difference
Vegetation Index (NDVI), which is strongly correlated with both phy-
siological and structural vegetation characteristics including: above-
ground net primary productivity, absorbed photosynthetically active
radiation, and leaf area index (Cihlar et al., 1991). Vegetation indices
have also been used for coarser assessments of land cover type mapping
(Homer et al., 2015), vegetation density and biodiversity assessments
(Broge and Leblanc, 2001; Peddle et al., 2001; Waring et al., 2006a, b)
and forest type mapping (de Melo Figueiredo et al., 2015; Dymond
et al., 2002).

These results show that the addition of vegetation indices captures
information that may help discriminate among tree species (Fig. 5).
Indices that target specific structural characteristics such as leaf area
index or vegetation density, vary from species to species. For example,
red maple tends to form full dense canopies in open grown habitats
common to urban settings. In contrast, open-grown ash commonly re-
main single stemmed and fine branched (with a larger component of
impervious surface or understory vegetation apparent in the canopy
spectra). Incorporating indices specifically designed to capture these
structural differences improves our ability to distinguish ash from other
species.

This is exemplified in our imagery where we found significant dif-
ferences among species for many of the vegetation indices included in
our analysis. For example, ash species had significantly lower NDVI
values compared to all other common species (p < 0.0001) (Fig. 5). In
contrast, the Photochemical Reflectance Index (PRI) for ash was higher
than all other species, but was only significantly able to distinguish ash
from sycamore (p < 0.0001). However, different vegetation indices
could distinguish different sets of species, indicating that there is no one
set of “ideal” indices to include in species classifications.

These results indicate that using a combination of vegetation indices

Fig. 3. Close up of true color imagery (top) and segmented tree canopies based on NDVI
thresholds for canopy delineation and R,G,B and NIR bands for canopy segmentation.

Table 2
Independent validation species counts.

Common name Scientific name Inventory count Validation count

Silver maple Acer saccharinum 628 23
Maple (other) Acer sp. 2645 22
Ash species Fraxinus sp. 379 76
Honey locust Gleditsia triacanthos 954 27
American sycamore Platanus occidentalis 860 29
Callery pear Pyrus calleryana 459 26
Oak species Quercus sp. 211 55
Field/lawn x 18
Impervious surfaces x 14
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and hyperspectral data as input to the minimum noise fraction trans-
form improves our ability to distinguish ash from other common tree
species in a region of mixed forest health.

3.2. Comparison of endmember configurations

Traditionally, endmembers used for spectral unmixing are selected
to represent “pure reflectance” of the target object. These spectra can be

derived from cataloged spectral files or known target objects within the
image. Pixel based endmembers are further refined using the pixel
purity index (PPI) to limit endmembers to the most spectrally pure
pixels. These endmembers represent idealized examples of the spectral
signature for the given target. For classifying tree species this typically
involves collecting endmember spectra from dense, healthy canopies
with minimal mixing from other tree species, understory or surface
materials. This approach works well when there is consistency in the
spectral signature of target objects throughout the image.

Given that spectral unmixing results are highly dependent on the
input endmembers, we tested to see if this traditional approach would
work in a region of highly variable crown condition for ash species.
Endmember configurations included using only dense, vigor 1 canopies
(traditional approach) and two options to capture the full range of ash
condition: creating an endmember group that included ash canopy
pixels across all four vigor classes (All Vigor), and creating separate
endmember groups for each ash vigor class (Unique Vigor).

Comparing all three endmember configurations using accuracy
statistics from both HS and HSVI imagery inputs we found that using
Unique Vigor endmembers was significantly more accurate than using
only Vigor 1 endmembers or aggregated endmembers across all vigor
classes. This was true in both identifying ash (p = 0.014, 37% mean
producers accuracy) and distinguishing ash from other species (81%
mean overall accuracy p = 0.008) (Table 3). There was no significant
difference between using only Vigor 1 and aggregated All Vigor

Fig. 4. Independent validation polygons selected randomly
from the Bowie street tree inventory.

Table 3
Ash calibration logistic model fit for the six imagery and endmember combinations
considered. All values range from 0 to 1.

Imagery
combination

Endmember
configuration

Logistic
misclassification
rate

Overall
accuracy

Ash
identification
accuracy

HS_VI Unique
endmembers
by vigor class

0.18 0.81 0.46

HS_VI Vigor 1 ash 0.21 0.78 0.30
HS_VI All ash 0.26 0.74 0.11
HS Unique

endmembers
by vigor class

0.21 0.79 0.08

HS Vigor 1 ash 0.22 0.78 0.03
HS All ash 0.22 0.78 0.00
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endmembers.
Many studies have used multiple endmembers to capture a range of

expected spectra contained within mixed pixels (e.g. Roberts et al.,
1998; Franke et al., 2009). This work demonstrates that even when
considering the same target species, a range of independent spectral
endmembers are required when the target is known to vary widely. This
is especially important given the traditional approach of using spectral
libraries or field based reflectance of “pure” spectra to classify vegeta-
tion. Given the range of ash health in the study area and the vast dif-
ference in spectra between healthy vs. stressed trees, it follows that ash
species mapping efforts aimed at detecting a range of health conditions
must include calibration spectra from both healthy and stressed trees as
individual endmembers.

3.3. Ash classification

Our results indicate that significantly higher accuracy is achieved
when utilizing hyperspectral reflectance combined with vegetation in-
dices, and unique endmember calibration to capture the full range of
ash condition. The resulting pixel-based ash probability map (Fig. 6A)
can then be converted to canopy objects through image segmentation
(Fig. 6B).

Based on the independent validation using the Bowie street tree
inventory, overall accuracy for the 290 independent validation points
resulted in 81% overall accuracy in distinguishing ash from non-ash
polygons (Table 4). While overall accuracy is an improvement over
other ash mapping efforts in infested regions (Murfitt et al., 2016 – 63%
overall accuracy), an examination of where errors occur can better in-
form how the resulting mapping products can be used. Errors of com-
mission (6%), primarily involved oak species and red maple incorrectly
classified as ash (13% and 9% error of commission respectively)
(Table 4). Confusion among these species may be due in part to spectral
similarity as well as common association of Fraxinus and Acer species in
eastern forests. Ash tends to grow tall, straight and free of branches for
most of its length (Society of American Foresters Type 20). Thus, a
relatively large ash tree may nevertheless be dominated by only a small
apical crown, and common associates with broader crowns—such as
Acer spp., which may be sub-canopy or co-dominant in the cano-
py—may confound a spectral signature within a pixel.

More significant were errors of omission (65%), suggesting that
even with the unique vigor endmembers most ash canopies were
missed. At the time of this study, the majority of the city's ash trees
were listed in various stages of EAB induced decline. Considering that
ash have relatively sparse canopies when healthy, that then become
even more transparent as decline condition worsens, it is perhaps not
surprising that such a large proportion of ash were missed. To verify if
ash condition was contributing to high errors of omission, we compared
ash identification accuracy across vigor classes on 37 calibration trees
where vigor metrics were available (Table 5). Ash identification

accuracy decreased from 62% for vigor 1 canopies to 22% for vigor 2
canopies. By vigor 4 none of the ash canopies included in the validation
set were identified as ash. It is likely that ash in poor health contained a
substantial proportion of understory or ground spectral characteristics
that masked the signal of the ash canopy, confounding classification.
This highlights the importance of mapping the ash resource prior to the
onset of acute stressors such as EAB. Once decline reaches vigor 2 (e.g.
dieback > 25%) it becomes much more difficult to identify ash ca-
nopies.

Additional error likely resulted from the translation from the 1 m
resolution MTMF raster to object based canopy means used for final
map creation and validation. While 1 m spatial resolution imagery al-
lows for more precise identification of tree locations and individual
crowns than would be possible with larger pixels, high spatial resolu-
tion images inherently include clusters of pixels that represent different
constituents (e.g., foliage, soil, bark/woody material, understory
ground cover, etc.). When aggregated as image objects, vegetation
signatures can be muted by mixed pixels also grouped in that object.
Thus, conversion of high resolution imagery to objects can potentially
confound interpretation of the accuracy of the pixel-based spectral
unmixing outputs. Considering that a portion of any crown contains a
mixture of ash foliage, foliage from nearby trees, as well as bark, un-
derstory and/or other materials, it may be possible to improve ash
mapping accuracy by reducing the mean probability threshold that
must be met for each image object. However, we caution against ar-
bitrarily adjusting classification thresholds to maximize classification
accuracy. This makes resulting maps highly dependent on the specific
validation data set used to assess various thresholds.

Over the entire study area, approximately 5% of all forest canopy
objects were classified as ash. Knowing that we have probably omitted
many ash trees in more advanced stages of decline, true ash cover is
likely higher. In the complete Bowie street tree inventory, ash re-
presents just over 5% of all trees. Because, the concentration of pre-
dicted ash canopies across the landscape are predominantly within the
contiguous forest areas not captured in street tree inventories (Fig. 7)
we believe that our results remain in line with street tree inventory in
spite of our errors of omission. The location of ash in these unsurveyed
areas, as well as identification of ash trees in decline is essential to
manage the spread of EAB in newly infested locations.

4. Conclusions

Mapping ash species in urban environments represents an ambitious
undertaking given the small size and sparse nature of ash canopies, as
well as variation in abundance and condition. Even crowns from the
healthiest ash trees can appear sparse given the species' propensity for
apical dominance and leggy branch distribution, allowing understory
targets to confound reflectance characteristics. In regions of widespread
decline, “typical” canopy reflectance signatures are further

Fig. 5. An example of how various vegetation in-
dices can help distinguish tree species regardless of
canopy vigor (significance at p < 0.0001 denoted
by A vs. B). (A) Ash species had significantly lower
NDVI values compared to all other common species
(p < 0.0001). (B) The Photochemical Reflectance
Index for ash was significantly higher than syca-
more but not different from all other species.
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compromised by changes in foliar density, chemistry and water content.
Nevertheless, this study provides evidence that ash canopies can be
detected with high spatial resolution, hyperspectral remote sensing
imagery across a range of canopy conditions when calibration end-
members, from a range of canopy conditions, are included in classifi-
cation algorithms. This approach involves high spatial resolution, hy-
perspectral imagery, including vegetation indices and MTMF-based
spectral unmixing of ash components for each distinct ash vigor class.

While overall independent classification accuracy was good at 81%,
errors of omission were particularly high, indicating that land managers
must be aware that many ash are likely to be missed. Because ash
classification accuracy consistently decreased with decreasing ash ca-
nopy condition, it is likely that these errors of omission are primarily
missing trees in the later stages of EAB induced decline. This is likely
due to changing foliar chemistry (reductions in photosynthetic struc-
tures and decrease in leaf turgor) and canopy structure. As the canopy
thins, reflectance from understory herbaceous, woody stem and soil
components can saturate reflectance properties (e.g., Schmidtlein,

2005), making the link to endmember ash spectra less likely. This de-
monstrates that spectral characteristics across a range of ash condition
vary so considerably that even when classification algorithms are
trained on canopies representing a range of ash conditions many de-
clining trees are likely to be missed.

These results suggest that managing the ash resource in currently
un-infested regions would benefit from the development of baseline
species maps of the host species prior to infestation when canopies are
relatively healthy. This baseline data can guide logistical planning and

Fig. 6. A. The logistic regression calculates the probability
of ash occurrence for each pixel, which is then averaged for
each image object from the segmentation algorithm. B. All
objects with> 0.50 probability of ash are classified as ash
canopies.

Table 4
Accuracy across the 290 independent validation points representing the most common species and land use types in the study area.

Actual classification

Ash sp. honey locust Oak sp. Red maple Silver maple Sycamore Callery pear Field Imperv. surface

Predicted classification Ash 34 1 7 2 1 0 1 0 0
Other 42 26 48 20 22 29 25 18 14

Ash producer's accuracy 45%
Ash user's accuracy 94%
Overall mapping accuracy 81%

Table 5
Ash mapping accuracy by vigor class.

Vigor 1 Vigor 2 Vigor 3 Vigor 4

Ash 8 2 2 0
Other 5 7 5 8
Accuracy 62% 22% 29% 0%
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avoid classification errors that will likely arise once infestation is well
established. Subsequent remote sensing data acquisitions can take ad-
vantage of this baseline data set (known location of healthy trees) and
the proven methods of mapping forest health (e.g. Pontius et al., 2005a,
b, 2008) to more efficiently create updated maps of canopy condition.
This approach could provide important information to guide city for-
esters and planners as they face infestation and subsequent decline for
an important urban tree species.
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