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Feeding Biology of Cerambycids
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3.1 Introduction

There are more than 36,000 species of Cerambycidae recognized throughout the world (see Chapter 1), 
occurring on all continents except Antarctica (Linsley 1959). Given such numbers, it is not surprising 
that cerambycids display great diversity in their feeding habits. Both adults and larvae are almost exclu-
sively phytophagous. Some adults appear not to feed at all, while others feed daily. Larvae primarily 
utilize woody host plants, but some species develop within herbaceous plants. Cerambycid larvae infest 
nearly all plant parts, especially stems, branches, and roots, as well as feed on nearly all plant tissues, 
especially bark, cambium, and wood. As expected in such a large insect family, some cerambycids are 
strictly monophagous while others are highly polyphagous. Similarly, some cerambycids infest live, 
healthy plants while others develop in dead plants; likewise, some species prefer moist wood, while 
others prefer dry wood. Cerambycid larvae are able to digest woody tissues with the aid of enzymes 
that they sometimes secrete themselves or that they obtain from symbionts. Many details on the feeding 
biology of cerambycids will be provided in this chapter, including the types of food consumed by adults 
and larvae, the common parts of plants that larvae infest and the tissues they consume, and aspects of 
wood digestion.
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3.2 Adult Feeding Habits

Although few detailed studies have been conducted on the feeding habits of cerambycid adults, some 
general trends are apparent at the subfamily level (Duffy 1953). For example, parandrine, prionine, 
and spondylidine adults appear not to feed at all (Benham and Farrar 1976; Bense 1995; Švácha and 
Lawrence 2014). By contrast, it appears that all Lamiinae as well as most Lepturinae feed as adults. 
Although in the Cerambycinae, some adults are known to feed, while others do not—such as Hylotrupes 
and Stromatium (Duffy 1953).

3.2.1 Types of Adult Food

Butovitsch (1939) categorized the general types of food consumed by adult cerambycids as �owers, bark, 
foliage, cones, sap, fruit, roots, and fungi. Most lepturine adults, as well as many cerambycine (e.g., 
Batyle, Euderces, Megacyllene, and Molorchus) and a few lamiine (e.g., Phytoecia and Tetrops) adults, 
visit �owers and feed on pollen and nectar (Duffy 1953; Linsley 1959; see Figure 3.1). The bark and 
stem feeders are almost entirely lamiines (e.g., Acanthocinus, Lamia, and Monochamus; Duffy 1953). 
Leaves are consumed primarily by lamiines (e.g., Batocera, Oberea, and Saperda) as well as needles 
and developing cones (e.g., Monochamus; Butovitsch 1939; Duffy 1953). Adults of some lamiine species 
feed on both bark and foliage (e.g., Goes, Monochamus, Plectrodera, and Saperda; Webb 1909; Brooks 
1919; Nord et al. 1972; Solomon 1974, 1980; see Figure 3.2). Various cerambycine (e.g., Cerambyx and 
Hoplocerambyx) and lamiine (e.g., Moneilema) adults feed on fruit and sap exudates (Duffy 1953). Roots 
of grasses are fed on by both the larvae and, at times, the adults of the soil-dwelling lamiine genus 
Dorcadion (Duffy 1953; Linsley 1959). Only a few adult cerambycids are known to feed on fungi, such 
as members of the lamiine genus Leiopus (Craighead 1923; Duffy 1953; Michalcewicz 2002).

FIGURE 3.1 Megacyllene robiniae (Forster) adult feeding on pollen of goldenrod (Solidago) �owers. The larval hosts 
of this North American cerambycine are locust trees in the genus Robinia. (Courtesy of David Cappaert [Bugwood image 
2106090].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-000.jpg&w=312&h=259
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3.2.2 Food and Adult Reproduction

As mentioned earlier, many cerambycids do not feed as adults and are typically capable of reproducing 
soon after emergence. For example, the cerambycine Xylotrechus pyrrhoderus Bates was capable of 
�ight, responding to pheromones, mating, and egg laying at the time of emergence from its host plant 
without any additional feeding (Iwabuchi 1982). However, for species that feed after emergence, such as 
the Lamiinae, adults typically feed for one to three weeks before becoming sexually mature (Alya and 
Hain 1985; Hanks 1999), a period of time referred to as maturation feeding (Edwards 1961; Slipinski and 
Escalona 2013). For example, in the lamiine Anoplophora glabripennis (Motschulsky), adult females 
become sexually mature about 10 days after emergence, and maturation feeding is required for ovary 
development (Li and Liu 1997). Similarly, Keena (2002) and Smith et al. (2002) reported that the mean 
time from adult emergence to �rst oviposition in A. glabripennis varied from 9 to 17 days. Members 
of the lamiine genus Monochamus often feed for 7–12 days after emergence before becoming sexually 
mature (Akbulut and Stamps 2012). Similarly, in the lamiine Glenea cantor (F.), Lu et al. (2013) noted 
that adults required an average of �ve to seven days of feeding before mating and about another week of 
feeding before initiating oviposition.

The type of food consumed by cerambycid adults can in�uence their longevity and fecundity. In 
A.  glabripennis, for example, the species of tree selected as the source of twigs to feed the adults 
in�uences their fecundity (Smith et al. 2002; Hajek and Kalb 2007). Similarly, for the cerambycine 
borers Phoracantha recurva Newman and Phoracantha semipunctata F., which as larvae develop in 
Eucalyptus trees and as adults feed on Eucalyptus pollen, adult longevity and fecundity increased 
when adults were maintained on a diet rich in Eucalyptus pollen compared with other pollen sources 
(Millar et al. 2003).

3.2.3 Food and Adult Flight, Pollination, and Disease Transmission

Many of the feeding habits of adult cerambycids have a direct in�uence on their dispersal behavior 
as well as on their role in pollination and disease transmission. For example, in the �ower-feeding 

FIGURE 3.2 An example of maturation feeding by the Asian lamiine Anoplophora glabripennis (Motschulsky) on 
maple (Acer) branches. (Courtesy of Dean Morewood [Bugwood image 1193003].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-001.jpg&w=360&h=239
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cerambycids, such as the Lepturinae, the �owers visited by adults typically are on different plant spe-
cies than the larval hosts. Therefore, these adults need to disperse at least twice after emerging—�rst 
to �owers where they feed and often mate and then to the larval host plants to oviposit (Duffy 1953; 
Linsley 1959; Bílý and Mehl 1989; Bense 1995; Hanks 1999). By contrast, cerambycid adults that feed 
on bark and foliage usually feed on the same species of plants that serve as the larval hosts (Duffy 1953; 
Solomon 1995; Hanks 1999); therefore, adult dispersal may be minimal if the original host plant is still 
suitable for oviposition (see Chapter 2). For example, in A. glabripennis, which typically is univoltine, 
the same tree is often reinfested for several years until it dies, although a small portion of the progeny 
may disperse more widely (Haack et al. 2006, 2010). Many of the �ower-feeding cerambycids pollinate 
their food plants as they feed on pollen and nectar (Willemstein 1987; Gutowski 1990; Hawkeswood 
and Turner 2007). With respect to disease transmission, the fact that adults of the pine-infesting lamiine 
genus Monochamus conduct maturation feeding on the bark, twigs, and foliage of pines (Pinus) enables 
them to be ef�cient vectors of the pinewood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer) 
Nickle, given that the nematodes depart the adult’s body during feeding and enter the trees through the 
feeding wounds created in the bark (Linit 1990; Akbulut and Stamps 2012; see Chapter 6).

3.2.4 Predatory Cerambycids

Although nearly all cerambycid adults that are known to feed are phytophagous, there is at least one 
cerambycine genus (Elytroleptus) where the species are carnivorous, preying on adult lycid beetles (net-
winged beetles). Most Elytroleptus species are native to Mexico and the southwestern United States 
(Linsley 1962). In general, lycid adults are protected chemically from predation, and they often have 
aposematic coloration and form dense aggregations on plants (Eisner et al. 2008; Grzymala and Miller 
2013). Elytroleptus adults mimic the appearance of these lycid beetles, allowing them to join their aggre-
gations and prey on them (Linsley et al. 1961; Eisner et al. 1962; Selander et al. 1963).

3.3 Larval Feeding Habits

Cerambycid larvae are phytophagous (Linsley 1959; Hanks 1999; Slipinski and Escalona 2013), although 
facultative inter- and intraspeci�c predation has been observed when larvae encounter other individuals 
within the host plant as they construct their galleries (Togashi 1990; Victorsson and Wikars 1996; Dodds 
et al. 2001; Ware and Stephen 2006; Schoeller et al. 2012). Cerambycid larvae feed on a wide diversity of 
plant species, plant parts, plant tissues, as well as on plants in various conditions from living and healthy 
to dead and decaying. Before looking at these trends in host usage, readers need to be aware that informa-
tion on larval hosts is best known for the economically important species but usually is incomplete for 
most cerambycids or entirely lacking for others. Moreover, larval host information is at times incorrect, 
often as a result of inaccurate plant or insect identi�cation, changes in taxonomic status of a species or 
species complex, in situations when the plant on which an adult beetle is collected is assumed to be the 
larval host, or when such information is not presented clearly in the literature or on museum specimen 
labels. Nevertheless, for those world regions where the larval hosts are relatively well known for the 
local cerambycids, the clear trend is for most species to develop in woody plants, especially conifers and 
hardwood (broadleaf) trees (see Section 3.3.1).

3.3.1 Larval Host Plants

Information in Table 3.1 shows the number of cerambycid species that develop in various groupings of 
host plants for Montana (89% of species with known hosts; Hart et al. 2013) and Florida (77%; Thomas 
et al. 2005) in the United States; as well as the geographic regions of Fennoscandia (comprising Norway, 
Sweden, Finland, and a small part of neighboring Russia) and Denmark (100%; Bílý and Mehl 1989); 
Israel (91%; Sama et al. 2010); and Korea (57%; Lim et al. 2014). The checklist provided in Hart et al. 
(2013) for the cerambycids of Montana was supplemented with host data from the “Montana Wood 
Boring Insect Project” database (http://www.mtent.org/Cerambycidae.html) and, occasionally, from 

http://www.mtent.org/Cerambycidae.html
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Linsley (1962a, 1962b, 1963, 1964) and Linsley and Chemsak (1972, 1976, 1984, 1995). These �ve world 
regions were selected because they represent different parts of the Northern Hemisphere where there is a 
good knowledge of the local larval host plants. In each of these world regions, assuming the information 
is accurate and complete, the majority of the cerambycid species develop strictly in trees, shrubs, and 
woody vines, with these woody plants constituting the larval hosts of about 89% of the cerambycids in 
Montana, 98% in Florida, 97% in Fennoscandia/Denmark, 65% in Israel, and 96% in Korea (Table 3.1). 
Coniferous trees are the most commonly utilized group of host plants for the cerambycids of Montana, 
although hardwood trees are the most common larval hosts in the other four world regions (Table 3.1). 
The dominance of woody plants serving as larval hosts likely is the general pattern for cerambycids 
worldwide. For example, recent larval host records for 180 South American cerambycids indicated that 
about 92% of the species listed developed strictly in trees, shrubs, and woody vines (Machado et al. 2012). 
Likewise, in Hawaii, Gressitt and Davis (1972) reported that nearly all of the 120 endemic cerambycids 
developed in trees and shrubs.

Herbaceous plants that traditionally are considered nonwoody, as well as cacti (Cactaceae) and vari-
ous monocots that have some “woody” parts, occasionally are used by cerambycids as larval hosts—for 
example, some agave (Asparagaceae, formerly in Liliaceae), orchids (Orchidaceae), palms (Arecaceae), 
and yucca (Asparagaceae). About 11% of the cerambycids in Montana develop in herbaceous plants 

TABLE 3.1

Percent of Cerambycids with Known Larval Hosts that Feed as Larvae in 
Various Types of Host Plants in Five World Regions

Larval Hostsa

Percent of Cerambycids that Develop in Different 
Hose Groupingsb

Montana Florida
Fennoscandia 
and Denmark Israel Korea

C 45.2 16.2 30.1 5.3 15.5

H 19.3 69.3 44.7 41.1 49.7

S 5.2 3.0 0 3.2 2.2

V 0.7 1.7 0 1.0 3.9

HC 5.9 5.6 14.6 5.3 8.8

HS 7.4 0.6 5.7 6.3 9.9

HCS 0.7 0 0.8 1.0 1.1

HCSV 0.7 0 0 0 1.1

HV 0 1.1 0 2.1 2.8

HSV 3.7 0 0.8 0 0.6

P 10.4 1.7 3.2 32.6 1.1

Cactus 0.7 0 0 0 0

Palm 0 1.1 0 2.1 0

HP 0 0 0 0 1.1

VP 0 0 0 0 0.6

HVB 0 0 0 0 0.6

HB 0 0 0 0 1.1

No. spp. With host data 135 179 123 95 181

Total No. spp. 152 233 123 104 318

Source: Data were based on Hart et al. (2013), http://www.mtent.org/Cerambycidae.html, 
and occasionally on other sources (see Section 3.3.1) for Montana, United States; 
Thomas et al. (2005) for Florida, United States; Bílý and Mehl (1989) for 
Fennoscandia and Denmark; Sama et al. (2010) for Israel; and Lim et al. (2014) 
for Korea.

a Larval host categories: B = bamboo; C = conifers; H = hardwood trees; S = woody shrubs; 
P = herbaceous plants; V = woody vines. Categories with more than one letter or plant 
group represent cerambycids that utilize plant genera in each of the listed plant groups.

b Percentage values based on only those cerambycid species with known larval hosts.

http://www.mtent.org/Cerambycidae.html
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and cacti, 3% of Florida species develop in herbaceous plants and palms, 3% of Fennoscandian species 
develop in herbaceous plants, 35% of Israeli species develop in herbaceous plants and palms, and 5% of 
Korean species develop in herbaceous plants and bamboo (Table 3.1). Both annual and perennial herba-
ceous plants are used as hosts by certain cerambycids (Linsley 1959).

Several examples of cerambycids that feed on herbaceous plants, cacti, and woody monocots are 
listed in Table 3.2. In general, larvae of these cerambycids feed inside the roots and stems of their hosts, 
but some larvae live in the soil and feed externally on host tissues. For example, larvae of the prionine 
Prionus emarginatus Say and the lamiine Dorcadion pseudopreissi Breuning feed externally on the 
roots of grasses (Poaceae) (Craighead 1923; Gwynne and Hostetler 1978; Kumral et al. 2012), and larvae 
of the lepturine Pseudovadonia livida (F.) feed on decaying roots and stalks of grasses as well as fungal 
mycelium (Burakowski 1979; Bense 1995).

Larvae of many cerambycids are economic pests on herbaceous plants in various parts of the world. For 
example, the lamiine Apomecyna binubila Pascoe is a pest of melons (Cucurbita sp.) in Africa (Pollard 
1954); the lamiine Dectes texanus LeConte is a pest of soybeans [Glycine max (L.) Merr.] in the United 
States (Tindall et al. 2010); the prionine Dorysthenes buqueti (Guérin-Méneville) is a pest of sugarcane 
(Saccharum of�cinarum L.) in Asia (Sugar Research Australia 2013); the lamiine Acalolepta mixta 
(Hope) and the cerambycine Xylotrechus arvicola (Olivier) are pests of grapes (Vitis) in Australia and 
Spain, respectively (Goodwin and Pettit 1994; García-Ruiz et al. 2012); the lamiine Agapanthia cardui L. 
is a pest of artichokes (Cynara scolymus L.) in the Mediterranean region (Baragaño Galán et al. 1981); and 
the cerambycine Plagionotus �oralis (Pallas) is a pest of alfalfa (Medicago sativa L.) in Europe (Toshova 
et al. 2010). Likewise, a few of the cerambycids that develop in woody monocots are economic pests, such 
as the cerambycines Jebusaea hammerschmidti Reiche, a pest of date palms (Phoenix dactilifera L.) in 
the Middle East (Giblin-Davis 2001), and Chlorophorus annularis F., a pest of bamboo (Bambusa sp.) 
in Asia (Barak et al. 2009). With respect to the cactus-feeding cerambycids, a few species are of concern 
in the United States because they infest rare species of cacti that are protected under the U.S. Federal 
Endangered Species Act. For example, the lamiines Moneilema armatum LeConte and Moneilema semi-
punctatum LeConte infest at least �ve species of endangered and threatened cacti in the western United 
States (Kass 2001; Ferguson and Williamson 2009; USDA 2013; Figure 3.3).

3.3.2 Plant Parts Utilized by Larvae

Cerambycids develop in nearly all parts of their host plants but mainly in the stems, branches, and roots. 
Some species develop primarily in twigs (Figure 3.4), such as the lamiine Oberea tripunctata (Swederus) 
and the cerambycine Tessaropa tenuipes (Haldeman) in North America (Linsley 1962b, Solomon 1995) 
and the lamiine Pogonocherus hispidus (L.) in Europe (Bílý and Mehl 1989; Bense 1995). Some species 
oviposit primarily along the lower trunk of their hosts, such as the cerambycines Enaphalodes rufulus 
(Haldeman) (Donley and Rast 1984) and Megacyllene robiniae (Forster) (Harman and Harman 1990) in 
the United States. Still others oviposit predominantly at the base of trees such as the prionines Mallodon 
(= Stenodontes) dasystomus (Say) in the United States (Linsley 1962a, Solomon 1995) and the prionine 
Prionus coriarius (L.) in Europe (Bílý and Mehl 1989; Bense 1995).

To further illustrate the utilization of various tree parts among different cerambycids, several species 
are listed in Table 3.3 that develop primarily in the twigs, branches, trunks, and roots of oak (Quercus) 
and pine trees in the United States and northern Europe. The typical range in adult body length is given 
for each of the species listed in Table 3.3 and, assuming these sizes are typical of cerambycids that infest 
these different parts of a tree, there is an apparent trend where twig- and branch-infesting cerambycids 
generally are smaller than root- and trunk-infesting cerambycids. Such a pattern in beetle size is logical 
given the differences in physical size of these plant parts and the faster decay rates of twigs and branches 
compared with trunks and stumps (Cornelissen et al. 2012) and thus re�ect the constraints that would be 
placed on potential beetle size and voltinism in twig- versus trunk-infesting cerambycids, for example. 
Similar lists of cerambycids that infest different parts of trees could be developed for many other tree 
genera throughout the world.

Although most cerambycid larvae develop in the roots, stems, and branches of their host plants, 
a few develop in other plant parts such as seeds, pods, fruits, and cones (Table 3.4 and Figure 3.5). 
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TABLE 3.2

Examples of Cerambycids that Develop in Nonwoody Plants

Species Sub-Familya

Common Host Genera 
in Nature Host Plant Family

Plant Part 
Infested Source

Agapanthia villosoviridescens (DeGeer) Lam Cirsium, Angelica, Carduus, 
Senecio

Apiaceae, Asteraceae Stem Bílý and Mehl 1989

Ataxia hubbardi Fisher Lam Ambrosia, Erigeron Helianthus, 
Vernonia, Heracleum

Asteraceae Root, stem Rogers 1977; Schwitzgebel and Wilbur 1942; 
Twinn and Harding 1999

Brachysomida californica (LeConte) Lep Lomatium Apiaceae Root Swift 2008

Chlorophorus annularis (Fabricius) Cer Phyllostachys, Sasa Poaceae Stem Friedman et al. 2008; Lim et al. 2014

Coenopoeus palmeri (LeConte) Lam Opuntia Cactaceae Stem, branch Raske 1972

Cortodera �avimana (Waldl) Lep Ranunculus Ranunculaceae Root Özdikmen 2003

Dectes texanus LeConte Lam Ambrosia, Anoda, Glycine, 
Xanthium

Asteraceae, Fabaceae, 
Malvaceae

Stem Tindall et al. 2010

Diaxenes dendrobii Gahan Lam Coelogyne, Dendrobium, Laelia, 
Odontoglossum

Orchidaceae Stem MacDougall 1900

Hemierana marginata (Fabricius) Lam Ambrosia, Erigeron, Vernonia Asteraceae Stem Schwitzgebel and Wilbur 1942

Hippopsis lemniscata (Fabricius) Lam Ambrosia, Vernonia, Xanthium Asteraceae Stem Piper 1977; Rogers 1977

Jebusaea hammerschmidti Reiche Cer Phoenix Arecaceae Stem Giblin-Davis 2001

Mecas cana saturnina (LeConte)b Lam Ambrosia, Helianthus, Iva Asteraceae Root, stem Rogers 1977

Moneilema appressum LeConte Lam Echinocereus, Opuntia Cactaceae Root, stem Lingafelter 2003

Moneilema armatum LeConte Lam Astrophytum, Opuntia Cactaceae Root, stem Ferguson and Williamson 2009

Nealcidion cereicola (Fisher) Lam Cereus, Cleistocactus, 
Echinopsis, Monvillea, Stetsonia

Cactaceae Stem, branch Machado et al. 2012; McFadyen and 
Fidalgo 1976

Phytoecia cylindrica (L) Lam Anthriscus, Daucus Apiaceae Stem Bílýand Mehl 1989; Twinn and Harding 1999

Prionus emarginatus Say Prio Grasses Poaceae root Craighead 1923; Gwynne and Hostetler 1978

Tetraopes tetraophthalmus (Forster) Lam Asclepias Asclepidacae Root Matter 2001

Tragidion agave Swift & Ray Cer Agave Asparagaceae Flower stalk Chemsak and Powell 1966; Swift and 
Ray 2008

Tragidion armatum LeConte Cer Agave, Yucca Asparagaceae Stem Craighead 1923; Linsley 1962a; Waring and 
Smith 1987

Zagymnus clerinus (LeConte) Cer Chamaerops Arecaceae Leaf stem Beutenmuller 1896; Blatchley 1928

a Cer = Cerambycinae; Lam = Lamiinae; Lep = Lepturinae; Prio = Prioninae.
b In the original publication, Mecas cana saturnina (LeConte) was reported as Mecas inornata Say; see Linsley and Chemsak (1995).
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FIGURE 3.4 Larvae, galls, and larval galleries of the lamiine Oberea delongi Knull on its larval host, eastern cotton-
wood (Populus deltoides Bartram ex Marsh.), in the eastern United States. (Courtesy of James Solomon [Bugwood image 
3056084].)

FIGURE 3.3 Adult lamiine Moneilema armatum LeConte, a �ightless cerambycid that feeds on and develops in cacti in 
the western United States. (Courtesy of Whitney Cranshaw [Bugwood image 5393466].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-002.jpg&w=374&h=249
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-003.jpg&w=374&h=249
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Seed-infesting cerambycids have been recorded from trees in the families Rhizophoraceae and 
Sapindaceae, pod-infesting species from both herbaceous and woody Leguminosae, and cone-infesting 
species from  conifers in the Cupressaceae and Pinaceae (Table 3.4). All the dicot-infesting cerambycids 
listed in Table 3.4 are members of the subfamily Lamiinae, while the conifer-infesting species represent 
the subfamilies Cerambycinae, Lepturinae, and Spondylidinae. It is surprising that so few cerambycids 
have evolved to develop in seeds, pods, fruits, and cones—or perhaps many more await discovery. The 
cerambycids that develop inside seeds and fruit generally are small in size. For example, adults of the 
seed-infesting lamiine Ataxia falli Breuning are 12–16 mm in length (Linsley and Chemsak 1984), and 
adults of the fruit-infesting lamiine Leptostylus gibbulosus Bates are 8–11 mm in length (Linsley and 
Chemsak 1995; Table 3.4).

Leaves are seldom mined by cerambycid larvae, but there are a few exceptions. The lamiine Microlamia 
pygmaea Bates, for example, is a small (adults are about 2–4 mm long) cerambycid in New Zealand that 
develops in fallen twigs and dead leaves of kauri trees, Agathis australis (D. Don) Lindley (Martin 
2000). Another example is the cerambycine Jebusaea hammerschmidti Reiche (syn. Pseudophilus 
 testaceus Gah.), a large cerambycid (21–40 mm) native to the Middle East that, as larvae, �rst mines the 

TABLE 3.3

Examples of Cerambycids that Develop in Various Parts of Oak (Quercus) and Pine (Pinus) Trees Growing 
in the United States and in Fennoscandia and Denmarka

Tree Part

Species, Subfamily,b and Adult Length (mm)c

United States Fennoscandia and Denmark

Oak-Infesting Cerambycids

Twig Anelaphus parallelus 
(Newman)

Cer 10–15 Anaesthetis testacea 
(Fabricius)

Lam 5–10

Twig Psyrassa unicolor (Randall) Cer 9–15 Phymatodes pusillus 
(Fabricius)

Cer 5–10

Branch Goes debilis LeConte Lam 10–16 Pyrrhidium sanguineum (L.) Cer 6–15

Branch Purpuricenus axillaris 
Haldeman

Cer 12–29 Xylotrechus antilope 
(Schönherr)

Cer 7–14

Trunk Enaphalodes rufulus 
(Haldeman)

Cer 23–33 Cerambyx cerdo L. Lam 24–53

Trunk Goes tigrinus (De Geer) Lam 22–38 Rhagium sycophanta 
(Schrank)

Lep 17–26

Root Archodontes melanopus 
melanopus (L.)

Prio 33–57 Prionus coriarius (L.) Prio 19–45

Root Prionus imbricornis (L.) Prio 31–42 Stenocorus meridianus (L.) Lep 15–25

Pine-Infesting Cerambycids

Twig and 
branch

Phymatodes hirtellus 
(LeConte)

Cer 5–7 Pogonocherus decoratus 
Fairmaire

Lam 4–7

Branch Haplidus testaceus LeConte Cer 8–16 Molorchus minor (L.) Cer 6–16

Branch Neoclytus muricatulus Kirby Cer 5–9 Pogonocherus fasciculatus 
(DeGeer)

Lam 5–8

Trunk Callidium antennatum 
Newman

Cer 9–15 Ergates faber (L.) Prio 23–60

Trunk Monochamus titillator 
(Fabricius)

Lam 17–31 Monochamus sutor (L.) Lam 15–25

Root Typocerus zebra (Olivier) Lep 10–16 Judolia sexmaculata (L.) Lep 8–14

Root Ulochaetes leoninus LeConte Nec 20–30 Pachyta quadrimaculata (L.) Lep 11–20

a Craighead (1923) and Solomon (1995) for the United States; Bílý and Mehl (1989) for Fennoscandia and Denmark.
b Cer = Cerambycinae; Lam = Lamiinae; Lep = Lepturinae; Nec = Necydalinae (formerly a tribe in Lepturinae); Prio = 

Prioninae.
c Adult length data from Bílý and Mehl 1989; Furniss and Carolin 1977; Linsley 1962b, 1964; Solomon 1995; Yanega 1996.
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TABLE 3.4

Records of Cerambycid Species that Feed on Seeds, Pods, and Cones

Species Sub-Familya

Plant Host and Plant Part Infested
Country or Location 

of Study SourceGenus or Species Plant Family Part

Ataxia sulcata Fall ( = Ataxia falli 
Breuning)

Lam Rhizophora mangle Rhizophoraceae Seed United States (Florida) Craighead 1923

Chlorophorus strobilicola Champion Cer Pinus roxburghii Pinaceae Cone India Champion 1919; Pande and 
Bhandari 2006

Cortodera femorata (Fabricius) Lep Picea
Pinus

Pinaceae
Pinaceae

Cone Serbia, Latvia Pil and Stojanovic 2005; 
Barševskis and Savenkov 2013

Enaretta castelnaudii Thomson Lam. Acacia Leguminosae Pod Africa Schabel 2006

Leptostylus gibbulosus Bates Lam Sapindus saponaria Sapindaceae Fruit United States (Texas), 
Mexico, Colombia

Vogt 1949; Romero Nápoles et al. 
2007; Hernandez-Jaramillo et al. 
2012

Leptostylus gundlachi Fisher 
[= Leptostylopsis gundlachi (Fisher), 
and Styloleptus gundlachi (Fisher)]

Lam Erythrina fusca Leguminosae Pod Puerto Rico Wolcott 1948

Leptostyulus spermovoratis Chemsak Lam Diospyros Ebenaceae Fruit Costa Rica Chemsak 1972

Leptostylus terracolor Horn, 
[= Leptostylopsis terraecolor (Horn)]

Lam Rhizophora mangle Rhizophoraceae Seed United States (Florida) Craighead 1923

Lepturges guadeloupensis Fleutiaux & 
Salle [= Urgleptes guadeloupensis 
(Fleutiaux & Salle)]

Lam Acacia farnesiana Leguminosae Pod Puerto Rico Wolcott 1948

Lepturges spermophagus Fisher 
[= Atrypanius spermophagus (Fisher)]

Lam Vigna Leguminosae Pod Mexico Fisher 1917

Lophopoeum timbouvae Lameere 
(= Baryssinus leguminicola Linell)

Lam Enterolobium, Gleditsia, 
Inga, Prosopis, 
Tamarindus

Leguminosae Pod Argentina, Brazil, 
Paraguay

Duffy 1960

Paratimia conicola Fisher Spo Pinus attenuate, Pinus 
contorta ssp. bolanderi

Pinaceae Cone United States 
(California, Oregon)

Craighead 1923; Linsley 1962a

Phymatodes nitidus LeConte Cer Sequoia sempervirens, 
Sequoiadendron giganteum

Cupressaceae Cone United States 
(California)

Keen 1958; Stecker 1980

Xylotrechus schaefferi Schott Cer Pinus banksiana, Pinus 
rigida

Pinaceae Cone United States (New York) Hoebeke and Huether 1990

a Cer = Cerambycinae; Lam = Lamiinae; Lep = Lepturinae; Spo = Spondylidinae.
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leaf petioles of date palms (Phoenix dactylifera L.) before entering the main stem of the plant where they 
complete larval development and pupate (Carpenter and Elmer 1978; Giblin-Davis 2001).

3.3.3 Host Tissues Utilized

The host tissues in the major roots, trunks, and branches of woody plants form distinctive bands, starting 
�rst (from the outside) with the outer bark and then the inner bark, cambium, sapwood, and heartwood. 
Cerambycid larvae have evolved to feed on all of these tissues, with some developing almost entirely 
in a single tissue and others feeding on several tissues. For example, the lepturine Encyclops caeruleus 
(Say) and the cerambycine Microclytus gazellula (Haldeman) develop mainly in the outer bark of vari-
ous North American hardwoods; the lamiine Acanthocinus species develop almost entirely in the inner 
and outer bark of conifers (Figure 3.6); and the cerambycine Eburia quadrigeminata (Say) and the 
lepturine Pyrotrichus vitticollis LeConte develop primarily in the heartwood of hardwoods (Craighead 
1923; Hardy 1944; Linsley 1962b; Baker 1972; Dodds et al. 2002; Yuan et al. 2008 ). In most cases when 
larvae utilize multiple tissues, they complete early larval development in the cambial region and then 
tunnel deeper into the sapwood—and possibly the heartwood—during late larval development. There 
are exceptions to this rule, such as the hardwood trunk-infesting species of the lamiine genus Goes and 
the cerambycine Neoclytus caprea Say where the newly hatched larvae enter the sapwood with little 
feeding in the cambial region (Craighead 1923; Solomon 1995). In this chapter, the term cambial region 
includes the inner bark, cambium, and outer sapwood.

Several hardwood-infesting cerambycids that are native to eastern North America are listed in 
Table 3.5. The species are grouped by the host tissues typically consumed during larval development, 
starting with species that feed primarily on the bark and ending with species that feed primarily on 
wood. Host condition can in�uence which host tissues are utilized by cerambycid larvae. For example, 
in the Ulmus-infesting cerambycine Physocnemum brevilineum (Say), larvae typically feed and later 
construct pupal cells in the outer bark when developing in living trees, but in cut logs, the larvae develop 
in the cambial region and construct pupal chambers in the outer sapwood (Haliburton 1951).

FIGURE 3.5 Larvae of the cerambycine Chlorophorus strobilicola Champion construct galleries in pine (Pinus) cones. 
(Courtesy of the Pennsylvania Department of Conservation and Natural Resources [Bugwood image 5017026].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-004.jpg&w=336&h=252
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3.3.4 Host Range

The larval host range of cerambycids varies from some that feed on a single species or genus of plants 
(monophagous) to cerambycids that develop on multiple plant species, either all within a single plant fam-
ily (oligophagous) or multiple families (polyphagous). For the cerambycids of Montana (Hart et al. 2013, 
supplemented with data from http://www.mtent.org/Cerambycidae.html; Linsley 1962a, 1962b, 1963, 1964; 
Linsley and Chemsak 1972, 1976, 1984, 1995), Fennoscandia and Denmark (Bílý and Mehl 1989), Israel 
(Sama et al. 2010), and Korea (Lim et al. 2014), for which host genera were provided, the average number 
of plant genera used as larval hosts was 3.9 genera per cerambycid species (range 1–26 genera) in Montana, 
4.4 genera (range 1–16) in Fennoscandia and Denmark, 3.3 genera (1–19) in Israel, and 3.5 genera (1–27) in 
Korea. These numbers would likely be higher if complete larval host data were known for all cerambycids.

Examples of monophagous North American species would include the cerambycine Megacyllene 
robiniae that develops in Robinia trees (Solomon 1995; Figure 3.7) and all species of the lepturine 
genus Desmocerus that develop in species of Sambucus (Burke 1921; Figure 3.8). Similarly, in Europe, 
the lamiine Saperda punctata (L.) mostly infests Ulmus, and the cerambycine Xylotrechus antilope 
(Schönherr) mostly infests Quercus (Bense 1995). One North American example of a polyphagous spe-
cies is the cerambycine Neoclytus acuminatus (Fabricius), which has developed in at least 26 genera 
of hardwood trees (Linsley 1964; Solomon 1995; Hart et al. 2013) and has also become established in 
Europe (Cocquempot and Lindelöw 2010). European examples of polyphagous species include the lep-
turine Rhagium bifasciatum Fabricius, which develops in at least 16 genera of conifers and hardwoods 
(Bílý and Mehl 1989), and the cerambycine Penichroa fasciata (Stephens), which develops in at least 
19 genera of conifers and hardwoods (Sama et al. 2010).

Several cerambycids have been introduced to new countries as biological control agents for both her-
baceous and woody plants because of their high host speci�city. For example, the lamiine Apagomerella 
versicolor (Boheman) from Argentina is a potential biological control agent of Xanthium species in 

FIGURE 3.6 Larvae of the lamiine Acanthocinus aedilis (L.) construct galleries primarily in the outer bark of their 
coniferous hosts. (Courtesy of Valentyna Meshkova [Bugwood image 5425792].)

http://www.mtent.org/Cerambycidae.html
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-005.jpg&w=360&h=269
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TABLE 3.5

Typical Generation Time for Selected Cerambycids Native to the Northeastern United States that Infest 
Hardwood Trees, Organized by the Host Tissues Consumed by the Larvae, Starting from the Outer Bark 
and Moving Inward to the Heartwood

Species
Sub-

Familya

Common 
Larval 
Hostsb

Adult 
Length 
(mm)

Larval Host 
Tissuesc

Generation 
Time (yr)

Tree Parts 
Infested

Enaphalodes cortiphagus 
(Craighead)

Cer Quercus 16–30 OB, CAM 3 Trunk

Parelaphidion incertum 
(Newman)

Cer Morus, 
Quercus

9–17 OB, CAM 2–3 Trunk

Physocnemum 
brevilineum (Say)

Cer Ulmus 9–20 OB, CAM, SW 1–2 Trunk, branch

Strophiona nitens 
(Forster)

Lep Castanea, 
Quercus

10–15 OB, SW 2 Trunk, branch

Saperda discoidea 
(Fabricius)

Lam Carya, 
Juglans

10–11 CAM 1 Trunk

Saperda tridentata Olivier Lam Ulmus 9–17 CAM 1 Trunk, branch

Enaphalodes rufulus 
(Haldeman)

Cer Quercus 23–33 CAM, SW 2 Trunk, branch

Glycobius speciosus (Say) Cer Acer 22–27 CAM, SW 2 Trunk, branch

Neoclytus acuminatus 
(Fabricius)

Cer Fraxinus, 
Quercus

4–18 CAM, SW 1 Trunk, branch

Tylonotus bimaculatus 
Haldeman

Cer Fraxinus, 
Ligustrum

10–18 CAM, SW 2 Trunk

Xylotrechus 
quadrimaculatus 
(Haldeman)

Cer Betula, Fagus 8–16 CAM, SW 1 Branch

Dorcaschema alternatum 
(Say)

Lam Morus, 
Maclura

7–16 CAM, SW 1–2 Trunk, branch

Dorcaschema wildii Uhler Lam Morus, 
Maclura

16–22 CAM, SW 1–2 Trunk, branch

Plectrodera scalator 
(Fabricius)

Lam Populus, 
Salix

25–40 CAM, SW 1–2 Root

Saperda calcarata Say Lam Populus 20–30 CAM, SW 2–3 Trunk

Saperda cretata Newman Lam Malus, 
Crateagus

10–20 CAM, SW 2–3 Trunk, branch

Saperda fayi Bland Lam Crateagus 12–13 CAM, SW 2 Branch

Saperda inornata Say Lam Populus, 
Salix

8–13 CAM, SW 2 Trunk

Megacyllene robiniae 
(Forster)

Cer Robinia 12–19 CAM, SW, HW 1 Trunk, branch

Aegomorphus morrisi 
(Uhler)

Lam Nyssa 20–26 CAM, SW, HW 2 Trunk

Saperda candida 
Fabricius

Lam Cydonia, 
Malus

13–25 CAM, SW, HW 2–4 Trunk

Saperda vestita Say Lam Tilia 12–21 CAM, SW, HW 3 Trunk

Purpuricenus axillaris 
Haldeman

Cer Quercus, 
Castanea

12–29 SW 2 Branch

Goes debelis LeConte Lam Quercus 10–16 SW 3–4 Branch

Goes pulcher (Haldeman) Lam Carya, 
Juglans

17–25 SW 3–5 Trunk

Goes pulverulentus 
(Haldeman)

Lam Fagus, 
Quercus

18–25 SW 3–5 Trunk, branch

(Continued)
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TABLE 3.5 (Continued)

Typical Generation Time for Selected Cerambycids Native to the Northeastern United States that Infest 
Hardwood Trees, Organized by the Host Tissues Consumed by the Larvae, Starting from the Outer Bark 
and Moving Inward to the Heartwood

Species
Sub-

Familya

Common 
Larval 
Hostsb

Adult 
Length 
(mm)

Larval Host 
Tissuesc

Generation 
Time (yr)

Tree Parts 
Infested

Goes tesselatus 
(Haldeman)

Lam Quercus 20–27 SW 3–5 Trunk

Goes tigrinus (De Geer) Lam Quercus 22–38 SW 3–4 Trunk

Oberea ru�collis 
(Fabricius)

Lam Sassafras 17 SW 2–3 Trunk

Oberea schaumii LeConte Lam Populus 12–16 SW 2–3 Branch

Desmocerus palliatus 
(Forster)

Prio Sambucus 18–27 SW 2–3 Trunk

Dryobius sexnotatus 
(Linsley)

Cer Acer, Tilia 20–26 SW, HW 2–3 Trunk

Xylotrechus aceris Fisher Cer Acer 10–14 SW, HW 2 Trunk, branch

Neandra brunnea 
(Fabricius)

Par Juglans, 
Carya

8–12 SW, HW 3–4 Trunk

Prionus imbricornis (L.) Prio Quercus, 
Castanea

31–42 SW, HW 3–5 Root

Source: Data based almost entirely on Solomon, J. D., Guide to insect borers in North American broadleaf trees and shrubs. 
USDA Forest Service, Washington, DC, 1995.

a Cer = Cerambycinae; Lam = Lamiinae; Lep = Lepturinae; Par = Parandrinae; Prio = Prioninae.
b Primary larval hosts listed in Solomon (1995).
c Host tissues include OB = outer bark; CAM = cambial region, including inner bark and outer sapwood; SW = sapwood, 

and HW = heartwood.

FIGURE 3.7 Larvae of the cerambycine Megacyllene robiniae (Forster) construct galleries throughout the sapwood and 
heartwood of their typical larval host, black locust (Robinia pseudoacacia L.). (Courtesy of Whitney Cranshaw [Bugwood 
image 5445130].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-006.jpg&w=360&h=239
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the United States (Logarzo et al. 2002); the cerambycine Megacyllene mellyi (Chevrolat) from South 
America was introduced into Australia to control Baccharis halimifolia L. (McFadyen 1983); the lamiine 
Nealcidion cereicola (Fisher) from South America was introduced into Australia for biological control of 
Harrisia (= Eriocereus) martinii (Labouret) Britton (McFadyen and Fidalgo 1976); the lamiine Oberea 
erythrocephala (Schrank) from Europe was introduced into North America to control Euphorbia esula 
L. (Hansen et al. 1997); and the lamiines Aerenicopsis championi Bates and Plagiohammus spinipennis 
(Thoms.) from Mexico were introduced into Hawaii to control Lantana camara L. (Davis et al. 1993).

Typically, species that develop in healthy live plants tend to be monophagous or oligophagous, while 
those that develop in dead or decaying hosts tend to be polyphagous (Hanks 1999). However, given that 
there are thousands of cerambycid species worldwide, there are always exceptions. For example, the two 
Asian lamiines, Anoplophora chinensis (Forster) and A. glabripennis (Motschulsky), can develop in 
dozens of genera of apparently healthy hardwood trees and eventually kill them, which is the key reason 
why active eradication programs have been initiated in Europe and North America—where these two 
beetles have been introduced (MacLeod et al. 2002; Haack et al. 2010; Turgeon et al. 2015; Rassati et al. 
2016; see Chapter 13).

3.3.5 Host Condition

Cerambycid larvae develop in host plants that vary in condition from healthy to dead and from moist to 
dry. Hanks (1999) noted the following general trends in the condition of the host plants selected for ovipo-
sition by adult females in several of the cerambycid subfamilies: Lepturinae, Prioninae, and Spondylidinae 
often develop in dead and decaying wood; Lamiinae usually develop in living and weakened hosts but 
seldom in dead hosts, whereas Cerambycinae develop in living, dying, and dead hosts. Many cerambycids 
that develop in living trees—but not all (see as follows) can complete development even in dead wood, 
especially when moisture levels are maintained at suitable levels. Although most cerambycids show an 

FIGURE 3.8 Pupae of the lepturine Desmocerus palliatus (Forster) in the larval galleries that extend downward in the 
stems to the base of the plant—primarily in the pith of its host elder (Sambucus). (Courtesy of James Solomon [Bugwood 
image 3066074].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-007.jpg&w=174&h=262
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ovipositional preference for hosts in a particular condition, this relationship can be altered when the insect 
encounters new hosts. For example, in its native range of Europe, the spondylidine Tetropium fuscum F. 
tends to infest stressed or recently cut Picea trees, whereas in Canada, where it was introduced, it infests 
apparently healthy Picea trees (Flaherty et al. 2011). Another widespread European species, the ceramby-
cine Xylotrechus arvicola, whose larvae generally feed on dead and decaying wood of hardwood trees, has 
recently been found to infest and damage living grape stems, branches, and roots (García-Ruiz et al. 2012).

Examples of cerambycid genera whose species are commonly associated with living hosts include 
Anoplophora, Enaphalodes, Goes, Lamia, Megacyllene, Oberea, Oncideres, Plectrodera, and Saperda 
(Figure 3.9). Similarly, examples of cerambycids that typically infest dead hosts are members of the gen-
era Arhopalus, Ergates, Parandra, and Rhagium (Craighead 1923; Linsley 1959; Bílý and Mehl 1989; 
Solomon 1995). The requirement for living hosts appears to be particularly strong in species of the lami-
ine genera Goes and Saperda, given that their larvae seldom complete development when an infested 
tree is cut (Craighead 1923; Linsley 1959). Similarly, cerambycids that develop in the roots and stems 
of herbaceous plants usually select living hosts for oviposition (Piper 1978; Bense 1995; Rejzek et al. 
2001), but some, such as the lamiines Lepromoris gibba (Brulle) (Duffy 1953) and Parmena pubescens 
(Dalman) (Duffy 1957), infest dead stalks of herbaceous Euphorbiaceae, perhaps because less milky 
sap is present in the dead tissue (Duffy 1953). When considering wood moisture content, several species 
of Mallodon, Rhagium, and Rutpela (=Stragalic) generally favor moist, decaying wood, while many 
species of Chlorophorus, Gracilia, Hylotrupes, and Stromatium develop in dry wood (Craighead 1923; 
Duffy 1953; Linsley 1959; Bense 1995). As logs decompose from the time of initial death or cutting to 
wood in advanced stages of decay, there are successional changes in the wood borer community struc-
ture, including cerambycids, providing further evidence that cerambycids vary in their preferences for 
hosts of a particular condition (Blackman and Stage 1924; Graham 1925; Savely 1939; Parmelee 1941; 
Howden and Vogt 1951; Haack et al. 1983; Khan 1985; Harmon et al. 1986; Hanula 1996; Saint-Germain 
et al. 2007; Costello et al. 2013; Lee et al. 2014; Ulyshen 2016).

FIGURE 3.9 Larva, larval galleries, pupa, and adult of the lamiine Saperda calcarata on its larval host, eastern cotton-
wood (Populus deltoides Bartram ex Marsh.), in the eastern United States. (Courtesy of James Solomon [Bugwood image 
0284067].)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315313252-4&iName=master.img-008.jpg&w=178&h=267
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3.4 Larval Development, Nutrition, and Voltinism

As mentioned in Sections 3.3.2 and 3.3.3, cerambycid larvae feed and develop in almost every major 
plant part (roots, stems, branches, fruit, and seeds) and plant tissue (outer bark, inner bark, cambium, 
sapwood, and heartwood). These plant tissues differ greatly in thickness, nutrient levels, amount of 
living cells, degree of ligni�cation (toughness), and their functional role within plants (Kramer and 
Kozlowski 1979; Haack and Slansky 1987; Pallardy 2008) and therefore can have a strong in�uence on 
cerambycid development rates and voltinism.

A brief discussion follows on the major physical and nutritional differences among these tree tissues 
based largely on the work by Kramer and Kozlowski (1979), Haack and Slansky (1987), and Pallardy 
(2008). The outer bark is largely dead, dense, corky tissue that functions in protecting the underlying tis-
sues and reducing water loss. Outer bark generally is low in water and nutrients. By contrast, the inner 
bark (often called phloem) largely is soft living tissue, consisting of thin-walled cells. The inner bark 
is rich in water and nutrients and is the major tissue for the transport of photosynthates. The vascular 
cambium (or simply the cambium) is the ring of living cells that produces phloem cells to the outside 
and xylem (wood) cells to the inside. Because the cambium consists of living cells and is meristemati-
cally active, it likely has the highest water and nutrient levels of any major tissue within a woody plant. 
The sapwood consists mostly of dead, highly ligni�ed cells that function in water and mineral transport. 
About 5–35% of the sapwood is living parenchyma cells, depending on the tree species (Panshin and de 
Zeeuw 1980). The water content of sapwood generally is high, being similar to inner bark, but the nutrient 
levels are usually much lower than the cambium or inner bark. The most nutritious portion of the sapwood 
is the outer portion closest to the cambium. Parenchyma cells die during the transition from sapwood to 
heartwood, and thus heartwood consists of dead tissue (Spicer 2005). Heartwood, in comparison with 
sapwood, generally is similar in density and lower in nutrients but is higher in secondary compounds. The 
water content of heartwood usually is similar to that of sapwood in hardwoods but is lower in conifers 
(Peck 1959; Skarr 1972).

Considering the overall nutritional quality of these tissues, cambium would rank highest, followed by 
inner bark, then sapwood, with heartwood and outer bark being lowest. Of course, the volume of each 
of these tissues available for larval consumption also varies considerably. For example, in the trunk of a 
large tree, the cambium would provide the smallest volume of these major tissues, followed by the inner 
bark, and likely then the outer bark, sapwood, and heartwood. However, great variation can occur in 
the thickness of these tissues, depending on plant age and diameter, as well as among and within plant 
families, genera, and species (Wilkins 1991; Sellin 1994; Pallardy 2008). Another tissue that varies dra-
matically in width is the pith, which commonly is found at the center of young stems and branches and 
initially consists of soft, spongy parenchyma cells. The pith usually is very distinct in young branches 
and stems of woody plants, but it becomes crushed and dif�cult to discern in older stem sections. In spe-
cies of elderberry (Sambucus), which usually grow as shrubs or small trees, the pith is relatively wide 
and solid and is the primary tissue consumed by larvae of the North American lepturine Desmocerus 
species, especially the early instars (Burke 1921; Solomon 1995; Figure 3.8).

Many factors can in�uence cerambycid development time, including nutritional quality of the host 
tissues, host condition, and ambient temperatures. As detailed by Haack and Slansky (1987) for tree-
infesting, temperate-zone cerambycids, development usually occurs in one to two years for larvae that 
feed primarily in the nutrient-rich cambial region, in two to three years when development occurs in both 
the cambial region and sapwood, and in three years or longer when most development occurs in the sap-
wood and heartwood. To demonstrate this pattern with cerambycids, several species native to the eastern 
United States are listed in Table 3.5 based on life-history data presented in Solomon (1995). These cer-
ambycids are grouped by the host tissues commonly consumed by larvae of each species, starting with 
species that feed primarily on bark and ending with species that feed primarily on wood. An attempt was 
made to select species that were broadly similar in adult size so that voltinism patterns could be compared 
more on the basis of variation in nutritional quality of the host tissues consumed rather than on varia-
tion in �nal body size. Overall, for the species listed in Table 3.5, cerambycids that developed primarily 
in the outer and inner bark of tree trunks often required two to three years to complete one generation. 
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Those that developed primarily in the cambial region typically were univoltine. For species that  developed 
in the cambial region as well as the sapwood, one to two years usually were required to complete develop-
ment, although some species needed two to three years. For species that developed almost entirely in the 
sapwood or sapwood and heartwood, two to three years to as many as three to �ve years usually were 
required to complete one generation (Table 3.5).

There are exceptions to the aforementioned voltinism patterns. For example, the North American 
cerambycine Megacyllene robiniae is univoltine on its host (Robinia), although the larvae spend much 
of their life tunneling and feeding in the sapwood and heartwood (Galford 1984; Harman and Harman 
1990). Similarly, the Asian lamiine A. glabripennis, which develops in dozens of species of living hard-
wood trees, generally is univoltine, although it too feeds extensively in sapwood and heartwood (Haack 
et al. 2010). The high microbial diversity in the guts of A. glabripennis larvae likely improves the diges-
tion and assimilation of woody tissues and thereby may allow for their relatively short generation time 
(Geib et al. 2008, 2009a, 2009b; Scully et al. 2014).

Although most wood-infesting cerambycids complete development within a few years, there are 
numerous records of adults emerging from various wood products many years, or even decades, after 
the product was constructed. In these cases, oviposition is presumed to have occurred in the forest or 
lumberyard prior to milling the logs rather than sometime after construction of the wood products. This 
scenario can be assumed to have happened for most of the cerambycids reared from wood products given 
that these species require bark for oviposition, none of which usually is present on the �nal constructed 
product. Several examples of prolonged cerambycid development are shown in Table 3.6, with the longest 
being for the cerambycine Eburia quadrigeminata that emerged from a bookcase that was constructed 
more than 40 years earlier. More examples of protracted cerambycid development are given in Packard 
(1881) and Duffy (1953), and similar examples exist for several species of wood-boring Buprestidae 
(Coleoptera) (Spencer 1930; Linsley 1943; Smith 1962a, 1962b), with the longest records exceeding 
50 years for Buprestis aurulenta L. (Smith 1962a). Although such records are exceptions, these data 
provide evidence that certain buprestids and cerambycids have the longest generation times of all insects.

Over the years, some authors have questioned the validity of these records of prolonged development, sug-
gesting that oviposition could have occurred on the actual wood products sometime after �nal construction 

TABLE 3.6

Summary Data for Cerambycids that Exhibited Prolonged Larval Development in Various Wood Items

Species
Sub-

Familya

Country (State 
or Province)b Wood Item

Min. Age 
(yr)d References

Anaglyptus mysticus (L.) Cer The United 
Kingdom

Fagus drawerc 13 Hickin 1947

Phymatodes dimidiatus (Kirby) Cer Canada (BC) Abies rafters 6 Spencer 1930

Eburia quadrigeminata (Say) Cer United States (IN) Acer �ooring 14 Webster 1889

Eburia quadrigeminata Cer United States (IA) Betula bookcase 40 Jaques 1918

Eburia quadrigeminata Cer United States (IN) Fraxinus door sill 19 McNeil 1886

Eburia quadrigeminata Cer United States (IN) Bedstead (Quercus)c 20 Troop 1915

Eburia quadrigeminata Cer The United 
Kingdom

Quercus wardrobe 19 Hickin 1951

Ergates faber (L.) Prio The United 
Kingdom

Pinus pier 20 Fraser 1948

Hylotrupes bajulus (L.) Cer Canada Dry wood in attic 12–15 Campbell 
et al. 1989

Hylotrupes bajulus Cer The United 
Kingdom

Pinus cupboard 17 Bayford 1938

a Cer = Cerambycinae; Prio = Prioninae.
b BC = British Columbia; IA = Iowa; IN = Indiana.
c Likely host, but not con�rmed.
d Values represent the likely number of years since construction of the wood items prior to adult emergence and thus the 

estimated minimum number of years required to complete development.
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(Spencer 1930; Beer 1949). However, some of the records are of buprestids and cerambycids that were native 
to the country where the furniture or wood product was constructed but that were not native to the country 
where the beetles emerged (Linsley 1943; Smith 1962a). Given that moisture content and nutrient levels 
decline as wood dries (Haack and Slansky 1987), it is not surprising that larval development would be pro-
longed when larvae are present in �nished wood products that are relatively dry and kept indoors.

3.5 Wood Digestion

The woody environment is �brous, tough, and nutritionally poor and therefore presents many challenges 
to wood-boring insects as they tunnel and feed in wood (Haack and Slansky 1987). For example, the 
nitrogen content of wood typically ranges from only 0.03% to 0.1% on a dry weight basis (Cowling and 
Merrill 1966). Considering the tree trunk in cross-section, the nitrogen content of sapwood generally 
decreases from the annual rings nearest the cambium inward to the sapwood–heartwood interface and 
then stays relatively constant throughout the heartwood until rising somewhat again near the pith at the 
center of the trunk or branch (Merrill and Cowling 1966). The toughness of wood results from the highly 
polymerized cell walls, which provide rigidity to woody plants and consist primarily of cellulose micro-
�brils, hemicellulose, and lignin (Gilbert 2010). Cellulose consists of thousands of glucose molecules, 
linked end-to-end in long straight chains that bind with other cellulose molecules to form micro�brils. 
By contrast, hemicellulose is a branched chain of mostly �ve carbon sugars that help link cellulose and 
lignin in each major layer of the cell wall. Lignin is an aromatic three-dimensional polymer that acts 
to cement the micro�brils together and gives woody plants their rigidity (Rowell et al. 2005). In North 
American conifers, for example, 40–45% of wood on a dry weight basis is cellulose, 7–14% is hemicel-
lulose, and 26–34% is lignin. By contrast, in North American hardwoods, 38–49% of wood is cellulose, 
19–26% is hemicellulose, and 23–30% is lignin (Rowell et al. 2005).

For more than two centuries, biologists have been interested in understanding how wood-boring insects 
are able to develop and survive in such a harsh environment as sapwood and heartwood. Mansour and 
Mansour-Bek (1934) and Parkin (1940) reviewed the early research in this �eld, including a discussion of 
the researchers involved, the test insects used, and their general �ndings and interpretations. A variety 
of techniques were utilized in these early studies but most involved comparing the chemical constituents 
of larval frass with the wood being consumed to detect differences as well as testing extracts from the 
borer’s gut for their ability to enzymatically degrade speci�c wood constituents (Parkin 1940). As a 
result of these early studies, researchers developed a basic understanding that symbiotic microorganisms 
were involved in wood digestion in insects through enzymatic activity, including bacteria, fungi, and 
protozoans (Mansour and Mansour-Bek 1934; Parkin 1940; Graham 1967; Breznak 1982; Breznak and 
Brune 1994). More recently, using modern molecular and biochemical techniques, many more details 
have been elucidated about the symbionts, enzymes, and genes involved in wood degradation (Sugimura 
et al. 2003; Lee et al. 2004; Geib et al. 2008; Zhou et al. 2009; Watanabe and Tokuda 2010; Calderón-
Cortés et al. 2012; Scully et al. 2013; Brune and Dietrich 2015). Moreover, it is recognized that wood-
degrading enzymes in cerambycids are produced both exogenously (symbiont dependent) (Delalibera et 
al. 2005; Park et al. 2007; Zhou et al. 2009; Gieb et al. 2009b) and endogenously (symbiont independent) 
(Scrivener et al. 1997; Lee et al. 2005; Wei et al. 2006; Calderón-Cortés et al. 2012).

In the early 1900s, several cerambycids were known to harbor yeast-like fungi as endosymbionts in 
their midgut intestinal walls (Graham 1967). For example, Schomann (1937) reported that fungal endo-
symbionts were common in conifer-infesting cerambycid larvae but were rare in hardwood-infesting 
cerambycids. More recently, Grünwald et al. (2010) described several strains of ascomycetous yeasts 
in the guts of conifer-infesting cerambycids. In addition, Geib et al. (2008) demonstrated that certain 
gut fungi in A. glabripennis aided in lignin degradation. Transfer of symbiotic fungi between genera-
tions is accomplished during oviposition when fungi are deposited externally on the egg surface, with 
the new larvae becoming inoculated as they chew through the egg chorion (Schomann 1937; Graham 
1967). In addition to fungal endosymbionts, several cerambycids utilize cellulolytic enzymes from fungi 
that they ingest while tunneling in wood (i.e., so-called acquired digestive enzymes). Cerambycids 
became the focus of this line of research in the 1980s, using species such as the conifer-infesting lamiine 
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Monochamus marmorator Kirby and the hardwood-infesting lamiine Saperda calcarata Say (Martin 
1983; Kukor and Martin 1986a, 1986b; Martin 1992).

The role of bacteria in the digestion of cellulose, hemicellulose, and other polysaccharides in cer-
ambycid larvae has been recognized for decades (Mansour and Mansour-Bek 1934; Parkin 1940). The 
bacterial diversity in the guts of cerambycid larvae has been elucidated in several species recently, with 
several classes of bacteria identi�ed such as Actinobacteria and Gammaproteobacteria (Delalibera et al. 
2005; Heo et al. 2006; Schloss et al. 2006; Park et al. 2007; Mazza et al. 2014). It is important to note 
that the bacterial community in the insect’s gut is highly variable and can be in�uenced by the host plant. 
For example, Gieb et al. (2009a) demonstrated that the community of gut bacteria in A. glabripennis 
was most diverse when larvae fed in their preferred host trees (Acer) but much less diverse when they 
fed in nonpreferred hosts (Pyrus). Moreover, Schloss et al. (2006) reported that bacterial diversity was 
relatively high in the guts of A. glabripennis larvae, which have a broad host range, whereas bacterial 
diversity was relatively low in Saperda vestita Say, a lamiine with a narrow host range (primarily Tilia). 
It would be interesting to determine if bacterial diversity typically is greater in the gut tract of polypha-
gous cerambycid larvae compared to monophagous species. As for the transfer of bacteria between 
generations of cerambycids, it likely occurs during oviposition with bacteria being placed on the outside 
or inside of eggs or deposited near the oviposition site (Gieb et al. 2009b).

3.6 Summary and Future Directions

The thousands of cerambycid species found worldwide display great diversity in their feeding habits, 
including a wide variety of host plants, plant parts, and tissues consumed. The great success that ceram-
bycids have had in exploiting the woody environment is related to their ability to enzymatically degrade 
many wood constituents through symbionts and endogenously produced enzymes. Knowledge of the feed-
ing habits of adult and larval cerambycids can be used in developing integrated pest management programs 
for pest species. For example, knowing when and where adults feed is useful when scheduling detection 
surveys and pesticide applications. Similarly, knowing in which plant tissues the larvae feed and tunnel 
allows managers to judge the value, for example, of using systemic insecticides for their control, knowing 
that larvae that feed in or close to the cambial region would be much more susceptible to systemic insecti-
cides than those that feed deep within the sapwood or heartwood (Poland et al. 2006). Although much has 
been learned about the feeding biology of the world’s cerambycids, there are still many gaps in our basic 
understanding of their life history, larval and adult host plants, digestive symbionts, and wood-degrading 
enzymes; therefore, much more research remains to be conducted on these topics.
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