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Abstract

Tropical peatlands store a significant portion of the global soil carbon (C) pool. How-

ever, tropical mountain peatlands contain extensive peat soils that have yet to be

mapped or included in global C estimates. This lack of data hinders our ability to

inform policy and apply sustainable management practices to these peatlands that

are experiencing unprecedented high rates of land use and land cover change. Rapid

large-scale mapping activities are urgently needed to quantify tropical wetland

extent and rate of degradation. We tested a combination of multidate, multisensor

radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for

detecting peatlands in a 2715 km2 area in the high elevation mountains of the

Ecuadorian p�aramo. The map was combined with an extensive soil coring data set

to produce the first estimate of regional peatland soil C storage in the p�aramo. Our

map displayed a high coverage of peatlands (614 km2) containing an estimated

128.2 � 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up

to the country level, p�aramo peatlands likely represent less than 1% of the total land

area of Ecuador but could contain as much as ~23% of the above- and belowground

vegetation C stocks in Ecuadorian forests. These mapping approaches provide an

essential methodological improvement applicable to mountain peatlands across the

globe, facilitating mapping efforts in support of effective policy and sustainable

management, including national and global C accounting and C management efforts.
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1 | INTRODUCTION

Worldwide concerns about the consequences of human-induced

changes to the global carbon (C) cycle have generated many interna-

tional initiatives to quantify peatland C stocks. This is particularly

important in tropical peatlands that are currently estimated to store

18%–25% of global peat C stocks (Page, Rieley, & Banks, 2011).

However, our understanding of the extent and C stocks of many of

these areas is imperfect because mapping techniques either cannot

detect peat from nonpeat ecosystems, operate at coarse spatial reso-

lution, or have yet to be discovered (Dargie et al., 2017). Developing

mapping techniques that provide rapid and accurate tropical wetland

area and C stock determinations will enhance estimates of peatland

C stocks and turnover.

Recent advances have been made in mapping tropical lowland wet-

land (e.g., peat swamps and mangroves) spatial extent and C stocks at

a global scale (Gumbricht, 2012); however, mountains are not included

in these wetland mapping efforts. This creates a large knowledge gap
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on the contribution of mountain peatlands to global wetland distribu-

tion and C storage. Having effective mapping methods for these

ecosystems is important both for quantifying the contribution of

mountain peatlands to global C stocks, and also because mountain

ecosystems are experiencing high rates of land-use change including

drainage, agriculture, mining, peat extraction, and water diversion (Gar-

avito et al., 2012). In addition, the tropics are forecast to experience

significant climate change over the next century (Cuesta et al., 2012;

Urrutia & Vuille, 2009; Li et al., 2007) with the greatest temperature

increases predicted for high elevation ecosystems (Bradley, Vuille,

Diaz, & Vergara, 2006). Therefore, land-use conversion and climate

change could have synergistic and widespread consequences for tropi-

cal mountain peatland sustainability (Mantyka-pringle, Martin, &

Rhodes, 2012) and their many ecosystem services (e.g., C sequestra-

tion, water source/storage, grazing habitat, plant and animal diversity,

and agriculture) (Buytaert et al., 2006; Buytaert & De Bi�evre, 2012); Di

Pasquale et al., 2008; Mosquera, Lazo, C�elleri, Wilcox, & Crespo, 2015.

Mountain peatlands can be challenging to map because they are

commonly small and, as a result, when mapped they are often com-

bined with other wetland types into a single class or mapped as upland

(Anaya, Colditz, & Valencia, 2015; Eva et al., 2004). Furthermore, map-

ping with optical imagery alone has disadvantages because: (1) some

mountain ranges have persistent cloud cover making it difficult to

obtain cloud-free images (Anaya et al., 2015); and (2) the nonpeatland

areas can be floristically similar to the peatlands and are hence difficult

to differentiate when only using optical sensors (e.g., Landsat).

Successful mapping techniques for delineating low elevation, high

latitude peatlands have been developed using multidate, multisensor

radar and optical imagery (Bourgeau-Chavez et al., 2016; Bourgeau-

Chavez, Endres, et al., 2015a; Bourgeau-Chavez, Laubach, et al.,

2015b; Bourgeau-Chavez, Riordan, Powell, Miller, & Nowels, 2009)

and show promise for detecting mountain peatlands. Using a combi-

nation of different sensor frequencies from multiple platforms and

multiple seasons improves mapping capability and accuracy, particu-

larly for wetlands which are temporally dynamic not only in floristic

characteristics but also in hydrology (Augustenijn & Warrender,

1998; Bourgeau-Chavez, Endres, et al., 2015a; Bourgeau-Chavez,

Laubach, et al., 2015b; Grenier et al., 2007; Lozano-Garcia & Hoffer,

1993; Wang, Wang, Hu, & Gao, 2010). Traditional optical imagery is

complemented with the capabilities of radar data to detect moisture

and biomass variations, improving distinction of wetland types. Fur-

thermore, differences in hydrology between peatland and nonpeat-

land areas can be detected and monitored with radar data which is

sensitive to changes in intra-annual water table and soil moisture

dynamics (Bourgeau-Chavez et al., 2009, 2016; Kasischke et al.,

2009). Synthetic aperture radar (SAR) systems are active sensors that

emit microwave energy to the earth and record the backscattered

energy received by the sensor’s antenna. The long wavelengths of

SAR systems can penetrate cloud cover and vegetation. However,

these methods have yet to be applied to mountain peatlands, in part

because the complex topography of most alpine landscapes can

cause excessive distortions of the SAR signals which must be cor-

rected (Atwood, Andersen, Matthiss, & Holecz, 2014).

The objective of this study was to test the accuracy of a multidate,

multisensor SAR and optical approach (Bourgeau-Chavez et al., 2016)

complemented by field surveys in estimating mountain peatland spa-

tial extent, applying these methods in a challenging environment—the

Andes of northeastern Ecuador. We then sought to combine the map-

ping product with an extensive soil coring data set to estimate below-

ground C storage in the peatlands across the mapping area. This

region is part of the Andean p�aramo ecozone that extends from north-

ern Peru through Ecuador and Colombia and into Venezuela and por-

tions of southern Central America (Luteyn, 1992). The Andean p�aramo

provides an ideal environment to test the strengths and limitations of

using a multiplatform mapping approach because of the complex

topography, perennially wet soils, similar vegetation structure across

many ecosystem types, and an exceptionally cloudy climate. More-

over, no mapping products exist to tease apart peatland from non-

peatland areas in this area or to calculate regional peatland C storage.

This is a significant data gap, because peatland soils in the p�aramo are

commonly over 5 m thick with C stocks greater than 1500 Mg ha�1.

Therefore, these peatlands are some of the most C dense peatlands in

the world (Chimner & Karberg, 2008; Comas et al., 2017; Hribljan,

Su�arez, Heckman, Lilleskov, & Chimner, 2016) underscoring the impor-

tance of including them in global C accounting initiatives. In the

research presented, we asked the following questions: (1) are these

remote sensing technologies able to accurately detect and delineate

peatlands and in particular, differentiate between different peatland

types under these challenging conditions; if so, (2) what is the contri-

bution of each peatland vegetation type to total peatland abundance

within our mapping area; and (3) what is the total belowground C stor-

age in these peatlands and the contribution of the different peatland

vegetation types to these C stocks?

2 | MATERIALS AND METHODS

2.1 | Study area

This study was focused on a 5500 km2 area in the Andes of north-

eastern Ecuador that contained 2715 km2 defined as p�aramo above

an elevation of 3500 masl (Figure 1). The p�aramo is typically charac-

terized by a cool and wet climate that can receive significant rainfall

(>3000 mm/year in some localities) with additional moisture inputs

from cloud and mist interception by the p�aramo vegetation (Sklenar,

Kucerova, Mackova, & Macek, 2015). The wettest regions of the

p�aramo are in northern Ecuador (including our study area) and Colom-

bia due to the continuous delivery of moisture and rain by Andean

orographic effects (Sklen�a�r & Lægaard, 2003). The p�aramo contains a

diverse range of ecosystem types including extensive well-drained

grasslands, scrubland, high Andean forests, and peatlands (Hofstede,

Segarra, & Mena, 2003). The peatlands, locally known as turberas or

bofedales, form in areas with perennial anoxic soil conditions limiting

decomposition and promoting the accumulation of thick organic soils.

Across our study area, we sampled peatlands that appeared to be pris-

tine with no apparent human disturbance and others that were heavily

grazed and trampled by livestock. Therefore, our mapping and carbon
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measurements captured a wide range of peatland conditions across

the mapping region that is common across the Andes.

2.2 | Field data collection

Field sites were sampled for training and validation of the map. The

locations were systematically selected across the study region. Sites

were selected by road accessibility with a maximum walking distance

of approximately 4 km. Field sites were sought to be distributed

across peatland classes and the entire study area. Peatlands were

classified by dominant vegetation cover and included cushion, grass,

and sedge peatlands (Figure 2).

In the field, site characteristics were recorded for each 0.2 ha

location including ecosystem type, dominant plant species, and peat

depth. A global positioning system (GPS) point was collected at the

plot center and the latitude, longitude, and elevation data were

recorded. Field photos in four cardinal directions were also collected

to aid the image interpreters in selection of the training polygons. A

hand-drawn map was used to distinguish vegetation types and spe-

cies transitions in areas with multiple classes over a small area.

2.3 | Soil sampling and C analyses

To estimate peatland C storage, soil cores were extracted from 20

peatlands across the mapping area (Chimner & Karberg, 2008;

Hribljan et al., 2015; Suarez et al., unpublished data). In ten of the

peatlands, we attempted to core the entire thickness of the peat

deposit and successfully confirmed the base of the peatland in eight

of these cores. For the remaining ten cores, only the upper section

of the peatland was sampled (core depth varied from 90 to 200 cm)

and the total peat thickness was estimated by using an extendable

steel tile probe (Chimner, Ott, Perry, & Kolka, 2014). The entire

length of the peat cores for all sites was cut into ~5–10 cm sections

(thickness varied based on visual evidence of mineral-rich layers that

were sampled separately) in the field.

Soils were dried in an oven at 65°C to a constant mass. Dry bulk

density (g cm�3) was calculated by dividing the oven dried soil mass

by the original sample volume. Soil organic matter content for each

section was determined by loss on ignition (LOI) at 550°C for four

hours (Chambers, Beilman, & Yu, 2011) using ~1 g homogenized

subsamples of the ground soil. A subset of 400 soil samples selected

from all the samples collected were analyzed for C concentration

with an elemental analyzer (Costech 4010, Valencia, CA, USA and

Fisons NA 1500, Lakewood, NJ, USA). The line equation C

(%) = (0.5324 9 LOI (%)) � 0.9986 (R2 = 0.989; p < .001) was

developed on the relationship between LOI and C content to calcu-

late C concentration in the remaining samples analyzed only by LOI

(Hribljan et al., 2015).

For the full-length cores, soil C density (kg m�3) by core sec-

tion was calculated as the product of dry bulk density (g cm�3),

sample length (cm), and sample% C. Peatland C stock per unit

area (Mg ha�1) was estimated for each peatland by summing C

content of all individual soil samples in the entire core. The C

stocks of peatlands with only the upper section cored were calcu-

lated from the mean C density (mg cm�2) of the partial core mul-

tiplied by the total peatland thickness determined by probing

(Chimner et al., 2014). This approach was validated by comparing

the estimates of C storage calculated from a partial core to the

total core C calculation for the ten full-length cores (partial core

validations were 83.6 � 8.0 [SE]% of the full-length cores). All

cores contained layers with less than 12% C content falling below

the general definition of peat (>12% C content) for nonclay soils

(Soil Survey Staff, 2014). The total peatland C stock estimates

combined the C content of these interbedded mineral layers and

peat soil horizons.

2.4 | Remote sensing data types

We used a combination of multisensor radar and optical imagery

combined with Digital Elevation Model (DEM) data in our classifica-

tion (Table 1). Whereas Landsat data provide information on vegeta-

tion type and wetness to some degree, SAR provides additional

information on hydrological characteristics of wetlands and vegeta-

tion structure. In addition, topographic position indices (TPI) can be

derived from DEM data to inform the classifier about landform and

slope position, identifying low-lying conditions suitable for peat

development. Using multiple dates of imagery allows the capture of

phenological differences between plant species and differences in

F IGURE 1 Outline of mapping area that covers a 5500 km2

region in the Ecuadorian Andes. Upper right inset shows location of
mapping area within northeastern Ecuador [Colour figure can be
viewed at wileyonlinelibrary.com]
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hydrology among seasons, further improving peatland differentiation

and classification.

2.5 | Landsat data

Landsat Thematic Mapper (TM) is an optical sensor that collected

data from July 1982 to May 2012. Landsat TM data consist of seven

spectral bands with a resolution of 30 m (thermal infrared was col-

lected at 120 m and then resampled to 30 m). Cloud free Landsat

TM was very limited in the study areas but two dates were down-

loaded from the United States Geological Survey’s (USGS) Earth

Explorer. The data were converted to radiance values, then to top-

of-atmosphere (TOA) reflectance to normalize differences in illumina-

tion due to temporal changes in sun angle and earth-sun distance

(Chander, Markham, & Helder, 2009). The thermal bands were con-

verted to TOA temperature brightness in degrees C assuming all pix-

els had an emissivity of water (Rebelo, 2010). Normalized Difference

Vegetation Index (NDVI) was also produced using the visible-red and

near infrared (NIR) bands (Rouse, Hass, Schell, & Deering, 1974).

NDVI is useful for vegetation mapping as the red band is low due to

the absorption by chlorophyll and near infrared is high due to

chlorophyll reflectance (Rouse et al., 1974). All Landsat TM data and

F IGURE 2 Representative pictures of
the three peatland classes (cushion, grass,
and sedge) used in creating the map that is
based on dominant vegetation cover. The
tussock grassland (predominant upland
area surrounding the peatlands in the
p�aramo) photos are included to show how
the peatlands and upland can look similar,
making it challenging to separate these
classes with remote sensing technologies
[Colour figure can be viewed at
wileyonlinelibrary.com]
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NDVI products were resampled using nearest neighbor to match the

SAR pixel size of 12.5 m.

2.6 | Digital Elevation Model data

Due to the large topographic variation in the study area, it was

important to include DEM data for accurate terrain correction of the

imagery and for topographic analysis. DEM data were downloaded

from both the Earth Explorer (ASTER Global Digital Elevation Model

[GDEM]) and the USGS Shuttle Radar Topography Mission (SRTM)

DEM Directory. The 30 m SRTM DEM is based on interferometric

SAR and was preferred but contained several data gaps which were

filled with the ASTER GDEM. ASTER is an optical sensor and stereo-

scopic imaging was used to measure elevations and create the Glo-

bal ASTER DEM product at 30 m horizontal resolution. Note that

the work presented was created prior to the release of the SRTM

plus product that also has data gaps filled with ASTER and other

sources.

2.7 | SAR data

SAR wavelengths can penetrate vegetation canopies and interact

with the ground surface depending on frequency and pathlengths

through the vegetation. For example, C-band SAR energy (~5.6 cm

in wavelength) will penetrate a sparse or low-stature vegetation

canopy, while longer L-band wavelengths (~24 cm) will penetrate

forest canopies. The amount of energy returned to the antenna is a

function of vegetation biomass/structure and moisture of the vege-

tation and ground surface. Therefore, SAR data can be used to dis-

tinguish wetland from upland and distinguish between wetlands of

different vegetation structure and hydropatterns.

For this study, two different wavelengths of SAR data were

used: L-band from Advanced Land Observing Satellite Phased Array

type L-band Synthetic Aperture Radar and C-band from RADAR-

SAT-1. The data were downloaded through the Alaska Satellite

Facility’s (ASF) Distributed Active Archive Centers and processed

through ASF MapReady. The considerable topographical variation in

the study region can make accurate processing of SAR data difficult.

Topography skews backscatter, creating issues with foreshortening,

layover, and shadow (Atwood et al., 2014). To accurately process

and prevent errors from topographic variation, radiometric terrain

correction (RTC) was used. RTC uses a DEM to adjust pixel bright-

ness in reference to the geometry of the landscape, allowing for

geolocation to more accurately tie the SAR data to its projection

(ASF MapsReady user manual version 3.1, 2013). The geospatial

accuracy was compared to Landsat TM images using the root mean

square error (RMSE) and any misalignment greater than one pixel

was further geocorrected in Erdas Imagine using the Landsat as a

reference. Filtering or multilooking of SAR data is necessary to

reduce speckle prior to applying classification algorithms. Speckle

manifests itself as bright and dark pixels in a SAR image due to the

coherent processing of SAR signals from multiple scatterers within a

resolution cell. The geocorrected data were, therefore, filtered using

a 3 9 3 median filter to reduce speckle.

2.8 | Topographic position index (TPI)

TPI is a measurement of a point’s elevational position relative to the

area immediately surrounding it (Weiss, 2001). To calculate TPI, each

cell in the DEM was compared to the average value of cells in its

surrounding neighborhood. In the resulting data set, negative values

indicate a cell is relatively lower in elevation than the area around it,

while positive values indicate the cell is relatively higher in elevation.

This allows for improved identification of low-lying areas and

depressions that are more likely to be wet. TPI is highly dependent

on input parameters such as the shape and size of the neighbor-

hood. For this project, a circular neighborhood with a 15 cell radius

was used.

2.9 | Mapping technique

The Random Forests (RF) classifier (Brieman, 2001) was chosen for

mapping peatlands because it has been shown to provide high classi-

fication accuracy and time efficiency when used in previous wetland

mapping research (Bourgeau-Chavez et al., 2016; Bourgeau-Chavez,

Endres, et al., 2015a; Bourgeau-Chavez, Laubach, et al., 2015b;

Bourgeau-Chavez, Leblon, Charbonneau, & Buckley, 2013; Clewley,

Whitcomb, Moghaddam, & McDonald, 2015; Whitcomb, Moghad-

dam, McDonald, Kellndorfer, & Podest, 2009). It is a robust method

that can be applied to large areas with consistency.

Random Forests is a machine learning classifier consisting of mul-

tiple decision trees generated from a random subset of input training

data and bands. Once the forest of decision trees is created, an indi-

vidual pixel’s classification is determined by which class receives the

most “votes” across all decision trees. One advantage of the algo-

rithm is that it can easily handle missing attributes, such as cloud

obscured pixels, as decision trees built without the missing attributes

can be used to classify the compromised data.

The mapping process involved first identifying wetland vegetation

types using field data and high resolution image interpretation (from

Google Earth or Worldview2 data) (Table 2). The field data collection

resulted in 91 field sites including 22 cushion peatlands, 41 grass peat-

lands, 10 sedge peatlands, and 28 upland sites. Using high resolution

images, polygons were drawn to spatially expand the field sampled

locations and avoid edges of transitions between cover types or land

categories. These polygons were used as training or validation data.

TABLE 1 List of multisensor radar, optical imagery, and Digital
Elevation Model (DEM) data and dates used in mapping Ecuadorian
alpine peatlands within the study area

Data Dates

Landsat TM 10/15/1991, 12/21/1998

PALSAR 6/9/2013, 9/16/2010, 4/25/2008, 12/11/2008

RADARSAT 9/20/2000, 10/14/2000

SRTM/ASTER DEM 2000 (SRTM), 2011(ASTER)
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The supervised data were input to RF with the multidate Landsat TM/

PALSAR/RADARSAT-1/TPI image stacks. To assess the importance of

the different input data sources, the RF classifier was run with various

combinations of optical, radar, and TPI. In all cases, the multidate data

were used, but the data sources were varied. The band combinations

tested included: 1) Landsat; 2) Landsat and TPI; 3) Landsat and Radar-

sat; 4) Landsat, Radarsat and TPI; 5) Landsat/PALSAR/Radarsat and

TPI; and 6) PALSAR Radarsat, and TPI. This allows for comparing radar

only, in this often cloud-covered environment, and Landsat-only, which

is often used in map applications, as well as combinations of the data

sources. All resulting classified maps were filtered to eliminate isolated

pixels and reduce the errors introduced by mixed pixels. Each classified

pixel’s value was replaced by the majority class of its eight neighbors

using the Environmental Systems Research Institute majority filter. This

resulted in the reduction of some errors at the expense of some cor-

rectly classified small linear features.

2.10 | Accuracy assessments

To ensure a robust set of validation data (polygons) for the alpine

peatland maps, 20% of the input training polygons were randomly

selected and reserved for validation. Whole polygons and not pixels

were reserved. Using these validation polygons, both producer’s and

user’s accuracies were calculated. The producer’s accuracy repre-

sents how well the reference pixels are classified, whereas the user’s

accuracy represents the probability that a classified pixel actually

represents that class on the ground. Note that the standard “out of

bag” accuracy assessment that is produced by RF was not used since

it is not an independent assessment (i.e., it uses training data that

were used to generate other trees within RF).

2.11 | Scaling-up of C stocks

In order to better estimate the mean carbon stocks in the peatlands,

we used a stratified estimator to calculate peatland cover area (Olof-

sson, Foody, Stehman, & Woodcock, 2013). The mapped area of

peatlands estimated from a pixel counting approach (counting pixels

allocated to a map class and multiplying by the area of the pixel)

may be quite different from the actual area on the ground due to

weighted errors of omission and commission. While it is not possible

to map where these errors are located, the actual area or adjusted

area of each land cover class can be estimated using the error matrix

and the percentage of area of each land cover class in the map

(Olofsson et al., 2013). The assumptions for calculating adjusted area

include having a random, systematic, or stratified random sample of

ground truth points (Olofsson et al., 2013). Our ground truth sam-

ples were randomly selected from our training sites, which were

sampled systematically from accessible sites within approximately

4 km of a road (a necessary constraint due to remoteness of our

field sites and high transportation costs).

Peatland C storage across the mapping area was determined by

summing the products of the mean C stock per area for each peat-

land vegetation type (cushion, grass, and sedge) by the total adjusted

mapped peatland area for each peatland vegetation classification.

We also report the contribution of each peatland vegetation type to

total peatland C storage.

TABLE 2 Descriptions for landscape cover classes across the mapping area

Class Description

Agriculture/

pasture

Land used for production of food or fiber (corn, potatoes, or other cropland); land use distinguishes agricultural land from similar

natural ecosystem types (i.e., wetlands).

Barren Land with limited ability to support life. Contains less than 33% vegetation cover. May include thinly dispersed scrubby vegetation.

Includes bare rock, quarries, gravel pits, and transitional areas.

Developed Areas where the manmade structures (buildings, towns, etc.) have >75% coverage. Primarily residential areas where manmade

structures (i.e., buildings and farm equipment) are present, with less than or equal to 25% vegetation (trees, shrubs, and grass)

interspersed.

Peatland -

cushion

Poorly drained areas clearly dominated by conspicuous cushion and matt-forming species (Distichia spp., Plantago rigida, Disterigma

empetrifolium, and Oreobolus ecuadoriensis). Cushion plants usually <50 cm tall.

Peatland - grass Poorly drained areas structurally dominated by a matrix of grasses (Cortaderia sericantha, Cortaderia nitida, and Festuca spp.). A

sparse layer of shrubs (e.g., Loricaria sp, and Hypericum lancioides) and a rich herb layer (e.g., Niphogeton sp., Huperzia spp.,

Gunnera maguellanica, and Hypochaeris spp.) might be present.

Peatland -

sedge

Poorly drained areas dominated by a dense matrix of several species of Cyperaceae (e.g., Carex spp., Uncinia, spp., and Eleocharis

spp.). A sparse layer of herbs and mosses might be present (e.g., Niphogeton sp. and Gunnera maguellanica,)

Shrub Nonwetland vegetation dominated by true shrubs, immature trees, or stunted growth trees/shrubs (e.g., Polylepis spp., Gynoxys,

spp., Buddleja spp., and Baccharis spp.). Characterized by woody vegetation with a height <6 m.

Tussock

grassland

Nonwetland vegetation (woody or herbaceous) under 2 m in height. A dense matrix of tussock grasses (e.g., Calamagrostis spp. and

Festuca spp.), enclosing a rich layer of shrubs (e.g., Pentacalia spp., Diplostephium spp., Hypericum spp., and Gynoxis spp.) and herbs

(Gentianella spp., Senecio spp., Huperzia spp., and Oritophium peruvianum).

Water Streams, canals, rivers, lakes, reservoirs, and impoundments. Areas persistently inundated by water that do not typically show

annual drying out or vegetation growth at or above the water’s surface. Depth of water column is >2 m, such that light

attenuation increases significantly and surface and subsurface aquatic vegetation persistence declines or is less detectable.

Snow Land covered by snow
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3 | RESULTS

3.1 | Peatland map

The wet and cool climate in this region of Ecuador supported hydro-

logic conditions that favored peat accumulation. All the wetlands

delineated during the field validation campaigns were determined to

be peatlands. Nonpeat accumulating wetlands (e.g., wet meadows or

marshes) were not apparent in this area (Figure 3).

Based on the mapping and field campaigns, we were able to

identify three main types of peatlands: cushion, grass, and sedge

peatlands. Cushion plant peatlands are mostly characterized by open,

low stature vegetation (<50 cm) clearly dominated by cushion form-

ing species (e.g., Plantago rigida, Distichia spp., and Oreobolus

ecuadoriensis), growing amid a diverse matrix of mosses. Grass peat-

lands usually exhibit a more complex vegetation which is structurally

dominated by several species of grasses (e.g., Cortaderia sericantha,

Cortaderia nitida, and Festuca spp.), but also contain some cushion

plants, mosses, and shrubs. Although this category is very heteroge-

neous, it seems to follow an altitudinal gradient in which lower

elevation sites tend to exhibit larger and more abundant tussock-

forming grasses and a higher abundance of shrubs, while higher ele-

vation sites have smaller grasses and higher abundance of cushion

forming species. Sedge peatlands are clearly dominated by species of

Cyperaceae (e.g., Carex spp. and Uncinia spp.) that form a dense

matrix where herbs, mosses, and a few shrub species are present.

A statistical comparison of the different data sources (i.e., Radar-

sat, PALSAR, Landsat, and TPI) used in the RF classifier showed that

using PALSAR/Radarsat/TPI without optical data (Table 3) had less

than desirable results, with only 61% overall accuracy and low peat-

land class accuracies ranging from 48% to 81%. When Landsat was

used alone to produce the alpine peatland map, it did a fairly good

job at mapping the different classes with 86% overall accuracy; how-

ever, there was moderate error in distinguishing between the

F IGURE 3 Tropical mountain peatland
map based on multidate, multisensor
Landsat, PALSAR, Radarsat-1, and TPI
(Overall accuracy 90%) showing
distribution of three peatland types
(cushion, grass, and sedge) within the
5500 km2 study region. Mapping area
below 3500 masl is grayed out. Upper left
inset is a high resolution image of a
56 km2 section of the mapping area
displaying the ability of the multiple sensor
approach to delineate individual small
peatlands [Colour figure can be viewed at
wileyonlinelibrary.com]
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peatland classes (Table 3). Adding multidate Radarsat into the classi-

fier (Table 3) slightly improved the overall accuracy (87%), especially

grass peatland accuracy. There was, however, a slight drop in cush-

ion peatland accuracy. When TPI was also used in the mapping

(Table 3), overall accuracy remained the same, but there was a fur-

ther improvement in the user’s accuracy for all peatland classes, as

well as an increase in producer’s accuracy for grass peatland. The

producer’s accuracy for sedge and cushion peatland dropped slightly.

When Landsat/Radarsat/PALSAR/TPI (Table 3) were used together,

the overall accuracy was the greatest at 90%, and the individual

peatland class accuracies increased or stayed the same for all classes

except the producer’s accuracy for cushion peatland, which

decreased to 80%.

In comparing the different input data sources for mapping

(Table 3), it is important to also look at the maps themselves and

not just review the statistics on accuracy. Figure 4 shows a compar-

ison of the map from Landsat alone, Landsat and Radarsat, SAR and

TPI (Radarsat, PALSAR, and TPI) and the multidate, multisensor

Landsat, Radarsat, PALSAR, and TPI. While the overall accuracy of

all but the SAR-TPI (Table 3) classification had 86%–90% accuracy,

the map products vary considerably. It appears from Figure 4 that

the Landsat-only map was greatly overestimating the amount of

peatlands, especially the sedge peatland class, probably due to the

fact that the vegetation in the nonpeatland shrubby and open areas

was quite similar to the peatland vegetation. In contrast, the SAR-

TPI map was underestimating the area of peatland in much of the

map, likely because the hydrology of the nonpeatlands is also some-

times wet and thus difficult to distinguish with SAR alone, while in

other areas the SAR-TPI was overestimating the peatland area (e.g.,

in the steepest terrain). It is the synergy of the SAR (which is sensing

backscatter differences due to hydrology) and Landsat (that is sens-

ing the vegetation types) that allows for an improved distinction of

peatland types. The C-band Radarsat-1 HH polarization imagery was

of higher importance than PALSAR for distinguishing the peatland

types, but adding the L-band PALSAR data (HH and HV) into the

classification refined the accuracy of nearly all of the map classes

(Table 3).

The multidate Landsat/TPI/Radarsat-1/PALSAR map (overall

accuracy 90%) was determined to be the best peatland map (lowest

errors and best distinction of peatland types). This map shows

48,218 ha of peatland, which represents 17.8% of our p�aramo study

area (Table 4). Overall, the accuracy of this method for distinguishing

peatlands from nonpeatlands was very high: the combined peatland

classes in this map had user’s and producer’s accuracy of 95%. This

was so high because many of the classification errors were among

peatland vegetation classes (Table 5). For the three distinct peatland

classes, the user’s accuracy was 94%, 95%, and 77% for sedge peat-

land, cushion peatland, and grass peatland, respectively; whereas the

producer’s accuracy for these peatland types was 86%, 80%, and

96% (Table 5).

The lowest user’s accuracy was for the grass peatland: in 23% of

the validation pixels the mapped grass peatland was actually either

cushion peatland (10%), sedge peatland (6%), or tussock grassland

(8%) on the ground. Thus, even in this worst case ~92% of pixels

were mapped correctly as peatlands.

3.2 | C stocks

Despite the fact that these peatlands have a fairly high mineral con-

tent which puts them at the low end of % C for peatlands, they

store large amounts of C per unit soil volume. The mean soil % C (in-

cluding interbedded ash and other mineral layers) was below 32%

for all the peatlands sampled with mean soil C content of 14%, 16%,

and 16% for the cushion, grass, and sedge peatlands, respectively.

Overall, the soils had a moderate percent C (15 � 1% [�1 SE]), but

their high bulk density (0.39 � 0.01 g cm�3) resulted in a high C

density (mean, 32.5 � 0.5 kg m�3) of the soil across all the coring

sites.

TABLE 3 Comparison of user’s accuracy (UA) and producer’s accuracy (PA) for peatland and nonpeatland classes of six different RF
classifications using: Landsat; Landsat and TPI, Landsat and Radarsat; Landsat, Radarsat, and TPI; Landsat, Radarsat, PALSAR, and TPI; and
PALSAR, Radarsat, and TPI

Landsat Only Landsat-TPI
Landsat-Radar-
sat

Landsat-Radar-
sat- TPI

Landsat-Radar-
sat-PALSAR-
TPI

PALSAR-
Radarsat- TPI

Class UA PA UA PA UA PA UA PA UA PA UA PA

Sedge peatland 89% 81% 87% 78% 92% 86% 94% 83% 94% 86% 70% 54%

Cushion peatland 93% 85% 95% 81% 92% 83% 93% 81% 95% 80% 81% 55%

Grass peatland 68% 87% 72% 92% 72% 90% 74% 93% 77% 96% 54% 48%

Tussock grassland 81% 76% 78% 78% 81% 76% 78% 80% 81% 82% 43% 64%

Shrub 93% 81% 95% 78% 95% 79% 94% 82% 95% 80% 65% 67%

Barren 96% 96% 94% 96% 94% 96% 94% 97% 93% 99% 68% 63%

Developed 83% 79% 82% 80% 82% 80% 83% 77% 95% 90% 63% 79%

Agriculture/pasture 72% 82% 73% 81% 72% 82% 73% 84% 80% 89% 44% 59%

Overall accuracy 86% 86% 87% 87% 90% 61%
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The peatland types and peat thickness both varied with eleva-

tion. The deepest peatlands were located at the lower elevations of

the p�aramo in the grass (3807–3974 masl) and sedge (3703–

4136 masl) peatlands (mean depth 7.7 � 0.8 m [mean � SE, n = 9]

and 9.4 � 0.2 m [n = 2], respectively). The cushion peatlands

occurred at the highest elevations (3904–4881 masl) and contained

the thinnest peats (mean depth 3.5 � 0.5 m, n = 11). The three

peatland types (cushion, grass, and sedge) differed in their mean C

storage and total C stocks. The cushion peatlands contained the

most C dense soils (mean, 34.2 � 1.4 kg m�3) due predominately to

the high soil dry bulk density (0.43 � 0.04 g cm�3); whereas, the

grass peatlands had the lowest soil C density (mean,

28.2 � 1.6 kg m�3) (Table S1).

The mapped area of peatlands is 48,218 ha based on pixel

counting but if we take into account weighted errors of commission

and omission our adjusted area is 61,356 � 5,506 ha with a 95%

confidence interval (Table 6). The tussock grassland class is fre-

quently confused with peatlands (Table 5) and this class dominates

the landscape (47% of the mapped area is tussock grassland,

Table 4); therefore, the area of peatland pixels that are misclassified

as tussock grassland is greater than the area of tussock grassland

pixels misclassified as peatlands (18% of the mapped area is

F IGURE 4 Comparison of Random
Forests classified maps using Landsat (top
left); SAR (PALSAR and Radarsat-1) and
TPI (top right); Landsat and Radarsat-1
(bottom left); and all layers (Landsat,
Radarsat, PALSAR, and TPI; bottom right).
The four maps were created using
multidate data [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 4 Percent of mapped area (based on pixel counting) for
each map class above an elevation of 3500 masl

Class Hectares Percent area

Agriculture/pasture 21327 7.9%

Barren 25208 9.3%

Developed 1212 0.4%

Peatland - cushion 5704 2.1%

Peatland - grass 34960 12.9%

Peatland - sedge 7554 2.8%

Shrub 44071 16.2%

Snow 2759 1.0%

Tussock grassland 127478 47.0%

Water 1219 0.4%
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peatlands). Overall, the total C storage of peatlands based on the

adjusted mapped areas, weighted by the relative % cover over the

mapping area, of the different peatland vegetation types, was

128.2 � 9.1 Tg (�SE) (Table 6).

4 | DISCUSSION

4.1 | Peatland coverage in the Ecuadorian p�aramo

Our multidate, multisensor map provides the first estimate of regio-

nal peatland coverage that allows the estimate of C storage in the

Andean p�aramo. Other sources of map products for the p�aramo do

not classify peatlands as a separate class, but instead report wet-

lands as a single category (e.g., Estupinan-Suarez, Florez-Ayala, Qui-

nones, Pacheco, & Santos, 2015). We detected 614 km2 of

peatlands across our mapping region, an increase of ~4- and 30-fold

over the previous mapping efforts of Beltr�an et al. (2009) and the

Ecuadorian Ministry of the Environment (MAE) (http://mapainter

activo.ambiente.gob.ec/), respectively. Our results highlight peatlands

as an important feature of the high-elevation p�aramo environment.

Moreover, the current mapping products are the only products avail-

able in Ecuador to inform management and conservation of p�aramo

peatlands. High resolution remote sensing products are a vitally

important conservation tool because they provide a synoptic view of

land cover and land use, which is essential for estimating land use

and climatic impacts on ecosystems. This is a critical concern for

Ecuadorian land managers that are in need of high quality baseline

mapping data to define sustainable land-use practices and prioritize

restoration activities in the rapidly changing p�aramo landscape.

Improved mapping of high elevation regions is also needed to

inform global wetland maps that are almost completely lacking infor-

mation on mountain wetland distribution, especially across the trop-

ics (cf. The Global Wetlands Map: http://www.cifor.org/global-wetla

nds/; Yu, Loisel, Brosseau, Beilman, & Hunt, 2010). Mountain wet-

lands provide many critically important ecosystem services (e.g.,

water resources, habitat, and C storage) and are experiencing

tremendous environmental impacts from land use and climate

change (Benavides, 2014; Urrutia & Vuille, 2009). However, although

numerous, these wetlands are typically small, providing a challenge

to large-scale global wetland mapping initiatives that can have a

coarser resolution than the spatial extent of these wetlands (e.g.,

The Global Wetlands Map resolution limit of a 250 m 9 250 m pixel

size [~6 ha]). Wetland inventories in other mountain systems have

shown that when smaller wetlands are quantified at a regional scale

they can contribute significantly to regional ecosystem types (Chim-

ner, Lemly, & Cooper, 2010). Furthermore, global mapping products

are often parameterized specifically for lowland wetland ecosystems

that are larger in size and do not have the complex mountain topog-

raphy that requires mapping techniques tailored to the alpine envi-

ronment. Therefore, our remote mapping methods with algorithms

to accommodate mountain slopes and signal distortion from

backscatter provide a valuable tool to improve the quantification of

high elevation wetland extent at the local, regional, and global scale.

We attribute the large increase in wetland detection to the use

of a combination of high resolution multidate remote sensing ima-

gery. In particular, the addition of multidate SAR, with its ability to

penetrate through vegetation cover and characterize soil moisture

dynamics, provides a powerful and valuable method to accurately

TABLE 5 Accuracy matrix for field truthed pixels vs. remotely classified pixels using PALSAR, RADARSAT, DEM, and Landsat. Peatland
classes (cushion, grass, and sedge) are mapped individually. Overall accuracy is 90%

Mapped
class

Field truthed values

Peatland
sedge

Peatland
cushion

Peatland
grass

Tussock
grassland Shrub Barren Developed

Agriculture/
pasture Snow Water Sum

Comm-
ission

User
acc.

Peatland -

sedge

176 0 7 5 0 0 0 0 0 0 188 6% 94%

Peatland -

cushion

0 164 0 8 0 0 0 0 0 0 172 5% 95%

Peatland -

grass

15 25 202 20 1 0 0 0 0 0 263 23% 77%

Tussock

grassland

14 10 2 187 10 2 0 6 0 0 231 19% 81%

Shrub 0 6 0 0 176 0 1 3 0 0 186 5% 95%

Barren 0 0 0 1 8 209 1 5 0 0 224 7% 93%

Developed 0 0 0 0 0 1 190 10 0 0 201 6% 95%

Agriculture/

pasture

0 0 0 6 25 0 19 202 0 1 253 20% 80%

Snow 0 0 0 0 0 0 0 0 202 0 202 0% 100%

Water 0 0 0 0 0 0 0 0 0 200 200 0% 100%

Sum 205 205 211 227 220 212 211 226 202 201 – – –

Omission 14% 20% 4% 18% 20% 1% 10% 11% 0% 0% – – –

Prod. acc. 86% 80% 96% 82% 80% 99% 90% 89% 100% 100% – – 90%

HRIBLJAN ET AL. | 5421

http://mapainteractivo.ambiente.gob.ec/
http://mapainteractivo.ambiente.gob.ec/
http://www.cifor.org/global-wetlands/
http://www.cifor.org/global-wetlands/


tease apart peatlands from seasonally drier, nonpeat accumulating

wetlands or organic matter rich uplands, leading to an increase in

accuracy. This agrees with SAR research conducted by others in

mapping peatlands on flatter terrain (e.g., Bourgeau-Chavez et al.,

2016; Grenier et al., 2007; Touzi, Deschamps, & Rother, 2007).

Distinction of peatlands and peatland types is especially challenging

in the Andes and other mountain regions of the world that are domi-

nated by a landscape cover type comparable to the blanket bog sys-

tems that develop in parts of Europe (Wheeler & Proctor, 2000) and

the southern extreme of the Andes in Patagonia (Kleinebecker, Hoel-

zel, & Vogel, 2010). These environments receive high yearly precipi-

tation and typically display a continuous homogenous vegetation

cover over a thick layer of organic rich soil.

Furthermore, high resolution landscape maps with strong predic-

tive power that separate wetlands by vegetation type have been

lacking for the tropical Andes. The multidate Landsat TM/PALSAR/

RADARSAT-1/TPI image stack provided a novel remote sensing

approach not only to distinguish peatlands from uplands, but also to

tease apart the peatlands based on the dominant vegetation cover.

The peatland vegetation classes of cushion, grass, and sedge used in

the development of this map were independently confirmed with a

multivariate ordination analysis of vegetation structure of twenty

peatlands selected from across our mapping area (Suarez et al., in

prep). Detailed mapping of wetland vegetation types is critical data

because vegetation exerts a strong influence on many ecological

processes (e.g., C sequestration, ecosystem productivity, soil decom-

position, nutrient cycling, soil density, and hydrological processes).

Therefore, accurate land cover maps are needed to monitor impacts

of land use and climate change across the Andes that can contribute

to shifts in vegetation communities and structure. In addition, maps

that are able to distinguish wetland vegetation classes will help to

constrain C stock inventories for different peatland types. Moreover,

fine-scale vegetation mapping products will be an invaluable

resource for informing scientific research, land management, policy

development, and restoration efforts for the Andes.

4.2 | Peatland C storage

Our paper is the first attempt to quantify total regional C storage for

peatlands in the Ecuadorian p�aramo. Our calculation for mean peat-

land C storage in our mapping area (2123 Mg ha�1) is over 50% lar-

ger than previously reported by us for the same region

(1282 Mg ha�1; Hribljan et al., 2016). The increase in the peatland C

storage estimate for this region is due to a larger representative core

data set from across the entire mapping region, especially the addi-

tion of lower elevation grass and sedge peatlands with peat soils

that were over 10 m deep at some sites (Table 5). Overall, peatlands

in the Andes of northeastern Ecuador have accumulated a large

belowground C pool and, surprisingly store 42% more C below-

ground on a per unit area basis than the current estimates for total

ecosystem storage (aboveground and belowground) of lowland tropi-

cal Amazonian peat swamp forests reported to contain 892 Mg ha�1

(Draper et al., 2014).

Scaling-up our C estimates to the study region produces a total

estimated C storage of 128.2 Tg for 614 km2 of peatlands within

2715 km2 of the p�aramo (>3500 m) across the 5500 km2 mapping

area. The ability to tease apart the different peatland types based on

dominant vegetation cover provides a valuable resource for peatland

management and restoration strategies. Combining the peatland veg-

etation classes and applying an overall mean C storage to the

adjusted total peatland area overestimates C storage by only 1% or

1.8 Tg.

The large C stocks contained in peat soils across our mapping

area have important implications for C accounting initiatives for the

Andes, especially when extrapolated to a national scale. Our map-

ping approach allowed us to estimate that approximately 22% of the

p�aramo landscape within our mapping area is covered by peatlands.

If we scale up using the ratio of mapped peatlands in our mapped

area to those mapped over the entire country from the Beltr�an et al.

(2009) map, this would give the entire country approximately

1697 km2 (169,700 ha) of p�aramo peatlands, which represents about

10% of the total Ecuadorian p�aramo. Scaling-up our C storage of

128.2 Tg for our mapping area to our estimate of total peatland cov-

erage for the Ecuadorian p�aramo results in a total C storage of 354

Tg for high elevation Ecuadorian peatlands. From this perspective,

even though peatlands within the p�aramo cover less than 1% of the

entire country, this ecosystem type stores as much as approximately

23% of the total estimated above- and belowground vegetation C

stocks in all the forests throughout Ecuador (1533 Tg; MAE, 2015).

However, the calculated peatland C stocks for the Ecuadorian Andes

underestimate the magnitude of C storage in the p�aramo, because

we have not accounted for a potentially greater C pool in upland

p�aramo ecosystems that contain folist (a well-drained histosol) soils

with an estimated C storage of 450 Mg ha�1 in the upper one meter

(Hribljan, unpublished data). Therefore, our results suggest that

extending these mapping efforts to include upland ecosystem types

at a national scale will be crucial as tropical Andean countries move

toward accounting their contribution to global C cycling and their

TABLE 6 Peatland soil metrics (mean � SE), mapped areas (based on pixel counting), adjusted mapped areas (using a stratified estimator),
and total belowground C stocks (Tg) (�SE) for the peatland mapping classes (cushion, grass, and sedge) across the study area

Peatland
classes

Thickness
(m)

Bulk density
(g cm�3)

Carbon
(%)

Carbon density
(kg m�3)

Carbon stocks
(Mg ha�1)

Mapped
Area (ha)

Adjusted Area
(ha)

Total Carbon
stocks (Tg)

Cushion 3.5 � 0.5 0.43 � 0.04 14 � 2 34.2 � 1.4 1358 � 268 5704 15702 � 1914 21.3 � 4.9

Grass 7.7 � 0.8 0.29 � 0.04 16 � 2 28.2 � 1.6 2085 � 148 34960 28237 � 1203 58.9 � 4.9

Sedge 9.4 � 0.2 0.28 � 0.01 16 � 1 30.6 � 0.2 2858 � 17 7554 16791 � 2072 48.0 � 6.0

Total 5.6 � 0.6 0.37 � 0.03 15 � 1 31.8 � 1.1 2123 � 308 48218 61356 � 2753 128.2 � 9.1
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efforts at reducing C emission. Whereas, under improper manage-

ment, the Andes could be a significant source of greenhouse gasses,

if managed to conserve C, the large C storage in the p�aramo has the

potential to be leveraged as part of regional and global conservation

strategies. Carbon trade agreements such as the United Nations

REDD+ program are currently developing momentum in South

American low elevation tropical rainforest ecosystems (Asner et al.,

2010; Wertz-Kanounnikoff, Kongphan-Apirak, & Wunder, 2016). Our

results reveal that these mountain ecosystems could be at least as

important to consider in international efforts to regulate greenhouse

gas emissions.

4.3 | Sources of scaling-up errors and future
refinements to C stock estimates

Wetland distribution and C pool estimates can be characterized by

many sources of uncertainty (Keith, Mackey, Berry, Lindenmayer, &

Gibbons, 2010). The main factors contributing to peatland ecosystem

C stock scaling-up errors include inadequate regional soil bulk den-

sity and peat thickness measurements for different peatland vegeta-

tion types, uncertainty about basin morphology, and spatial

uncertainty from mapping products.

Calculating peatland total C stocks without considering differ-

ences in soil characteristics could introduce a large scaling-up error

in ecosystem C stock calculations. The mean soil dry bulk density

across our vegetation types was greater in the cushion peatlands

than the grass and sedge peatlands; however, the mean soil % C

content did not vary considerably across the peatland vegetation

types. Thus, the variation in soil mean dry bulk density was the main

driver of the greater soil mean C density measured in the cushion

than the grass and sedge peatlands. Furthermore, future research

needs to address the successional pathways of p�aramo peatlands

because of potential shifts in vegetation types through time that

have the potential to alter soil density and C content. This highlights

the importance of considering different peatland types and obtaining

reliable determinations of peatland soil properties when conducting

C stock inventories.

The estimation of peatland depth and basin morphology is chal-

lenging (Comas et al., 2017). For the peatlands that were sampled by

only obtaining a shallow core (1–2 m deep), the remaining peat

thickness was estimated by probing. Determining the bottom of a

peatland with a probe is difficult, especially in mountain environ-

ments, because the peatland substratum interface can be difficult to

discern due to multiple interbedded mineral rich soil horizons com-

monly found throughout the peatlands and underlying lake sedi-

ments (Hribljan et al., 2016). Ground penetrating radar (GPR) has

shown promise in distinguishing the peat/substratum transition and

additionally providing a means to calculate peatland volume from

basin morphology determinations (Comas et al., 2017). Applying a

basin morphology correction factor based on GPR surveys could

reduce C stock estimates due to the bowl shaped formation of

mountain valleys where peatlands typically form (Hribljan et al.,

2015; Comas et al., 2017).

Although adding the SAR layers increases the cost and effort of

map production, their inclusion provided the highest accuracy maps.

Given their proven accuracy, these mapping methods would be a

sound approach to provide national-scale maps for Ecuador and other

mountainous regions around the world. Furthermore, when used in

combination with coring and C analysis, these approaches revealed

the surprisingly high and nationally significant C storage in these

mountain ecosystems. Our regional-scale analysis of Ecuadorian peat-

land distribution and C stocks provided accurate delineation of peat-

land area that was much higher than discovered in previous efforts,

providing a valuable foundation for examining the current and future

effects of land use and climate change on C cycling and other wetland

functions across the Andean landscape. Improved estimates of peat-

land distribution and C stocks in the Andes and other mountain ranges

is an essential first step toward ensuring long-term sustainability of

the many services provided by mountain peatland ecosystems.
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