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a b s t r a c t

Forest landscape models (FLM) are increasingly used to project the effects of climate change on forested
landscapes, yet most use phenomenological approaches with untested assumptions about future forest
dynamics. We used a FLM that relies on first principles to mechanistically simulate growth (LANDIS-II
with PnET-Succession) to systematically explore how landscapes composed of tree species with various
life history traits respond to individual climate and abiotic drivers. Moderate temperature rise (þ3 �C)
concurrent with rising CO2 concentration increased net photosynthesis of cohorts, but decreased
biomass production because of increased maintenance respiration costs. However, an increase of 6 �C
decreased both photosynthesis and biomass production, regardless of species optimal temperature.
Increasing precipitation generally increased photosynthesis and biomass. Reduced cloudiness had a
positive effect on photosynthesis and biomass, but much less than the other treatment factors. Our study
informs expectations for the outcome of modeling studies that project forest futures under climate
change.

Published by Elsevier Ltd.
1. Introduction

Climate change is expected to alter temperature, precipitation
and cloudiness throughout much of the world (IPCC, 2013),
abruptly subjecting forests to abiotic conditions that are unprece-
dented since the last ice age. Forest managers often rely on models
to predict how well potential management strategies will achieve
objectives for ecosystem goods and services in the future. Most of
these models rely heavily on a phenomenological approach, which
uses the past to predict the future. However, given that global
changes to climate and atmospheric composition will produce new
conditions that have never been scientifically observed, phenom-
enological approaches are not reliable for the conditions of the
future (Gustafson, 2013). Modifying such models to use more
n).
mechanistic approaches that rely on well-established ecophysio-
logical mechanisms (first principles) and more directly link
modeled system behavior to climate and atmospheric inputs will
increase their robustness to the novel conditions of the future. In
this study we use such a modified model to describe how distinct
climate drivers interact with tree species life history traits to
determine productivity and competitive ability. Our results can
inform expectations for the outcome of modeling studies that seek
to project forest futures under altered climatic and atmospheric
conditions.

Managers have found forest landscape models (FLMs) useful for
projecting future forest dynamics because they account for most of
the factors that structure forested ecosystems at landscape spatial
and temporal scales, particularly disturbances (He, 2008). Climate
and atmospheric (i.e., global) changes are expected to impact forest
dynamics and composition through direct (growth, establishment,
competition and mortality) and indirect (altered climate-regulated
natural disturbance regimes) effects. FLMs simulate these effects at
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a spatial scale intermediate between stand models (e.g., Forest-
GCB, Running and Gower, 1991; PnET-CN, Aber et al., 1997),
which simulate growth of individual trees and fluxes of materials
within a forest stand and Dynamic Global Vegetation Models
(DGVM, e.g., SEIBeDGVM; Sato et al., 2007), which mechanistically
simulate growth and competition among vegetation types (e.g.,
biomes) at regional to global scales (Medlyn et al., 2011). Unlike
both stand and DGVM models, FLMs are spatially explicit and
simulate seed dispersal, competition, disturbance and succession of
species (as opposed to trees or plant functional types) as distinct
processes such that their interactions play out as emergent prop-
erties of the climate inputs (e.g., ALFRESCO (Rupp et al., 2000), Iland
(Seidl et al., 2012), Landclim (Schumacher et al., 2004), LANDIS-II
(Scheller et al., 2007), TreeMig (Lischke et al., 2006)). Because of
these added spatial processes, FLMs generally simplify simulation
of growth and competition compared to stand and DGVM models
and are constructed using a mixture of mechanistic and phenom-
enological components. However, because phenomenological
components are based on system behavior in the past (Schelhaas
et al., 2004), they risk being not just imprecise, but biased, and in
some cases, completely wrong (Cuddington et al., 2013; Gustafson,
2013; Keane et al., 2015; Urban et al., 2016).

Many disturbance processes in FLMs have explicit and empiri-
cally derived links to their climate drivers. However, the majority of
FLMs have relatively weak links between key abiotic drivers (i.e.,
temperature, precipitation, CO2, ozone) and species establishment,
growth and competition (reviewed by Gustafson and Keane, 2014).
Some FLMs simplistically simulate succession using probabilities of
transition from one community type to another (e.g., LANDSUM
(Keane et al., 2002), VDDT/TELSA (Kurz et al., 2000)), with proba-
bilities modified to account for climate-induced changes. However,
such modifications are usually somewhat ad hoc, and require as-
sumptions about the complex interactions among the processes
that determine succession. Other FLMs that model succession as a
competitive process usually simplify the mechanisms of growth
and competition by relying on average behavior within a time step
(typically decadal), which consequently eliminates the impact of
highly influential extreme events such as droughts or heat waves
(e.g., Biomass Succession extension of LANDIS-II (Scheller et al.,
2007)). These approaches have worked reasonably well to
conduct controlled simulation experiments under historical
climate conditions, but they are problematic when the models are
used to project the impact of climate and atmospheric change on
future forest dynamics because of the proliferation of uncertainty
when future conditions fall outside the domain of most empirical
studies (Dale et al., 2001 Gustafson, 2013; Keane et al., 2015).

To resolve this problem, more direct links between climate and
atmospheric drivers and growth and competition are being added
to FLMs, and these more mechanistically simulate growth and
competition based on well-established first principles to make
them more robust to unprecedented conditions. FireBGCv2 (Keane
et al., 2011) mechanistically simulates all fundamental ecological
processes at appropriate spatial and temporal scales and the model
scales and integrates them to produce realistic landscape behavior.
For example, growth (living and dead biomass) is estimated for
representative forest stands by simulating photosynthesis of indi-
vidual trees as they compete for light, water and nutrients with
daily variation in temperature, precipitation and CO2 concentra-
tion. These growth estimates are then imputed to all such stands on
the landscape. Disturbances typically are simulated at broader
scales, and respond to live and dead vegetation on landscape sites
and to daily weather conditions. FireBGCv2 is strictly a research
tool, but it provides robust capabilities to link climate change to
forest landscape dynamics. iLand (Seidl et al., 2012) is very mech-
anistic, but because it simulates every tree on a landscape, the size
of landscapes that can be simulated is limited. The LANDIS-II FLM
(Scheller et al., 2007) can simulate large areas by stimulating
growth as a competition for growing space among cohorts rather
than individual trees. A more mechanistic approach within
LANDIS-II was recently developed by De Bruijn et al. (2014) by
embedding algorithms of the PnET-II stand-level ecophysiology
model (Aber et al., 1995) in a LANDIS-II succession extension to
mechanistically simulate tree species cohort growth on every
landscape cell as a function of competitive interactions for light and
water. Accordingly, photosynthetic rates (and therefore growth
rates) vary monthly by species and cohorts as a function of pre-
cipitation and temperature (among other factors such as CO2 con-
centration), which directly affect competition, and ultimately,
successional outcomes. Thus, landscape dynamics emerge from the
photosynthesis response of species to climate and atmospheric
changes, (including extreme climatic events) according to life his-
tory traits such as shade and drought tolerance and optimum
temperature for photosynthesis, coupled with spatial processes of
dispersal and disturbance.

FLMs with relatively weak links to climate are being used to
project future landscape dynamics under climate change (e.g.,
Scheller and Mladenoff (2008), Gustafson et al. (2010)). When such
models are parameterized for novel future conditions for which
empirical observations are not available, the input parameters are
often based on assumptions about system behavior in that future,
and such assumptions are rarely tested. There is therefore a critical
need for a robust evaluation of the combined effects of changes in
temperature, precipitation, cloudiness and CO2 concentration to
inform expectations of forest response to climate change to guide
the development and interpretation of FLM studies of climate
change. Mechanistic FLMs are difficult to test, primarily because of
their reliance on a relatively large number of parameters and
because appropriate evaluation data sets are rare. Gustafson et al.
(2015) used PnET-Succession to predict the outcome of a precipi-
tation manipulation experiment in a pi~non-juniper ecosystem in
New Mexico (USA), with considerable success. Loehman et al.
(2011) used the mechanistic landscape model FireBGCv2 to simu-
late effects of altered temperatures (þ2.1 and þ 6.7 �C growing
season temperature) and fire management on western white pines
in Montana, USA, and found that higher temperatures increased
abundance of western white pine because the resulting increase in
fire more severely impacted its competitors. Seidl et al. (2017) used
iLand to replicate the results of a controlled thinning trial of Nor-
way spruce across an elevation (climate) gradient in Austria and
found that the model reproduced the growth patterns measured in
the experiment. Duveneck et al. (2016) used empirical data from
4118 forest inventory plots and monthly net ecosystem exchange at
three New England flux tower sites to parameterize PnET-
Succession to project the effects of climate change on New En-
gland forests. Nevertheless, these studies do not provide a
comprehensive evaluation of the impact of individual climate
drivers and their interaction.

In this study we used the mechanistic, first principles PnET-
Succession model to produce such an evaluation. The objectives
for our study were to 1) explore the interacting effects of temper-
ature, precipitation, cloudiness and soil texture (available water
capacity) on tree species growth and competition in a highly
controlled simulation experiment at the local level, 2) determine
how specific life history traits interact with climate and soils to
affect growth and competition and 3) conduct a heuristic projec-
tion of the effect of global changes in climate and CO2 concentration
on forests as the changing drivers interact with spatial processes at
the landscape scale in northern Wisconsin (USA). We hypothesized
that response (growth and competitive ability) would be positively
related to temperature, precipitation, light and soil texture because
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they can each be seen as limiting factors. Further, we hypothesized
that response to temperature would be related to optimal tem-
perature for photosynthesis, response to both precipitation and soil
available water capacity would be proportional to drought toler-
ance, and that response to available light would depend on shade
tolerance. We also expected that some interactions among treat-
ment factors might be significant and perhaps non-intuitive
because of the myriad relationships between the driving factors
and sub-processes within the model.

2. Materials and methods

2.1. Simulation model

LANDIS-II simulates broad-scale (>105 ha) forested landscape
dynamics, including succession, seed dispersal, multiple natural
disturbance types, forest management, and climate change effects
over long (i.e. centuries) temporal scales (Scheller et al., 2007).
Landscapes are represented as a grid of interacting cells with user-
defined cell size. Individual cells are assumed to be internally ho-
mogeneous with respect to abiotic conditions and vegetation
characteristics, and are spatially aggregated into ecological land
types with homogeneous climate and soils. Forest composition at
the cell level is represented as the woody biomass of age cohorts of
individual tree species that interact via a suite of vital attributes
(e.g., growth capacity, shade tolerance, drought tolerance,
longevity) to produce nondeterministic successional pathways
sensitive to disturbance type and severity (Mladenoff, 2004).

PnET-Succession (De Bruijn et al., 2014) is one of several avail-
able LANDIS-II succession extensions, and it mechanistically pro-
jects tree species cohort growth by simulating photosynthetic
production at a monthly time step. In PnET-Succession, cohorts
compete for water and light in each cell. Cohort size (biomass)
determines the priority of access to light, while access to soil
moisture depends on each species’ relative ability to extract soil
water at the water potential of the cell. Cohort leaf biomass is
sorted into canopy layers based on woody biomass, which is a
surrogate for height, and light attenuates through the resulting
mixed-species canopy according to the extinction coefficients of
the component species. Soil water is tracked at the grid-cell level
using a bulk-hydrology “bucket” model where the water holding
capacity of the soil represents the size of the “bucket,” with pre-
cipitation providing the input, and losses result from foliage
interception, evaporation, runoff and percolation out of the rooting
zone, and uptake by vegetation (transpiration).

Foliar nitrogen (FolN) is the primary determinant of photosyn-
thetic capacity in PnET-Succession. When water is not limiting, the
amount of photosynthesis for a given cohort increases with light
available to the cohort (dependent on canopy position and leaf
area) and atmospheric CO2 concentration, and decreases with age
and departure from species-specific optimal temperature for
photosynthesis. Photosynthesis occurs in themonths when average
temperature exceeds the species specific minimum, allowing
phenology to respond to variation in temperature. As soil water
availability decreases, photosynthesis also decreases. PnET-
Succession accounts for reductions in biomass accumulation due
to growth and maintenance respiration. The model uses a Q10
relationship in which a 10 �C increase in temperature results in a
ten-fold increase in respiration rate (Atkins, 1978); foliar respira-
tion depends on temperature and moisture, and maintenance
respiration depends on temperature and biomass. When respira-
tion exceeds photosynthetic production (e.g., from water and/or
temperature stress), non-structural carbon reserves become
depleted and mortality occurs when reserves are below a user-
specified minimum at the end of a calendar year. Cohort
establishment probabilities are proportional to computed growth
rates below the canopy for each species. Monthly temperature,
precipitation, radiation and CO2 inputs allow growth and estab-
lishment rates to vary in response to both gradual change and
extreme events.

This approach provides robust capabilities for simulating global
change effects on forests at landscape scales. First, PnET-Succession
is based on first principles in that it uses primarily fundamental,
well-established physiological relationships, making it robust un-
der novel combinations of environmental inputs such as changing
climate and CO2 concentration. Second, explicit modeling of how
the drought-tolerance of species affects competition, growth, and
establishment can affect successional outcomes (Berdanier and
Clark, 2016). Third, species-specific photosynthetic output varies
with temperature: (a) net photosynthetic rate (NetPsn) peaks at a
user-specified optimal temperature and declines at high tempera-
tures as conductance declines with increasing vapor pressure
deficit and (b) growing season length for each species varies ac-
cording to its minimum temperature for photosynthesis. Fourth,
monthly photosynthetically active radiation (PAR) is a model input,
and cohorts use this incoming light based on their shade tolerance
and light reaching lower canopy layers is reduced based on the leaf
area and canopy extinction coefficient of the cohorts making up the
canopy. If available radiation varies because of changes in cloudi-
ness, this could also affect light competition. Fifth, elevated tem-
peratures increase surface evaporation and reduce water use
efficiency, other factors remaining constant. Outcomes of these
local-level processes are emergent properties of the mechanistic
simulation of growth (photosynthesis), which comes from the
interaction of environmental and physiological attributes rather
than phenomenological effects based on growth (biomass)
observed under past conditions.

Physiological stress results from inadequate ability to compete
for water and/or light, interactions with other life history attributes
(e.g., intrinsic photosynthetic capacity, water use efficiency,
longevity) or CO2 concentrations. PnET succession allocates carbon
(photosynthates) to pools of foliage, aboveground wood, roots, and
non-structural carbon (energy) reserves. The model attempts to
maintain non-structural carbon (NSC) at a fixed fraction (NSCfrac)
of physiologically active biomass (0.05 in our study), allocating the
remainder to foliage, wood and roots to maintain user-specified
pool fractions. Because the model tracks carbon reserves, growth
reductions under stress can cause reserves to become depleted by
non-foliar respiration, which can ultimately result in direct mor-
tality (McDowell et al., 2013; Gustafson et al., 2015). Alternatively,
the level of carbon reserves can feed into disturbance extensions
that simulate complete or partial disturbance mortality of stressed
cohorts.

2.2. Local-level experiment

A local-level experiment (spatial interactions need not be
simulated) was conducted using a full-factorial design with four
treatment factors (temperature, precipitation, cloudiness (PAR) and
soil texture (available water capacity)) applied to assemblages of
four species on a single cell. Response variables were chosen to
represent various aspects of physiological response to the treat-
ments. Annual net productivity (NetPsn) of each cohort over the
course of the growing season was chosen as the indicator of
photosynthetic response, integrating effects of temperature on
photosynthesis, respiration and length of growing season, as well
as seasonal precipitation variability. Furthermore, net photosyn-
thesis is limited in the model by reduction factors linked to each of
the treatment factors. Cohort woody biomass was evaluated
because it integrates photosynthetic output, water use efficiency



Table 2
Levels of the experimental parameter settings effects relative to the baseline climate.

Treatment factor Abbreviation Low Mid High

Temperature (�C) T þ0 þ3 þ6
Precipitation (%) Pr �40 þ0 þ40
PAR (Light) (%) a P �10 þ0 þ10
AWC (Soil) (mm) b AWC 60.5 107.5 150.8

a Photosynthetically Active Radiation (mmol/m2/s).
b Maximum available water capacity, calculated as field capacity e wilting point.
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and maintenance respiration. Mean monthly NSCfrac was evalu-
ated because it represents non-structural carbon reserves of the
cohort, which are believed to be an indicator of plant stress and
inversely correlated with likelihood of mortality (Gustafson et al.,
2015; McDowell et al., 2013). The mean age attained by all co-
horts on a cell was used as a measure of crowding-induced mor-
tality (competitive exclusion), with amean age<140 indicating that
at least one cohort died prior to the end of the simulation. Rather
than choose a single simulation year to compute response variables,
we used the mean value observed over the course of each simu-
lation for biomass, net photosynthesis, and NSCfrac, assuming that
these averages represent the relative vigor and competitive ability
of each cohort in response to the treatments and its competitors
throughout its lifetime. For cohorts that died, only the years prior to
death were included to represent the state of the cohort prior to
death.

Experimental parameter settings (Tables 1 and 2) were applied
for 100 years to even-aged (40 years old) assemblages of four
species competing on a single cell. CO2 concentration was not
manipulated as an experimental treatment, but CO2 for all factorial
combinations followed the IPCC RCP 6.0 emissions scenario,
extended beyond 2100 by Meinshausen et al. (2011) as Extended
Concentration Pathways (ECP) in which concentration levels off at
752 ppm in 2150.When life history traits differ among species in an
assemblage, certain combinations of abiotic conditions will favor
the growth of some species while hindering the growth of others.
Furthermore, these traits may interact in different ways depending
on the traits of competitors such that the specific combination of
life history traits of the species in an assemblage has a large impact
on the outcome of their competition. We therefore randomized the
life history traits of the four hypothetical deciduous tree species in
each replicate by selecting one of three possible values for each of
four specific life history traits (Table 1). These life history traits were
chosen because they determine growth capacity (FolN) or control
the physiological response to the treatments. Each random
assemblage was simulated for all combinations (N ¼ 81) of the full
factorial of treatments (Table 2) and the response variables for a
single species formed a single observation, along with the treat-
ment levels and the values of the four life history traits. We simu-
lated 250 species assemblages, resulting in 81,000 cohort
observations.

We used weather data from Oconto county (Wisconsin, USA)
(see below) from the period 1949e2010 to create a realistic base-
line weather time series, and modified monthly mean baseline
temperature and precipitation values by the treatment amount to
create treatment weather time series, concatenating copies of those
time series to create treatment time series sufficiently long for each
experiment. Each treatment factor had three levels (Table 2). The
Table 1
Levels of species life history traits used to randomly create species assemblages for
simulation.

Life history trait Low Mid High

FolN (% wt.)a 2.2 2.5 2.8
HalfSat (mmol/m2/s)b 275 437.5 600
H3/H4 (MPa)c �0.98/�1.37 �1.07/�1.47 �1.16/�1.57
PsnTOpt (�C)d 19 23 27

a Foliar nitrogen; determines maximum photosynthetic capacity in PnET-
Succession.

b Light level when photosynthesis is half of its full sunlight rate; determines shade
tolerance.

c Drought tolerance parameters; H3 is the water potential below which photo-
synthesis begins to decline; H4 is the water potential below which photosynthesis
stops.

d Optimum temperature for photosynthesis.
range of levels of temperature and precipitation in the experiment
were set relative to historical monthly averages and encompass the
range predicted by GCMs for the upper Midwest (USA). The mean
growing season temperature of the þ0 temperature treatment was
16.5 �C with a mean of 23.1 during the warmest month, and under
the þ6 treatment the values were 22.5 and 29.1 respectively. His-
toric monthly mean PAR measurements were similarly modified
according to the treatment levels, which were chosen to be
consistent with observations of global brightening and dimming
due to changes in cloudiness and pollution (Wild, 2009). Soil
texture was included as a factor because soil texture may have a
large effect on the availability of water for tree photosynthesis for a
given level of precipitation (Gustafson et al., 2016). The levels of the
soil factor created a gradient of available water capacity (AWC),
defined as field capacity minus wilting point, using three standard
soil texture classes (sand, sandy loam, loam) (Saxton and Rawls,
2004) (Table 2). By using a historical weather stream rather than
a GCM projection as a baseline, we eliminated the confounding
effect of changes in the temporal patterns of precipitation and
temperature variation.

Each replicate random assemblage was simulated on a single
30m cell, and in each assemblage, a single cohort of each of the four
hypothetical species was established on an empty cell in 1970 and
grown for 40 years using fixed monthly averages of temperature,
precipitation and PAR and constant CO2 (385 ppm). The treatments
were applied beginning in 2010 and run for 100 years. Establish-
ment of new cohorts was not simulated to avoid confounding the
experiment. We used PnET-Succession v1.2 (De Bruijn et al., 2014;
Gustafson et al., 2016). The complete set of PnET-Succession input
parameters is provided in the online Supplement.
2.3. Analysis

Our primary objective was to assess the relative magnitude of
impact of each of the main effects on the dynamics of species re-
sponses under different competitive environments. We used a
least-squares means procedure to compute mean responses to in-
dividual experimental effects by holding all covariates to their
mean level (Searle et al., 1980). Our expectation was that these
effects might potentially interact to produce non-intuitive dy-
namics. We focused on the relative magnitude of effects and
intentionally avoided making inferences about the significance of
differences because our model generated different populations for
each combination of inputs, and differences in response variables
could always achieve statistical significance with enough replicates
(White et al., 2014). Readers can draw their own conclusions about
significance by comparing 99% confidence intervals among treat-
ment means. Another objective was to verify that the model re-
sponds to the driving factors as expected according to the well-
established principles incorporated into the model algorithms.
We therefore plotted the response variables against the levels of
the relevant main effects and against levels of selected life history
traits.
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2.4. Landscape-level experiment

The landscape-level experiment was similar to the local-level
experiment, but featured a large number of real species assem-
blages (using empirically estimated life history traits for each spe-
cies) found on a 104,471 ha landscape in Oconto County
(Wisconsin, USA), mapped at 30 m resolution (Fig. 1). The experi-
ment included the spatial processes of seed dispersal and a generic
stand-replacing disturbance to allow shade-intolerant species to
persist. The purpose was to evaluate how the treatments, real
species assemblages and the spatial processes of dispersal and
disturbance interact to determine species composition at landscape
scale. To reduce the factorial size at the landscape scale, we
excluded the PAR treatment because it had the least effect in the
local-experiment for most response variables, using the PAR ¼ þ0
level. Topographic relief is minimal and climate is essentially ho-
mogeneous across the study area, so we used the climate inputs
(temperature, precipitation, PAR) of the local experiment for all
ecological land types. Variation in soil typewas included in the land
type map, which was produced by assigning all SSURGO (Soil
Survey Staff, 2013) soil map polygons to the most similar of the
three soil types used in the local experiment (Fig. 1). The initial
forest conditions (species and age cohorts) were those used by
Janowiak et al. (2014), created using the methods of Wilson et al.
(2012). Species establishment probabilities were calculated
Fig. 1. Soil types used in the study area in Oconto county (Wisconsin, USA)
dynamically by the model on each cell at each time step, being
proportional to growth rates below the canopy for each species.

Stand-replacing disturbance was simulated using the Base
Harvest v3.0 extension (Gustafson et al., 2000). We arbitrarily
defined a grid of 5.8 ha (8 � 8 cells) stands across the landscape
grid, and 3.3% of the stands were selected for harvest each decade
(300 year return interval). Only stands dominated by aspen or jack
pine of at least 30 years of agewere selected for disturbance, and all
cohorts of all species were removed. The harvest and output ex-
tensions used a 10-year time step and three replicates of each
factorial combination (temperature x precipitation) were simulated
for 400 years to allow landscape effects to fully develop. We
analyzed the response to the treatments as a function of drought-
tolerance, optimal temperature for photosynthesis (PsnTOpt) and
forest type (Table 3), using the average biomass on all landscape
cells at the end of each decade as the response variable. Our specific
hypotheses at the landscape level were: 1) productivity response to
precipitation will be inversely proportional to drought-tolerance
(H3/H4), 2) response to temperature will be proportional to
PsnTOpt, and 3) treatments will alter the relative abundance of
forest types (composition). With only a single landscape, we could
not evaluate the generality of our results, but we evaluatedwhether
our results were consistent with the hypotheses by examining plots
of species class biomass through time by treatment.
. Unshaded areas are non-forested and not included in the simulation.



Table 3
Species assigned to each forest type.

Forest type Species

Aspen-birch Betula papyrifera, Populus balsamifera, P. grandidentada, P. tremuloides
Pine-oak-hemlock Pinus strobus, P. resinosa, Quercus rubra, Tsuga canadensis
Mixed oak Q. alba, Q. ellipsoidalis, Q. macrocarpa, Q. veleutina
Spruce-fir Picea glauca, Abies balsamea
Mixed swamp conifer P. mariana, Thuja occidentalis
Sugar maple-beech-basswood Acer saccharum, B. allegheniensis, Fagus grandifolia, Tilia americana
Red maple A. rubrum
Cherry-ash Prunus serotina, Fraxinus americana, F. pennsylvanica
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3. Results

3.1. Local experiment

At the local level, the effect of temperature on net photosyn-
thesis was nonlinear such that NetPsn increased at the þ3 �C level
but declined at the þ6 �C level, compared to the þ0 �C level as
shown in Fig. 2a. However, the production of wood biomass did not
follow the behavior of NetPsn because maintenance respiration
Treatment
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Fig. 2. Mean and 99% confidence intervals (whiskers) of (a) average annual net
photosynthesis (R2 ¼ 0.03) and (b) woody biomass of living cohorts (R2 ¼ 0.03) over
the 100 simulated years in response to the treatment levels, adjusted using least
squares techniques. There was no evidence of important interactions. Treatment units
and abbreviations as in Table 2.
costs increased with temperature, resulting in a consistent decline
as temperature increased (Fig. 2b). Cohort energy reserves
(NSCfrac) and cohort survival also decreased as temperature
increased (Fig. 3) for similar reasons. The precipitation treatment
had the greatest effect on most response variables, with increased
precipitation resulting in greater NetPsn, wood biomass and energy
reserves (Figs. 2 and 3). However, increased precipitation actually
decreased mean cohort survival (Fig. 3b) within assemblages
because less water stress initially allowed more productive species
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Treatment units and abbreviations as in Table 2.
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to put on biomass quickly and thus consume more water, resulting
in quicker and greater water stress for all cohorts in later years. The
greater water stress proved fatal to the less drought tolerant spe-
cies, which in some cases were the more productive species.
Although cohorts with greater biomass have priority access to
water in the model, they also have higher maintenance respiration
costs, which may quickly deplete their carbon reserves when
chronic water stress occurs. Only the cohort survival variable
accurately reflects cohort mortality because mortality tends to
happen precipitously, and NetPsn and NSCfrac are depressed only
briefly prior to cohort death. PAR was positively related to all
response variables, but PAR had the least effect of all the treatments
(Figs. 2 and 3). The effect of AWCwas similar to that of precipitation
for similar reasons, although the magnitude of the effect was less
(Figs. 2 and 3). There was little apparent interaction between
temperature and precipitation effects (Fig. 4) except for competi-
tive exclusion, where cohort survival declined most when precip-
itation was least (Fig. 4c). Similarly, there was little apparent
interaction between PAR and AWC effects (Fig. 5) except for
competitive exclusion, where the effect of PAR was different for
each level of AWC (Fig. 5c).

The interactions between the treatments and life history traits
provided insights into the sometimes divergent behavior of the
Fig. 4. Relative effect of the temperature and precipitation treatments at the local
level. Error bars show one standard error of the adjusted means, and are often less than
the width of symbols.
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Fig. 5. Relative effect of the PAR and AWC treatments at the local level. Error bars show
one standard error of the adjusted means, and are often less than the width of symbols.
response variables. Temperature and PsnTOpt interacted such that
when optimum temperature was near the mean of the three
temperature time series (PsnTOpt ¼ 23), NetPsn was highest and
temperature had little effect, but NetPsn declined with increasing
temperature when PsnTOpt was low, and increased with temper-
ature when PsnTOpt was high (Fig. 6a). Again, the production of
wood biomass did not follow the behavior of NetPsn because
maintenance respiration costs increased with temperature,
resulting in a greater rate of decline in biomass as temperature
increased (Fig. 6b). Energy reserves (NSCfrac) responded similarly
for similar reasons, with the highest temperature markedly
reducing energy reserves, especially for species with low PsnTOpt
(Fig. 6c). Precipitation and drought-tolerance interacted such that
increasing drought-tolerance (increasing H3/H4) decreased the
effect of precipitation (Supplement Fig. 1). As drought-tolerance
decreased, the effect on response variables was non-linear,
reflecting the relation between water potential (pressure head)
and the water-stress photosynthesis reduction factor in PnET-
Succession. The response to light was driven almost entirely by
shade-tolerance (HalfSat), with only energy reserves (NSCfrac)
appreciably responsive to differences in PAR (Supplement Fig. 2).
Although shade-intolerant cohorts grew well in the early years of
the simulations, the results shown represent 100 years of growth,
during which time the canopy closed and competition for light
became acute.



Fig. 6. Relative effect of temperature treatment levels and levels of the PsnTOpt life
history trait at the cohort level. Error bars show one standard error of the adjusted
means, and are often less than the width of symbols.

E.J. Gustafson et al. / Environmental Modelling & Software 97 (2017) 171e183178
3.2. Landscape experiment

The effects of the treatments at the landscape scale were rela-
tively subtle, and the short-term fluctuations through time were
driven by the generic disturbance and cohort senescence. The
precipitation treatment generally produced a greater increase of
biomass as drought-tolerance declined, supporting the hypothesis
that the biomass response to precipitation would be inversely
proportional to drought-tolerance (Fig. 7). The effect of tempera-
ture on drought tolerance classes was weak except for the two least
drought-tolerant classes, where the þ6 temperature treatment
increased biomass of the second least drought tolerant class
(H4 ¼ �1.42) at the expense of the least drought tolerant class
(H4¼�1.37) under all precipitation treatments. The most drought-
tolerance class (H4 ¼ �1.57) declined to very low levels of biomass,
likely because those species tend to be somewhat shade-intolerant.
The temperature treatment produced effects on the biomass of
PsnTOpt classes similar to those observed in the local-level exper-
iment, weakly supporting our hypothesis that response to tem-
perature would be proportional to optimal temperature for
photosynthesis (Fig. 8). The class with PsnTOpt of 19e20 �C
increased in biomass under the þ3 �C treatment, but decreased
under the þ6 �C treatment, similar to the local experiment results.
The 21e22 �C class decreased in biomass with increasing temper-
ature, the 23e24 �C was not clearly affected by temperature, and
the 25e26 �C class increased with increasing temperature in the
first 200 years, but by year 400 it was outperformed by the
23e24 �C class, presumably due to other factors such as age. Pre-
cipitation interacted with these effects slightly, especially at the
highest temperature. Our hypothesis that treatments would alter
forest composition at the landscape scale was not clearly sup-
ported. The rank order of forest type abundance did not change
except for short periods of time, but the relative abundance of
forest types was clearly affected by the treatments, particularly
temperature (Fig. 9).

4. Discussion

One of the most compelling features of PnET-Succession is that
its mechanistic simulation of growth and competition is based on
well-established first principles, and that growth and competitive
outcomes are emergent properties of the interactions of the pro-
cesses simulated. The results of our study emerged from the in-
teractions among photosynthetic capability (FolN), shade tolerance
(HalfSat), drought-tolerance (H3/H4), optimal temperature
(PsnTOpt) and soil texture (AWC) as a consequence of the experi-
mental treatments. The model also accounts for the effects of
temperature on respiration rate, water use efficiency (transpira-
tion) and conductance, the effect of CO2 concentration on
conductance and the effect of leaf area and extinction coefficient on
light competition. This is vital for studies of the response of forest
ecosystems to environmental conditions that are outside of the
domain under which they have been studied in the past (e.g., global
changes) (Gustafson, 2013). For example, our finding that greatly
elevated temperatures depress growth (Figs. 2e4) runs counter to
conventional wisdom, which holds that the combination of
elevated temperatures and longer growing seasons stimulates
productivity. Our mechanistic model shows that this is true for
modestly higher temperatures, but that multiple constraints (VPD,
WUE, respiration costs) serve to greatly reduce net productivity at
higher temperatures, even when PsnTOpt is high (Fig. 6). Such ca-
pabilities in a forest landscape model allow robust projections of
the impacts of climate change at landscape scales by linking
simulation of mechanistic competitive interactions with process-
based disturbance modules, all driven by climate variables vary-
ing at a monthly time step.

4.1. Insights

In the local experiment, temperature ultimately had a variable
effect (positive at þ3 �C and negative at þ6 �C) on NetPsn within
and across cohorts, driven primarily by reduced stomatal conduc-
tance at elevated temperatures that was not offset by the increasing
CO2 concentrations of the ECP6 emissions scenario. Climate
warming generally lengthens growing seasons, and is widely ex-
pected to increase forest productivity in temperate and boreal
ecosystems based on awide range of empirical data from the recent
past (Boisvenue and Running, 2006; Cole et al., 2010). However, our
results suggest that reduced stomatal conductance and elevated
maintenance respiration in the middle of the growing season more
than offset the longer season when climate warms to þ6 �C,
although the temperature at which productivity peaks depends on
the species. In the model (and in real life), species that reach
maximum photosynthetic capacity at lower temperatures where
the constraints of conductance and respiration costs are minimal
can out-grow species with higher optimal temperatures. The latter
operate at suboptimal photosynthesis rates when the constraints of



Fig. 7. Mean biomass of drought tolerance groups on all landscape cells. H3 and H4 were modified in tandem, and the H4 parameter specifies the soil water potential at which
photosynthesis ceases. Each panel represents a treatment combination. Error bars show one standard deviation, and are often less than the width of symbols.
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conductance and respiration are low, but face high respiration and
transpiration costs when operating near their optimum tempera-
ture (Kubiske and Abrams,1994; Rodríguez-Calcerrada et al., 2015).
The net result is minimal to no gain in NetPsn at high temperatures
even for species with higher optimal temperatures (Fig. 10). In non-
random assemblages comprised only of species with optimal
temperatures higher than current mean temperatures, elevated
temperatures may have less of a negative effect than seen in our
results, but the constraints of reduced conductance and increased
respiration costs still apply. It is widely believed that elevated CO2
will offset these constraints (Boisvenue and Running, 2006), but
our results suggest that even a fairly high emissions scenario
(752 ppm CO2) may not be enough. In the landscape experiment,
the þ6C temperature treatment negatively impacted many species,
but only redmaple (PsnTOpt¼ 26 �C, intermediate shade tolerance)
was able to substantially increase biomass at the expense of species
that were negatively affected (not shown).

Our results clearly show that water is the main limiting climatic
factor for cohort growth, and its availability has a major impact on
competitive outcomes. Both precipitation and AWC determine
water availability; precipitation determines water inputs and AWC
determines the size of the “bucket” that holds those inputs. We
found that each has about the same relative influence on growth
(Figs. 2 and 3). In our model, cells with only young cohorts are not
limited bywater because their cumulative demand for water is low,
but eventually the unconstrained growth associated with adequate
water increases water demand (transpiration) such that water be-
comes limiting. As water potential drops, less drought-tolerant
species have their photosynthetic output reduced while more
drought-tolerant species (higher value of H3/H4) thrive (Kubiske
and Abrams, 1994). As continued growth and leaf area production
increases water consumption, or if water inputs are reduced
(drought), the less drought-tolerant species will be completely
unable to photosynthesize (water potential lower than H3/H4),
while more drought-tolerant species may maintain a reduced level
of photosynthesis sufficient to cover respiration costs (Noormets
et al., 2008). This gives more drought-tolerant species a consider-
able competitive advantage, and if the water stress is chronic, less
drought-tolerant species die because they are unable to replenish
their carbon reserves (McDowell et al., 2013; Gustafson et al., 2016)
or become vulnerable tomortality agents such as insects (Berdanier
and Clark, 2016). (A link between PnET-Succession and LANDIS-II
disturbance extensions (e.g., Biomass Insects) is currently in
development.) In the landscape experiment, the�40% precipitation



Fig. 8. Mean biomass of optimum temperature groups on all landscape cells. The PsnTOpt parameter specifies the temperature that is optimal for photosynthesis. Each panel
represents a treatment combination. Error bars show one standard deviation, and are often less than the width of symbols.
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treatment negatively impacted most species, but even the most
drought-tolerant species were able to increase growth only slightly
in response to negative impacts on their competitors (not shown).

Gustafson et al. (2016) showed that the mechanistic simulation
of growth as the competition for light and water to support
photosynthesis in PnET-Succession explained the empirical find-
ings of Gustafson and Sturtevant (2013) that drought-induced
mortality is better explained by drought duration than drought
severity. Brief droughts allow cohorts to quickly replenish their
carbon reserves when each drought ends, even when such
droughts are frequent, while extensive droughts do not allow such
replenishment, increasing the likelihood of mortality. In this study
we showed that the model also simulates competitive interactions
under chronic changes in precipitation that operate at temporal
scales much longer than those of droughts, and that the cumulative
effects of such chronic changes on competition can be important.

Not surprisingly, the effect of light (PAR) on growth is not as
important as water (precipitation, AWC), but it is not trivial. Surface
solar radiation (SSR) varies annually at a given site according to
cloudiness, but it also varies globally at much longer time scales.
SSR generally declined by 2e5% per decade between 1960 and
1990, and has been increasing at similar rates since then (Wild,
2009). These changes have been shown to not be externally
forced by the sun, but are driven by cloud abundance and atmo-
spheric aerosol characteristics caused by anthropogenic emissions
and volcanic activity (Farquhar and Roderick, 2003; Wild, 2009).
Additionally, clouds diffuse light, which may actually increase
photosynthetic efficiency because diffuse light penetrates deeper
into the canopy than does direct sunlight (Gu et al., 2003). Our
model does not simulate diffusion effects, modeling the extinction
of direct radiation through each canopy layer (Aber and Federer,
1992). Nevertheless, it mechanistically simulates competition for
light, and our finding that PAR effects are relatively modest
compared to other factors suggests that adding model complexity
to distinguish between direct and diffuse light may not be
warranted.

Our results also provide perspective on results reported by
others. For example, Duveneck et al. (2016) and Wang et al. (2016)
reported a simulated increase in growth and biomass in north-
eastern US forests over the next century and attributed a significant
positive effect to longer growing seasons resulting from climate
warming. Myneni et al. (1997) related increased remotely-sensed
NDVI at high northern latitudes to longer and warmer growing
seasons (<þ4 �C during the growing season), but their methods did
not translate NDVI to biomass growth. Barber et al. (2000) used a
90-year tree-ring record of white spruce in Alaska to show that



Fig. 9. Effect of the treatments on species composition. Values represent the mean biomass of species groups across all landscape cells. Each panel represents a treatment
combination. Error bars show one standard deviation, and are often less than the width of symbols.
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growth has decreased with increasing temperature because of
temperature-induced drought stress. Nemani et al. (2003) used
climate data and productivity efficiency models to show that global
climate changes (1982e1999) eased climatic constraints
(temperature, water and radiation) on plant growth globally, but
those results do not reflect the more dramatic changes that have
occurred in recent decades. Our results help interpret these pub-
lished results, especially when a reader contemplates extrapolating
them to growing season temperature increases of more than 3 �C.
4.2. Caveats

Our study used a simulation experiment to link climate drivers
to tree competition outcomes. This resulted in some important
differences from empirical experiments. 1) We decided that the
best way to detect the signal of the main effects from the noise of
differential competitive ability was to randomize the values of the
parameters that control ability to compete for light, water and
growing space. This resulted in some unrealistic combinations of
species traits existing on a cell, but eliminating the correlation of
life history traits enabled us to discover the interaction of traits and
climate drivers. 2) We decoupled climate and CO2 concentration to
better observe climate effects. 3) Our precipitation treatment used
historical temporal variation in precipitation, but in the future,
drought events may become longer and more extreme, or precip-
itation events more intense but of shorter duration (IPCC, 2013).
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Longer droughts were not simulated by our methods, so our results
likely underestimate effects of the�40% precipitation treatment. 4)
Our landscape experiment did not include disturbances other than
those necessary to allow the shade-intolerant species to persist
(aspen, birch, jack pine). Our finding that landscape change is
subtle under climate change scenarios may not hold when distur-
bances that impact all species are included and when drought
events become longer.

We also note that much of the dynamics in landscape-scale
trajectories is not solely driven by the experimentally manipu-
lated abiotic drivers. The major declines in biomass seen in Fig. 9
were likely caused by age-induced senescence (Pregitzer and
Euskirchen, 2004; Drake et al., 2010) and death of multiple co-
horts, which in turn released other cohorts. The local-level exper-
iment had only young, even-aged assemblages without
regeneration, while the landscape experiment had many uneven-
aged, layered canopy cells that developed over 400 years,
enabling ubiquitous desynchronization of cohort growth stages.
Also, competitive ability was not determined solely by life history
traits, because cohorts with greater biomass have an advantage in
competition for light and water in the model. Furthermore, the
disturbances simulated did not affect all species equally. Forest
landscape dynamics are exceedingly complex because of the
myriad biotic and abiotic factors that determine successional out-
comes, illustrating the usefulness of the highly controlled local-
level experiment to illuminate the interaction of specific abiotic
drivers and life history traits.

Our study helps set expectations for the outcome of modeling
studies that seek to project forest futures under climate and at-
mospheric changes. Elevated temperatures should not be expected
to enhance productivity unless the temperature increase is modest,
or unless precipitation also increases dramatically. Longer growing
seasons and reduced stomatal conductance associated with
increasing CO2 concentrations may be not sufficient to offset the
increased respiration caused by elevated temperatures. Competi-
tion for water was the major factor driving competitive outcomes
and, therefore, forest succession. Carbon reserves (NSCfrac) were
also reduced with elevated temperature, and although increased
precipitation may mitigate this decline, increased precipitation
may not be enough to reduce mortality rate under elevated tem-
peratures (Fig. 4 c). Models used to make projections of landscape
futures under climate change must have robust capabilities to
simulate the impact of competition for water on forest dynamics,
and linear effects of temperature should be avoided.
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