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Abstract. Wildfires in the eastern United States are generally caused by humans in locations where human development
and natural vegetation intermingle, e.g. thewildland–urban interface (WUI). Knowingwherewildfire hazards are elevated

across the forested landscapemay help landmanagers and property owners plan or allocate resources for potential wildfire
threats. In an earlier paper, we presented amodel showingmonthly hazards of wildfire across Ohio, Pennsylvania andNew
Jersey at a 30-m resolution. Here, we refine the spatial resolution of drought conditions by incorporating a 4 � 4-km

gridded self-calibrated drought index, include mean winter temperature to restrict hazards from being modelled into
locations possibly covered by snow, and compare the performance of the updated models with the original ones. The area
under the curve values for the updated models were within 10% of the values for the original models, but the refinement of
drought conditions resulted in a less generalised probability of hazards, potentially increasing the applicability of these

models. Among the 12 monthly models, the wildland–urban interface had the highest contribution followed by a weighed
drought frequency index.

Additional keywords: cumulative drought severity index (CDSI), hazard mapping, Maxent, New Jersey, Ohio,
Pennsylvania.
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Introduction

Droughts can increase fuel loads by causing tree mortality
(Park Williams et al. 2013; Clark et al. 2016) and can create

conditions of low humidity that dry woody debris and forest
litter, potentially increasing fire ignition and spread (Gill 1983;
Ruthrof et al. 2016). Thus, wildfire hazard models have

incorporated information about drought conditions to account
for this influence (Bradstock et al. 2009; Peters et al. 2013a).
We developed a predictive wildfire hazardmodel that indicates

the long-term likelihood of wildfire occurrence (for further
details see Peters et al. 2013a) using maximum entropy models
parameterised with forest cover, an integrated soil moisture
index (IMI), drought occurrences, and wildland–urban inter-

face (WUI) data. Reported wildfires ($0.1 ha of burned area)
from 2000 to 2009 within the states of New Jersey, Ohio and
Pennsylvania were used to estimate the monthly probability of

wildfire occurrence.
One of the more widely used drought indices for ecological

modelling is Palmer’s Drought Severity Index (PDSI) (Palmer

1965; Dai 2011), a standardised measure of the cumulative
departure in surface water demand and supply. Since its devel-
opment, the PDSI has been updated by Heddinghaus and Sabol

(1991) to address issues of spatial comparability raised by Alley
(1984). More recently, PDSI has been calibrated to site-specific
conditions to account for local climate trends and allow com-
parisons among regions (Wells et al. 2004).

Within the United States, PDSI data are often reported at
climate divisions – subdivisions of each state into 10 or fewer
units, often defined by county lines (Guttman and Quayle 1996).

Drought and moisture conditions are averaged among weather
stations within divisions to account for missing observations,
and studies linking wildfires to regional drought (Miranda et al.

2012; Labosier et al. 2015) have use these aggregated meteoro-
logical records. However, methods to prepare high-resolution
spatially and temporally consistent gridded meteorological

datasets that overcome some of the limitations of the climate
division data, specifically the averaging of conditions across
large areas, are available (Abatzoglou 2013). Gridded datasets
from sources such as the PRISM Climate Group, which interpo-

late values among observations using a Parameter-elevation
Regressions on Independent SlopesModel (PRISM) (Daly et al.
2008), have been used in many applications (Abatzoglou and

Kolden 2011; Peters et al. 2015) to provide a continuous climate
surface based on observed data.

With datasets like PRISM providing monthly estimates of

precipitation and temperature values interpolated to a resolution
of 2.50 (4� 4 km), we processed a self-calibrated PDSI (scPDSI)
algorithm to incorporate finer-resolution drought conditions

into our wildfire hazard model. We anticipated that increasing
the spatial resolution of drought occurrences from climate
divisions to 16-km2 grids might improve the monthly wildfire
hazard models parameterised with reported wildfires from 2000
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to 2009. Additionally, we evaluated whether a snowmelt func-
tion incorporated into the scPDSI algorithm performed better
than models parameterised with mean winter temperature along

with the other four variables (forest cover, IMI, drought occur-
rence andWUI) for December, January and February to account
for potential snow cover.

Methods

We used a maximum entropy model (Maxent) to predict
monthly wildfire hazards defined as the probability of a wildfire
occurring in our study region (New Jersey, Ohio and Pennsyl-
vania). This region is topographically diverse, with rolling hills

to the west transitioning to ridge-and-valley in south-western
Ohio and eastern Pennsylvania, to the Appalachian Mountains
and the coastline of the Atlantic Ocean in New Jersey. The

landscape is predominately 48% temperate forest, 25% agri-
cultural and 17% developed. The models were parameterised
with monthly frequencies of drought, an integrated moisture

index of soil, the percentage of forest cover and wildland–urban
interface classes (Peters et al. 2013a), which we updated to
include fine-scale drought occurrence data. Maxent has been

widely used to estimate (i.e. predict) the probability of presence
for species (Hernandez et al. 2008; Phillips and Dudı́k 2008;
Williams et al. 2009) and wildfire hazard or risk (Parisien et al.
2012; Bar Massada et al. 2013; Peters et al. 2013a). Maxent

methods are advantageous for presence-only datasets (Elith
et al. 2011) such as reported wildfires.

Climate data

Monthly interpolated climate values of precipitation and mean
temperature obtained from 16-km2 PRISM data (PRISM
Climate Group 2012) for the period 1981–2010 were used to

parameterise a self-calibrated PDSI algorithm (Wells et al. 2004).
The average mean winter temperature (December, January and
February) resampled to 30 m was used to parameterise corre-
sponding monthly models to account for potential snow cover,

assuming thatwildfires are not likely to occurwhere temperatures
are near-freezing.During thesemonths,muchof the region can be
wet or covered in snow, preventing wildfire ignition and spread.

We realise that climatic conditions in this region can be influ-
enced by topography and resampling to 30 m could result in a
homogenisation of modelled hazard potential; however, the

variations are likely small at the monthly scale.

Palmer Drought Severity Index

An algorithm to calculate scPDSI values (Wells et al. 2004) that
processes 25þ years of climate data for a specific location was
incorporated into a geoprocessing script. Parameters for self-

calibration include latitude, available water supply (AWS) of the
soil, monthly climate normal (e.g. mean temperature of period),
monthly precipitation and mean temperature. A snowmelt func-

tion (Yan et al. 2014) that accumulates a snowpackwhenmonthly
temperatures are #08C and precipitation .0 mm and then
releases a portion of the snowpack when monthly temperatures

are above freezingwas used to alter monthly precipitation values.
Individual output files for each gridwere compiled into a regional
dataset, and the frequency of drought conditions was combined
into a cumulative drought severity index (CDSI) (Peters et al.

2015). CDSI is the weighted sum of monthly occurrences, cal-
culated for each 16-km2 cell, for moderate (�2.0 to �2.99),
severe (�3.0 to�3.99) and extreme (#�4.0) drought conditions

multiplied by 1, 2 and 3 respectively.
Drought conditions were calculated using climate data

obtained from the PRISM Climate Group (2012) and processed

for each 16-km2 grid centroid. Soil AWS (mm) was obtained
from the county soil survey geographic (SSURGO) database
(NRCS 2009) and prepared using methods described by Peters

et al. (2013b). Mean AWS to a depth of 150 cm was aggregated
from 30-m data to each 16-km2 PRISM grid. The snowmelt
function adds monthly precipitation to a snowpack if tempera-
ture is #08C and thereby alters monthly precipitation values.

Precipitation stored in the snowpack is released by 20% of the
monthly temperature when 08C , temperature # 58C; other-
wise, the entire snowpack is added to the monthly precipitation

corresponding to temperatures exceeding the 58C threshold.

Wildfire hazard model

The Maxent models use four environmental conditions, CDSI,
IMI, percentage forest cover and WUI classes, to predict the
monthly probability of occurrence for reported wildfires during

the period from 2000 to 2009 (see Section S1 of online sup-
plementary material for details of predictors). The weighted
monthly cumulative occurrence of scPDSI values indicating
drought conditions (scPDSI,�1.99) for the 10 months of data

(i.e. January of 2000 to 2009) provides a measure of recent
drought occurrence and severity that aims to represent the rel-
ative hazard for this period. The calculation of IMI (Iverson

et al. 1997), which had been modified to include an infinite
directional flow accumulation algorithm (Tarboton 1997),
provides a measure of long-term potential soil moisture. Per-

centage of forest cover obtained from LANDFIRE (2007) data
helps differentiate forested land from non-forested land. WUI
classes were obtained from the Spatial Analysis for Conserva-
tion and Sustainability (SILVIS Laboratory) at the University of

Wisconsin–Madison and are based on data from the 2000
Census and 1992 National Land Cover Dataset (Radeloff et al.
2005). This component integrates land use and land cover with

human population density and provides a measure of how
intermingled humans are within and among forested landscapes.
Both IMI and forest cover had native resolutions of 30 m,

whereas values of CDSI were resampled from 16-km2 grids and
WUI rasterised from a vector dataset.

Models developed by Peters et al. (2013a) were run for the

present study using the same parameters, but with CDSI based
on scPDSI values instead of the Climate Division data used to
calculate monthly drought frequencies. A total of 4847wildfires
were reported over the 10-year period, and for each month, 10

iterations were run using 75% of the data to train and 25% to test
the models. An additional 527 records from 2010 were used for
evaluation. Additionally, new models were developed for

December, January and February that included: (1) CDSI
values based on scPDSI run without the snowmelt function,
and (2) mean winter temperatures.

Model evaluation

Results from the original models using climate division PDSI
drought frequency (hereafter referred to as climate division
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models), those using a CDSI derived from 16-km2 gridded
scPDSI values (hereafter referred to as CDSI models), and the
3 months with mean winter temperature (hereafter referred to as

winter models) were compared and evaluated for potential
improvements. Evaluation consisted of: (1) a comparison of area
under the curve (AUC) values between the three model para-

meterisations; (2) a comparison among monthly predicted
hazard probabilities for each reported wildfire to determine
which of the two (or three) models resulted in a greater likeli-

hood of occurrence using reported fires from 2000 to 2009 and
527 fires from 2010; and (3) a visual examination of model
output and comparison of areal changes.

Results

The CDSI models developed here showed slight reductions in

AUC (up to 12%) across months, as compared with the climate
division models (Table 1). However, the major difference
between the original climate division models (Peters et al.

2013a; Fig. S1) and the CDSI models (Fig. 1) was the variation
in spatial patterns resulting from the change in resolution of
drought condition data as well as the weighting of drought

classes to incorporate both intensity and frequency. Also dif-
ferent are the percentage contributions from the predictor vari-
ables, where WUI now has more of an influence in the CDSI
models than PDSI (Peters et al. 2013a; Fig. S4). Winter models

for December, January and February that included mean winter
temperature had higher AUC values (9 to 13%) than the CDSI
models that incorporated a snowmelt function, indicating that

temperature was more informative for these months than the
snowmelt function (Table 1). Additionally, mean winter tem-
perature had a greater contribution (64 to 72%) among the

predictor variables for these months.
The 4847 reported wildfires from 2000 to 2009 used to train

monthly models and predict the probability of wildfire hazard,

as well as the 527 fires from 2010 for model evaluation both had
bimodal distributions that peaked in April with 1669 and 213
fires, and again in the fall with 335 fires (November) and 64 fires

(October) for training and testing data respectively (Table 1).
Based on the coordinates associated with the reported fires,
corresponding hazard probabilities were examined among the

climate division, CDSI and winter models. Using the maximum
training sensitivity plus specificity logistic threshold (LT)
calculated byMaxent, unique thresholds were used to determine

whether monthly fires would have been detected by the corre-
sponding models. Among the training data, 63.5 to 83.5, 59.6 to
75.0, and 72.1 to 78.8% of the reported monthly wildfires were

located in cells with probabilities indicating a hazard of occur-
rence among the climate division, CDSI and winter models
respectively (Table 2). The winter models resulted in differ-

ences of 4.9, 16.7 and 2.6% for training data associated with
hazards of occurrence during the months of December, January
and February respectively compared with the CDSI models. For
the testing data of months in 2010 with at least five fires, the

climate division models captured between 34.8 and 77.9%,
whereas the CDSI models captured between 18.8 and 66.7%
of wildfires. Both models had higher accuracy for the spring

fires and lower accuracy for fall fires (Table 2).
In addition to using the LT to assess locations of reported

fires, we compared model outputs for changes in areal extent

among the three models. The winter models had the smallest
area (12.9 to 16.1%) of predicted hazards probabilities within
the region, whereas for some months (February, March, April,
June, September and November), the predicted area of fire

occurrence was quite similar between the climate division and
CDSI models (Fig. S5). However, for other months (May, July,
August, October, and December), the predicted area for CDSI

models substantially exceeded that of climate division models,
especially in May. Only in January did climate division models
exceed CDSI predicted area.

Discussion

The calibration of PDSI values accounts for local patterns of
climatic variability to derive spatially relevant values for the
water balance coefficients rather than using the empirical data

Table 1. Monthly mean area under the curve (AUC) values with standard deviation included in parentheses and predictor variable contribution

(percentage) from 10 model iterations

Predictor variables include wildland–urban interface designation (WUI), Palmer drought severity index (PDSI), percentage forest cover (Forest), an integrated

moisture index (IMI), a cumulative drought severity index (CDSI) that includes a snowmelt function, and ameanmonthly temperature for Jan, Feb andDec (Twin)

Climate division models CDSI models Winter models

AUC WUI PDSI Forest IMI AUC WUI CDSI Forest IMI AUC WUI CDSI Forest IMI Twin

Jan 0.83 (0.02) 57.8 19.3 16.1 6.8 0.82 (0.03) 54.9 20.9 20.3 4.0 0.91 (0.02) 22.0 5.9 6.8 1.2 64.1

Feb 0.81 (0.02) 50.2 25.5 14.1 10.1 0.79 (0.01) 56.7 14.4 16.9 12.0 0.90 (0.01) 19.5 1.1 4.3 2.3 72.7

Mar 0.80 (0.01) 34.9 59.5 5.1 0.5 0.76 (0.01) 66.2 14.1 15.5 4.2

Apr 0.76 (0.01) 63.2 27.6 8.4 0.8 0.75 (0.01) 71.2 17.9 9.6 1.3

May 0.80 (0.01) 32.5 57.8 8.1 1.6 0.75 (0.01) 74.9 7.1 13.2 4.8

Jun 0.83 (0.02) 49.2 33.3 11.3 6.3 0.82 (0.01) 49.2 30.7 12.4 7.8

Jul 0.80 (0.02) 49.8 26.5 13.4 10.4 0.80 (0.02) 52.6 21.0 15.2 11.2

Aug 0.87 (0.02) 8.9 80.8 6.4 3.9 0.79 (0.02) 44.2 30.3 13.5 11.9

Sep 0.79 (0.02) 29.8 48.4 13.9 8 0.76 (0.02) 60.3 2.6 23.9 13.2

Oct 0.89 (0.02) 43 33.4 5.6 17.9 0.77 (0.02) 55.5 15.4 8.6 20.5

Nov 0.82 (0.01) 26.6 53.6 6.3 13.5 0.81 (0.01) 39.9 40.6 8.1 11.4

Dec 0.86 (0.02) 36.7 34.5 7.7 21.1 0.83 (0.03) 40.9 18.9 11.2 29.1 0.90 (0.01) 17.7 1.2 3.4 9.1 68.6
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from a limited set of regions (i.e. central Iowa and western
Kansas) as Palmer’s original equation does (Wells et al. 2004). In
addition to the refinement gained from calibration of climatic
conditions, the fine-scale information provided by a 16-km2

gridded dataset results in a more natural spatial patterning as
compared with abrupt (county) boundaries apparent in the more
generalised climate division data as reported previously by Peters

et al. (2013a). Because the climate divisions divide the states into
10 or fewer units, much of the region has similar drought
occurrence values as opposed to the 16-km2 grids, which are

locally representative and weight the intensity of conditions.
Additionally, incorporating a simple snowmelt function to alter
winter and spring precipitation may also provide some realism to

the February and March models despite the improvement from
winter temperature with training data for February.

Based on AUC values alone, the models using cumulative
weighted drought frequency (CDSI) derived from scPDSI

values had a slight reduction in performance compared with
the models developed with climate division drought frequency.
However, the major advantage to the CDSI models is that the

spatial patterns of drought have been refined to 16-km2 grids,

not the 10 or fewer climatic divisions, altering the distribution of
probability of wildfire occurrence. When examining the per-
centage of reported wildfires coinciding with modelled
probabilities $ the LT for the months of March to November,

the CDSI models are within 17% of the climate division models,
most of which are within 7%. The CDSI models for August and
September have the greatest difference among the two para-

meterisations, with 16.5 and 13.9% respectively. This may be
due to WUI having more of an influence in the CDSI models
rather than the highly generalised drought conditions of the

climate division models for these 2 months.
Differences in the contributions of predictor variables

between the CDSI and climate division models indicated that

drought frequency has less of an influence for the CDSI models
where WUI has the greatest contribution among all months
exceptNovember. In contrast, climate divisionmodels indicated
drought frequency was most important forMarch, May, August,

September andNovemberwhere 73.0 to 91.8%of the region had
one or more drought events. As this predictor variable was
generalised across the region, it may have artificially inflated

climate division model performance. The lower contribution
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Fig. 1. Mean probability of wildfire hazard modelled using maximum entropy (10 iterations). Models were trained with monthly reported wildfires

(2000–09) and four environmental datasets. Note that the spatial variation among predicted values does not resemble climate divisions as presented

in Fig. S1.
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from drought frequency in the CDSI models is likely due to the
higher resolution of the gridded scPDSI values, where 9.2 to
35.8% of the region had no drought and more wildfires occur-

ring in and near WUI classes where human populations have a
greater interaction with vegetation. Additionally, climate divi-
sion PDSI values may not accurately reflect the true drought
conditions experienced during reported fires because conditions

can vary widely across large divisions (Wells et al. 2004; Peters
et al. 2015).

The winter models parameterised with mean winter temper-

ature performed better than the CDSI models with snowmelt for
December through February (Table 1). Mean winter tempera-
ture had the greatest contribution among predictors for these

three models and confirms that drought occurrence during this
season is a poor indicator of wildfire hazards in this region.
Winter temperatures were included to help restrict modelled
hazards in locations typicallywet or covered by snow during this

period. However, accounting for snowmelt in PDSI calculations
can improve early spring values bymore accurately representing
water supplies and deficits.Whereas snow cover will reduce fire

ignitions and spread, periods of warmer than normal winter
temperatures coupled with a precipitation deficit could increase
the potential for wildfires in these areas. Therefore, daily

conditions need to be considered when developing management
practices or planning resource allocations.

Conclusions

The inclusion of high-resolution (16-km2) drought occurrence
derived from scPDSI values as a predictor of wildfire hazard

produced AUC values slightly lower than models generated with
coarse-resolution drought information. However, the spatial

patterns resulting from the high-resolution drought occurrence
data provide detail so that managers can better understand and
plan for their specific area of management. These models reflect

the long-term natural and anthropogenic wildfire hazards within
this three-state region. Though calculation of CDSI and IMI was
needed for this analysis, they are derived from nationally avail-
able data so that the process could be applied anywhere.

Predicting the influence of drought, like modelling the hazard
of wildfires, is difficult because conditions can change within
shorter time intervals than those used to parameterise predictive

models. Our wildfire hazard models provide monthly probabili-
ties based on reportedwildfire occurrences and aremeant to aid in
planning and resource allocation.Managers obviously need to use

current conditions in conjunction with long-term model projec-
tions as they go about their work.
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