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National forest inventories have a long history of using remotely sensed auxiliary information to enhance
estimation of forest parameters. For this purpose, aerial photography and satellite spectral data have
been shown to be effective as sources of information in support of stratified estimators. These
spectral-based stratifications are much more effective for reducing variances for forest area-related
parameters than for parameters related to continuous attributes such as volume and biomass. For vari-
ables related to the latter attributes, stratified estimators using airborne laser scanning auxiliary data
are much more effective, but are less effective than model-assisted estimators using the same auxiliary
data. For inventory applications, however, stratified estimators using the same stratification for all
response variables are naturally multivariate, whereas model-assisted estimators are not. A consequence
is that multiple, univariate applications of model-assisted estimators cannot ensure compatibility among
estimates of inventory parameters related to variables such as forest area, growing stock volume, and tree
density.
The objectives of the study were twofold: (1) to optimize a multivariate, k-NN approach for simultane-

ously predicting multiple forest inventory variables; and (2) to compare multivariate model-assisted gen-
eralized regression estimators using optimized k-NN predictions to post-stratified estimators with
respect to inferences in the form of confidence intervals for multiple forest inventory parameters. The
analyses included use of airborne laser scanning data as auxiliary information and the multivariate k-
NN technique for prediction in support of the model-assisted estimators. The study area was in north
central Minnesota in the USA and is characterized by both lowland and upland forest types interspersed
with wetlands and lakes.
The first primary result was that the optimized k-NN technique in combination with a model-assisted

estimator produced compatible multivariate estimates of population means for six inventory parameters.
Second, variances for the multivariate model-assisted estimators were smaller by 23%–35% than vari-
ances for a post-stratified estimator. These results warrant serious consideration of this approach for
operational implementation by national forest inventories.

Published by Elsevier B.V.
1. Introduction

National forest inventories (NFI) in the Nordic countries and the
United States of America (USA) have a long history of using remo-
tely sensed auxiliary information to enhance inferences in the form
of confidence intervals for forest inventory parameters. Aerial pho-
tography served as the earliest source of remotely sensed informa-
tion for constructing stratifications for this purpose. Bickford
(1953, 1960) in the USA and Poso (1972) in Finland constructed
strata based on interpreted aerial photography to support stratified
estimation. More recently, satellite imagery has served as the
source of information for constructing stratifications. With this
approach, the imagery is classified with respect to a forest attribute
of interest, and the classes, or aggregations of the classes, serve as
strata (Poso et al., 1984, 1987; Hansen and Wendt, 2000;
McRoberts et al., 2002, 2006). McRoberts et al. (2012) provide more
details on the history of using aerial photography and satellite ima-
gery to support stratified estimators for forest inventory applica-
tions. Although stratifications based on aerial photography and
satellite imagery have been shown to be effective for increasing
the precision of estimators of forest area, their effectiveness for
attributes such as growing stock volume and biomass is consider-
ably less (McRoberts et al., 2006).
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The advent of airborne laser scanning (ALS) data has introduced
new possibilities for using remotely sensed auxiliary information
to increase the precision of estimators of parameters related to for-
est volume and biomass. Næsset (2002) reported that 80–93% of
the variability in field measured forest volume could be explained
by models that use ALS metrics, and Næsset and Gobakken (2008)
reported that 88% of the variability in aboveground biomass could
be explained with models using similar metrics. These results have
been confirmed in multiple additional studies (Li et al., 2008; Zhao
et al., 2009; Frazer et al., 2011). McRoberts et al. (2012, 2013)
demonstrated that ALS-based stratifications increase precision for
estimators of growing stock volume comparable to the increases
satellite image-based stratifications produce for forest area. How-
ever, for continuous forest attributes such as growing stock vol-
ume, model-assisted estimators using ALS data increase precision
by even more than stratified estimators (McRoberts et al., 2013).
With model-assisted estimators, an initial estimate based on
model predictions for all population units is adjusted using differ-
ences between sample unit observations and predictions to com-
pensate for systematic prediction error.

For operational purposes, NFIs require compatibility among esti-
mates of parameters for different attributes. For example, for a par-
ticular estimation unit, a small estimate of forest area should not
accompany a large estimate of growing stock volume. Such prob-
lems do not arise with stratified estimators using the same stratifi-
cation because the stratifications only provide weights which are
applied equally to observations for all response variables. Model-
assisted estimators, on the other hand, require predictions for all
response variables for all population units, and if amultivariate pre-
diction approach is not used, then inevitably incompatible predic-
tions such as large growing stock volume for a population unit
that is predicted to have no forest cover will occur.

Multivariate regression methods typically require multivariate
normally distributed response variables, a condition that is seldom
satisfied for forest inventory variables. An alternative that has
become very popular for use with remotely sensed data for forest
inventory applications is the multivariate, non-parametric k-
Nearest Neighbors (k-NN) technique (Chirici et al., 2016). Among
the reported multivariate applications of k-NN, Temesgen et al.
(2003) and LeMay and Temesgen (2005) predicted basal area and
tree density using variables that included crown closure, height,
age and ecological zone. McRoberts et al. (2007) and McRoberts
(2009) predicted basal area, tree density and volume using Landsat
metrics and used model-based inference to estimate small area
means and their standard errors. Nothdurft et al. (2009) and
Breidenbach et al. (2010) predicted total and three species-
specific timber volumes for stands using ALS and optical data.
Dash et al. (2015) predicted basal area, tree density, volume, and
height using lidar metrics and estimated stand-level means and
standard errors using the same approach to model-based infer-
ence. These studies established the utility of k-NN for multivariate
prediction and for small area, model-based inference. However,
none of these studies focused on larger areas on the order of inven-
tory reporting units that are amenable to probability-based
(design-based) inferential methods.

The objectives of the study were twofold: (1) to optimize a mul-
tivariate, k-NN approach for simultaneously predicting multiple
forest inventory variables; and (2) to compare multivariate
model-assisted generalized regression (GREG) estimators using
optimized k-NN predictions to post-stratified (STR) estimators
with respect to inferences in the form of confidence intervals for
multiple forest inventory parameters. For both the stratified and
model-assisted estimators, the auxiliary information was in the
form of metrics derived from ALS data. The study area was in north
central Minnesota in the USA and is characterized by both lowland
and upland forest areas interspersed with wetlands and lakes.
2. Data

2.1. Study area

The 7583-km2 study area consisted of the entirety of Itasca
County in north central Minnesota in the USA (Fig. 1). Land cover
includes water, wetlands and forest consisting of uplands with
deciduous mixtures of pines (Pinus spp.), spruce (Picea spp.), and
balsam fir (Abies balsamea (L.) Mill.) and lowlands with spruce
(Picea spp.), tamarack (Larix laricina (Du Roi) K. Koch), white cedar
(Thuja occidentalis (L.)), and black ash (Fraxinus nigra Marsh.).
2.2. Forest inventory data

Data were obtained for plots established by the Forest Inventory
and Analysis (FIA) program of the U.S. Forest Service which con-
ducts the NFI of the USA. The FIA program has established field plot
centers in permanent locations using a systematic unaligned sam-
pling design that is regarded as producing an equal probability
sample (McRoberts et al., 2010). The entire array of plots for Min-
nesota is subdivided into five systematic interpenetrating panels,
and one panel is selected on a rotating basis for measurement each
year. Each FIA plot consists of four 7.32-m (24-ft) radius circular
subplots that are configured as a central subplot and three periph-
eral subplots with centers located at 36.58 m (120 ft) and azimuths
of 0�, 120�, and 240� from the center of the central subplot. Field
crews visually estimate the proportion of each subplot that satis-
fies the FIA definition of forest land: (i) minimum area 0.4 ha (1.0
ac), (ii) minimum tree cover of 10%, (iii) minimum width of
36.58 m (120 ft), and (iv) forest land use. For plots on forest land,
field crews also observe species and measure diameter at breast-
height (dbh, 1.37 m, 4.5 ft) and height for all trees with dbh of at
least 12.7 cm (5 in.) on each subplot. Allometric model predictions
of individual tree stem volumes are aggregated at subplot-level.
For this study, uncertainty associated with the allometric model
predictions was ignored. Species-level specific gravities are used
to convert tree volumes to aboveground live tree stem biomass.
Subplot-level response variables for this study included proportion
forest area (A), basal area (BA, m2/ha), growing stock volume (V,
m3/ha), aboveground live tree stem biomass (AGB, Mg/ha), tree
density (D, stems/ha), and mean live tree height (HT, m).

Data were used for only the central subplots of the 242 plots
measured in 2014 and 2015, because these were the only subplots
and years for which plot coordinates were obtained using survey
grade GPS receivers with sub-meter accuracy. For further refer-
ence, use of the term plot refers to the central subplot.
2.3. Airborne laser scanning data

Wall-to-wall ALS data were acquired in April 2012 with a nom-
inal pulse density of 0.67 pulses/m2. Ground returns were classi-
fied by the provider and were used to construct a digital terrain
model via interpolation using the Tiffs (Toolbox for Lidar Data Fil-
tering and Forest Studies) software (Chen, 2007). For this study
that uses relatively small plots and ALS data characterized by small
pulse densities, all pulse returns were used.

Distributions of all pulse return heights were constructed for
the 168.3-m2 plots and for the 169-m2 square cells that tessellated
the study area and served as population units. ALS metrics for each
plot and cell included the mean (hmn), standard deviation (hsd),
skewness (hsk), kurtosis (hku), and quadratic mean height (hqm) of
the distributions of heights for all pulse returns (Lefsky et al.,
1999; Chen et al., 2012). In addition, heights corresponding to
the 10th, 20th, . . ., 100th percentiles (h10, h20, . . ., h100) of the dis-
tributions were calculated as were canopy densities expressed as



Fig. 1. Study area: Itasca County, Minnesota, USA.
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the proportions of pulse returns with heights greater than 10%, . . .,
90%, 95% (cd10, . . ., cd90, cd95) of the range between a minimum ALS
above ground height threshold and the 95th height percentile
(Gobakken and Næsset, 2008).

2.4. Outliers

Partly as a result of the FIA program’s 5-year remeasurement
cycle, two factors affected the utility of the observations for some
FIA plots. First, because the ALS data were acquired in 2012 but the
plots were not measured until 2014 and 2015, some plots were
harvested or otherwise substantially disturbed between the two
dates. To alleviate this discrepancy, plots were deleted from further
analyses if they simultaneously satisfied three criteria: (i) 2009 or
2010 AGB greater than the 20th percentile of distribution of
observed 2014/2015 AGB for forest plots, (ii) 2014 or 2015
AGB = 0, and (iii) hqm greater than the 20th percentile of the distri-
bution of observed hqm for plots satisfying the first two criteria.
Together the first two criteria indicate plot-level disturbance such
as harvest, and given satisfaction of the first two criteria, the third
criterion indicates the disturbance was after the ALS acquisition
but before the plot measurement. Second, the FIA program classi-
fies plots with respect to forest use, not forest cover. Therefore,
plots classified as non-forest use but with measurable trees (e.g.,
orchards, parkland, residential property) would not be measured
in the field and would have all tree-based attributes arbitrarily
set to 0. To alleviate this discrepancy, plots were deleted from fur-
ther analyses if they simultaneously satisfied two criteria: (i) clas-
sified as non-forest land use in 2014 or 2015, and (ii) hqm greater
than the 20th percentile of the distribution of observed hqm.
Together these two criteria indicate non-forest use but with mea-
surable trees. Selection of the 20th percentile is arbitrary, albeit
conservative because it leads to fewer deletions than smaller per-
centiles. With this approach, observations for 19 of the 242 plots
were deleted and were considered to be missing at random
(Rubin, 1976).
3. Methods

3.1. Optimization criterion

For forest inventory purposes, the ultimate analytical objective
is a statistical inference in the form of a confidence interval for the
population mean or total for each response variable. However,
because observations of the multiple response variables are posi-
tively correlated as a result of being based on the same underlying
tree data, estimates of the means will also be positively correlated.
When only a single response variable is of interest, the inferential
criterion would be minimization of the confidence interval width,
but when multiple response variables are simultaneously of inter-
est, the analogous criterion is minimization of the hypervolume
(multi-dimensional volume) of the joint confidence region
(Fig. 2). Because this hypervolume is proportional to the square
root of the determinant of the estimated parameter covariance
matrix, minimization of the square root of the determinant was
the technical optimization criterion for this study. Optimization
details are provided for specific estimators in the sections that fol-
low. However, regardless of the optimization approach, confidence
intervals for the means of individual response variables are still
reported and are still expressed as l̂r � t � SEðl̂rÞ where r denotes
the response variable, l̂r is the estimate of the mean, and
SEðl̂rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârðl̂rÞ

p
.

3.2. Simple random sampling estimators

With equal probability sampling designs, the simplest approach
to inference is to use the familiar simple random sampling (SRS)
estimators for means and their variances,

l̂SRS ¼ 1
n

Xn

i¼1

yi ð1aÞ



Fig. 2. Confidence intervals and joint confidence region illustrating that the
confidence intervals do not necessarily reflect the shape or hypervolume of the
confidence region.
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and

Vârðl̂SRSÞ ¼
Pn

i¼1ðyi � l̂SRSÞ2
nðn� 1Þ ; ð1bÞ

where i indexes the n sample units, and yi is the observation for the
ith sample unit. The primary advantages of the SRS estimators are
that they are intuitive, simple, and unbiased when used with an
SRS design; the disadvantage is that variances are frequently large,
particularly for small sample sizes and/or populations with large
variability among population unit observations. Although
Vârðl̂SRSÞ from Eq. (1b) may be biased when used with systematic
sampling, it is usually conservative in the sense that it over-
estimates the variance (Särndal et al., 1992). For this study, finite
population correction factors were ignored because of the small
sampling intensity of approximately one plot per approximately
183,000 population units.

3.3. Stratified estimators

Stratified estimates of means are calculated using the estimator
provided by Cochran (1977) as,

l̂STR ¼
XH

h¼1

whl̂h ð2aÞ

where

l̂h ¼ 1
nh

Xnh

i¼1

yhi;

h = 1,. . ., H denotes strata; yhi is the ith sample observation for the
hth stratum; wh is the weight for the hth stratum calculated as
the proportion of population units assigned to the stratum; nh is
the number of plots assigned to the hth stratum; l̂h and r̂2

h are
the sample estimates of the within-stratum mean and variance,
respectively; and STR denotes the stratified estimators.

NFIs often use permanent plots whose locations are based on
systematic grids or tessellations and use sampling intensities that
are constant over large geographic areas. In such cases, even
though stratified sampling is not possible, estimator precision
can still be increased by using stratified estimation subsequent to
the sampling, a technique characterized as post-sampling stratifi-
cation or simply post-stratification. Cochran (1977, p. 135) provides
a stratified estimator of the variance for use with post-
stratification and the resulting random within-strata sample sizes,

Vârðl̂STRÞ ¼
XH

h¼1

wh
nh

n
r̂2

h

nh
þ 1

n

XH

h¼1

ð1�whÞnh

n
r̂2

h

nh
; ð2bÞ

where n is the total sample size over all strata and

r̂2
h ¼ 1

nh � 1

Xnh

i¼1

ðyhi � l̂hÞ2:

Stratifications that are most effective with respect to minimiz-
ing variances are based on variables that are closely related to
the response variable or variables of interest. When multiple
response variables are to be estimated simultaneously, the same
stratification must be used for all response variables to ensure
compatibility. For this study, BA was considered as an integrator
of all the response variables and was used as the basis for con-
structing strata. To facilitate stratification, a model of the relation-
ship between plot-level BA (m2/ha) and the ALS metrics was
constructed as,

yi ¼ ðb0 � xb1
1i Þ � eb2x2iþ���þbpxpi þ ei; ð3Þ

where i indexes plots, p is the number of predictor variables, yi is
plot-level BA, the xi are ALS metrics, the bs are parameters to be
estimated, and ei is a random residual assumed to follow a normal
distribution, Nð0;r2

i Þ. The form of the model is based on previous
experiences whereby a single ALS metric, often hmn or hqm, accounts
for half or more of the variation in the response variable. Thus, the
initial power component of the model incorporates this single ALS
metric and the exponential component of the model includes addi-
tional metrics that incrementally increase or decrease predictions.
Quality of fit of the model to the data was assessed using pseudo-R2,

R2� ¼ SSmn � SSres
SSmn

; ð4Þ

where SSmn is the sum of squared differences between observations
and their mean and SSres is the sum of squared differences between
observations and their corresponding model predictions.

The model prediction of BA for each population unit was
divided by the greatest model prediction for all population units
and multiplied by 100, thereby scaling all predictions to the
[0,100] interval. Each population unit was then assigned to one
of the 101 standardized classes [0,0], (0,1], . . ., (99,100], and the
proportion of units assigned to each class was calculated. Stratifi-
cations were constructed by aggregating adjacent classes into
nstr = 4, nstr = 6, and nstr = 8 larger strata with each representing
an approximately equal proportion of the study area. The rationale
for selecting nstr = 4 as the minimum number of strata was that this
is the number used by the FIA program for the study area; the
rational for selecting nstr = 8 as the maximum number of strata
was based on Cochran’s (1977, p. 134) recommendation that more
than 6–8 strata are not likely to produce additional gain in preci-
sion beyond smaller numbers of strata. All stratifications were sub-
ject to two constraints: (i) only adjacent classes could be
aggregated into a larger stratum, and (ii) a minimum of 10 plots
per stratum was required (Särndal et al., 1992, p. 267, 407;
Cochran, 1977, p. 134; Westfall et al., 2011). Breidt and Opsomer
(2008) coined the term endogenous post-stratification to describe
this approach to post-stratification and established that for mono-
tonic, parametric models such as Eq. (3), the adverse consequences
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of using the same data to construct strata as are used as the
response variable are minimal.

3.4. Model-assisted, generalized regression estimators

A synthetic estimator of the population mean for the rth

response variable is,

l̂r
Syn ¼ 1

N

XN

i¼1

ŷr
i ; ð5aÞ

where N is the population size and ŷr
i is the model prediction for the

ith population unit. Hansen et al. (1983) note that models that do
not ‘‘represent the state of nature” induce bias into this estimator
which, for equal probability samples, can be estimated as,

B̂iasðl̂r
i Þ ¼

1
n

Xn

i¼1

eri ; ð5bÞ

where eri ¼ ŷr
i � yr

i . The model-assisted, generalized regression (GREG)
estimator is then,

l̂r
GREG ¼ l̂r

syn � B̂iasðl̂r
SynÞ

¼ 1
N

XN

i¼1

ŷr
i �

1
n

Xn

i¼1

eri ð5cÞ

(Särndal et al., 1992; Särndal, 2011). For �er ¼ 1
n

Pn
i¼1eri , the esti-

mator of the covariances for the estimates of the means from Eq.
(5c) is,

Côvðl̂r1 ; l̂r2 Þ ¼ 1
nðn� 1Þ

Xn

i¼1

ðer1i � �er1 Þ � ðer2i � �er2 Þ; ð5dÞ

and is a straightforward multivariate extension of the univariate
estimator for a single variable as provided by Särndal et al.
(1992). Optimization for the GREG estimators consisted of minimiz-
ing the square root of determinant of the covariance matrix from Eq.
(5d).

3.5. Nearest neighbors techniques

For notational purposes, Y denotes a possibly multivariate vec-
tor of response variables observed for a sample, and X denotes a
vector of auxiliary variables with observations for the entire popu-
lation. In the terminology of nearest neighbors techniques, the
auxiliary variables are designated feature variables; the space
defined by the feature variables is designated the feature space;
the sample of population units for which observations of both
response and feature variables are available is designated the refer-
ence set with size denoted n; and the set of population units for
which predictions of response variables are desired is designated
the target set with size denoted N.

For a continuous response variable, r, the nearest neighbors pre-
diction, ŷr

i , for the ith target unit is calculated as,

ŷr
i ¼

Xk

j¼1

wijyr
ij; ð6Þ

where yr
ij; j ¼ 1; 2; . . . ; k

n o
is the set of response variable observa-

tions for the k reference units that are most similar or nearest to
the ith target unit in feature space with respect to a distance metric,
d, and wij is the weight assigned to the jth nearest neighbor withPk

j¼1wij ¼ 1.
Implementation of the k-NN technique requires selection of a

distance metric, the particular feature variables, the number, k, of
nearest neighbors, and a method for weighting the neighbors.
McRoberts et al. (2016, 2017) compared multiple combinations
of these factors and concluded that the particular selections are
not as important as optimization of the selections. Therefore, for
ease of optimization, the canonical correlation analysis distance met-
ric (CCA) and the Dudani neighbor weighting options were selected.

With the CCA metric, first proposed by Moeur and Stage (1995),
a system of linear equations is solved to obtain estimates of coef-
ficient vectors, a and b, that maximize the correlation between
U ¼ a1 � Y1 þ � � � þ ap � Yp and V ¼ b1 � X1 þ � � � þ bq � Xq where Yr

denotes the rth response variable, Xj denotes the jth feature vari-
able, and p and q are the numbers of response and feature vari-
ables, respectively. The solutions are obtained using canonical
decompositions for which the eigenvectors, also designated canon-
ical correlation coefficients, are denoted C, and the corresponding
eigenvalues, also designated canonical correlations, are denoted k.
Feature space distances are then expressed as,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � XjÞ0CK2C0ðXi � XjÞ

q
; ð7Þ

where the elements of the diagonal matrix,K, are the squares, k2, of
the canonical correlations.

Dudani (1976) proposed a weighting scheme which, slightly
modified, bases the weight for the jth neighbor on the ratio of the
distance between the jth and kth neighbors and the distance
between the first and the kth neighbors,

wij ¼ di;kþ1 � di;1

W
; ð8Þ

where W ¼ Pk
j¼1

di;kþ1�di;j
di;kþ1�di;1

. McRoberts et al. (2016, 2017) discusses

this weighting scheme in detail, illustrates its implementation,
and notes a slight modification that was used for this study.

With nearest neighbors techniques, unlike with regression
models, prediction accuracy is adversely affected by feature vari-
ables unrelated to the response variable. These unrelated feature
variables, characterized as irrelevant variables by Langley and Iba
(1993), introduce randomness into distance calculations, con-
tribute to selection of spurious neighbors, and produce less accu-
rate predictions. Although the CCA distance metric theoretically
weights feature variables relative to their importance, McRoberts
et al. (2016, 2017) showed that prediction accuracy can be
increased with this metric if irrelevant feature variables are first
eliminated.

Optimization, therefore, consisted of elimination of irrelevant
variables and use of the CCA metric and Dudani neighbor weight-
ing together with the joint selection of the feature variables and
the k-value that minimized the square root of the determinant of
the joint covariance matrix for estimates of the population means
for the six response variables. For each number of feature variables,
all combinations were evaluated using a leave-one-out approach
(Elisseeff and Pontil, 2002) with the reference data to select the
particular combination and k-value that minimized the square root
of the determinant.

4. Results and discussion

4.1. k-Nearest neighbors technique

The technical criterion for selection of k-NN feature variables, or
equivalently identification and elimination of irrelevant features
variables, was the square root of the determinant of the joint
covariance matrix for the GREG estimates of the six response
variable means. Minimization of this criterion was achieved for
eight k-NN feature variables in the form of ALS metrics (Fig. 3).
Thus, even though the CCA metric weights feature variables,



Fig. 3. Optimization of the k-Nearest Neighbors technique.
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identification and elimination of irrelevant feature variables had
beneficial effects. R2⁄ values for the individual response variables
were also generally largest for approximately the same number of
feature variables that minimized the determinant.
4.2. Stratified (STR) estimator

For the model of Eq. (3) used to predict BA, the initial power
component of the model with hqm as the predictor variable pro-
duced R2⁄ = 0.668 which was the greatest among all ALS metrics.
Three additional mid-range height percentile metrics all statisti-
cally significantly improved the quality of the fit of the model to
the data and produced R2⁄ = 0.734. Of importance, lack of fit of
the model to the data does not induce bias into the stratified esti-
mator but only reduces the degree to which estimator precision is
increased. Relative to the SRS estimators that used no stratification,
use of four strata decreased SEs by 29.0%–38.1%, depending on the
response variable; relative to four strata, use of six strata reduced
SEs by 2.3%–7.3%; and relative to six strata, use of eight strata
reduced SEs by no more than 4% and for two response variables
actually increased SEs (Table 1). Therefore, stratified estimates
for the six response variables, based on six strata, were used for
comparison to GREG estimates.
Table 1
Stratified estimates.

Response variablea Number of strata

4 strata 6

l̂STR SEðl̂STRÞ l̂

A (proportion) 0.648 0.021
BA (m2/ha) 10.639 0.621
V (m3/ha) 66.579 4.773
AGB (Mg/ha) 41.164 2.590
D (stems/ha) 295.783 14.614 2
HT (m) 9.996 0.342

a A = proportion forest area, BA = basal area, V = growing stock volume, AGB = aboveg
4.3. Generalized regression estimator (GREG)

Bias estimates obtained for the GREG estimator were small rel-
ative to estimates of the means, ranging in absolute value from
1.0% to 7.0% (Table 2). Further, the absolute values of all bias esti-
mates were less than 1.5 SEs, suggesting lack of statistical signifi-
cance. Subtraction of the bias estimate in the formulation of the
GREG estimator of the mean is particularly useful for the k-NN pre-
dictor because of its tendency, particularly with large values of k,
to under-predict large values and to over-predict small values
(McRoberts, 2012, Section 3.4). Subject to probability sampling,
subtraction of the bias makes the GREG estimator of the mean
asymptotically unbiased, regardless of the prediction technique.
4.4. Multivariate versus univariate comparisons

GREG estimates for the six response variables obtained using
the multivariate application of the k-NN technique were compared
to GREG estimates for the six variables obtained using six indepen-
dent univariate applications of the k-NN technique. Optimization
for each response variable for the latter analyses entailed selecting
the optimal combination of feature variables and k-value for use
with the CCA metric and the Dudani neighbor weighting method.
strata 8 strata

STR SEðl̂STRÞ l̂STR SEðl̂STRÞ
0.658 0.020 0.673 0.019

10.495 0.596 11.014 0.596
65.707 4.663 69.154 4.578
40.392 2.414 42.817 2.458
97.447 14.230 309.044 16.848
10.045 0.317 10.378 0.305

round live tree stem biomass, D = tree density, HT = mean height.



Table 2
Comparing estimators.

Response variablea Estimator

Simple random (SRS) Stratified (STR)b Generalized regression (GREG)

l̂SRS SEðl̂SRSÞ l̂STR SEðl̂STRÞ B̂iasðl̂SynÞ l̂GREG SEðl̂GREGÞ

A (proportion) 0.598 0.033 0.658 0.020 0.007 0.657 0.018
BA (m2/ha) 10.174 0.941 10.495 0.596 �0.529 11.254 0.514
V (m3/ha) 64.574 6.716 65.707 4.663 �4.576 70.268 3.974
AGB (Mg/ha) 39.517 3.888 40.392 2.414 �3.047 43.412 2.124
D (stems/ha) 277.952 21.875 297.447 14.230 3.097 314.243 12.436
HT (m) 9.231 0.560 10.045 0.317 �0.092 10.157 0.273

a A = proportion forest area, BA = basal area, V = growing stock volume, AGB = aboveground live tree stem biomass, D = tree density, HT = mean height
b Using six strata as per Table 1.

Table 3
Multivariate versus univariate estimates.

Response variable R2*
B̂iasðl̂SynÞ l̂GREG SEðl̂GREGÞ

Multivariatea

A (proportion) 0.687 0.007 0.657 0.018
BA (m2/ha) 0.702 �0.529 11.254 0.514
V (m3/ha) 0.650 �4.576 70.268 3.974
AGB (Mg/ha) 0.702 �3.047 43.412 2.124
D (stems/ha) 0.677 3.097 314.243 12.436
HT (m) 0.763 �0.092 10.157 0.273
Univariateb

A (proportion) 0.763 �0.002 0.681 0.016
BA (m2/ha) 0.703 0.450 9.865 0.512
V (m3/ha) 0.660 1.830 68.086 3.904
AGB (Mg/ha) 0.771 1.542 38.545 1.857
D (stems/ha) 0.677 �2.800 319.017 12.436
HT (m) 0.793 0.012 10.273 0.252

a Optimization: minimize confidence region hypervolume.
b Optimization: maximized individual variable R2*.
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As expected, univariate R2⁄ values were larger than multivariate
R2⁄ values by as much as 11.1% (Table 3). One effect of the larger
univariate R2⁄ values is that the univariate SEs were smaller than
the multivariate SEs by as much as 12.6%. The univariate means
ranged from 12.4% smaller to 3.7% greater than the multivariate
means with the greatest percentage differences for the three
diameter-based response variables, BA, V, and AGB. Because the
response variables are strongly correlated and their means are
reported simultaneously, multivariate inference is the preferred
statistical approach. Consequences of failure to use the multivari-
ate approach were that estimates of means differed by as much
as 12.4%.
4.5. Inventory consequences

Use of the GREG estimators reduced SEs by 10.0%–13.8% relative
to the stratified estimators (Table 2). The impact of these reduc-
tions can be expressed in terms of relative efficiency, calculated as,

RE ¼ Vârðl̂STRÞ
Vârðl̂GREGÞ : ð9Þ

Because variances are inversely proportional to sample sizes, RE
can be interpreted as the factor by which the sample size would
have to be increased for estimator l̂STR to achieve the same variance
as was achieved with the estimator l̂GREG. For l̂STR with six strata,
REs for the six response variables were in the rather narrow range
of 1.23–1.35. These results suggest that for these six response vari-
ables, use of the l̂GREG estimators with ALS auxiliary data could pos-
sibly reduce required sample sizes by 23%–35% with no loss of
precision relative to the l̂STR estimators with six BA-based strata.
For the study area, the FIA program currently uses post-stratified
estimators with four strata derived from a tree canopy cover pro-
duct which, in turn, is partially based on Landsat imagery
(Gormanson et al., 2017; Homer et al., 2015). A multivariate test
of significance was used to compare the post-stratified estimates
obtained using the FIA stratification and the GREG estimates
obtained for this study. The Hoteling T2 test indicated no statisti-
cally significant difference between the two sets of estimates at
the a = 0.05 significance level, although the GREG estimates were
all larger than the post-stratified FIA estimates (Hotelling, 1931).
The latter result is attributed to plots with trees on land with
non-forest use for which tree-based attributes were incorporated
into the GREG estimates with positive values but into the FIA esti-
mates with values of 0. The individual FIA SEs were larger than the
GREG SEs by 38%–57%with corresponding REs ranging from 1.91 to
2.48. The latter result suggests that if the FIA program were to use
the GREG estimatorswith ALS auxiliary data, the sampling intensity
could be reduced by approximately half with no loss of precision.
Further, when considering that the FIA estimates were based on
data for all four subplots of each plot, whereas the GREG estimates
were based on data for only a single subplot for the same plots, the
sampling intensity could be reduced even more. A 50% reduction in
sampling intensity could be achieved by measuring only half as
many plots each year, by measuring only two of the four subplots
at each plot location, or by using a single plot with twice the area
of the current central subplot at each plot location. With the latter
option, the FIA plot size would be approximately 335 m2 which
would still be less than the much more commonly used 500-m2

NFI basic sampling unit (Tomppo et al., 2010, NFI Reports). Further,
the larger plot size would be more amenable for use with remotely
sensed auxiliary data (Vauhkonen et al., 2014, p. 6).
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5. Conclusions

Two primary conclusions were drawn from the study. First,
optimization of the k-NN technique for multivariate prediction
by minimizing the square root of the determinant of the covariance
matrix of response variable means was generally satisfactory. Opti-
mization of this criterion was only slightly more computationally
difficult than optimization of a criterion such as root mean square
error. In addition, for the six response variables considered, multi-
variate optimization produced little loss in prediction accuracy rel-
ative to individual univariate optimizations.

Second, the generalized regression estimators reduced standard
errors relative to those obtained using the post-stratified estima-
tors with six strata by 10.0%–13.5%. Further, increases in sample
sizes for use with the post-stratified estimators necessary to
achieve the same precision as with the generalized regression esti-
mators were in the range of 23%–35%. For most national forest
inventories, sample size increases of this magnitude are not finan-
cially feasible.

From an operational perspective, the results of the study sug-
gest that multivariate, airborne laser scanning-assisted inventories
could be fairly easily implemented, subject to availability of the
airborne laser scanning data. If such data are not available, then
consideration could be given to reducing the sampling intensity
to offset the cost of acquiring the airborne laser scanning data.
For the FIA program, reduction of the sampling intensity by as
much as half would likely entail no loss of precision.
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