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a b s t r a c t

Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI)
effect, which poses threats to human health due to substantially increased temperatures relative to rural
areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human
health and reducing energy use in cities. Measurement of this relationship relies on accurate, fine spatial
resolution UTC mapping, and on time series analysis of Land Surface Temperatures (LST). The City of
Worcester, Massachusetts underwent extensive UTC loss and gain during the relatively brief period from
2008 to 2015, providing a natural experiment to measure the UTC/LST relationship. This paper consists of
two elements to this end. First, it presents methods to map UTC in urban and suburban locations at fine
spatial resolution (�0.5 m) using image segmentation of a fused Lidar/WorldView-2 dataset, in order to
show UTC change over time. Second, the areas of UTC change are used to explore changes in LST magni-
tude and seasonal variability using a time series of all available Landsat data for the study area over the
eight-year period from 2007 to 2015. Fractional UTC change per unit area was determined using fine res-
olution UTC maps for 2008, 2010, and 2015, covering the period of large-scale tree loss and subsequent
planting. LST changes were measured across a series of net UTC change bins, providing a relationship
between UTC net change and LST trend. LST was analyzed for both monotonic trends over time and
changes to seasonal magnitude and timing, using Theil-Sen slopes and Seasonal Trend Analysis (STA),
respectively. The largest magnitudes of UTC loss occurred in residential neighborhoods, causing increased
exposure of impervious (road) and pervious (grass) surfaces. Net UTC loss showed higher monotonic
increases in LST than persistence and gain areas. STA indicated that net UTC loss was associated greater
difference between 2008 and 2015 seasonal temperature curves than persistence areas, and also larger
peak LST values, with peak increases ranging from 1 to 6 �C. Timing of summer warm period was
extended in UTC loss areas by up to 15 days. UTC gain provided moderate LST mitigation, with lower
monotonic trends, lower peak temperatures, and smaller seasonal curve changes than both persistence
and loss locations. This study shows that urban trees mitigate the magnitude and timing of the surface
urban heat island effect, even in suburban areas with less proportional impervious coverage than the
dense urban areas traditionally associated with SUHI. Trees can therefore be seen as an effective means
of offsetting the energy-intensive urban heat island effect.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Urban areas experience elevated temperatures relative to sur-
rounding non-urbanized areas due to alteration of land-cover, in
what is known as the Urban Heat Island (UHI) (Oke, 1982; Voogt
and Oke, 2003; Weng, 2001). Previous research has convincingly
documented that increased temperatures are a function of propor-
tional coverage and spatial configuration of impervious surfaces
within dense urban sites (Maimaitiyiming et al., 2014; Solecki
et al., 2005; Weng, 2009; Weng et al., 2007). However, less atten-
tion has been given to temperature elevations in low density resi-
dential areas, which have a comparatively greater proportional
cover of grass and other non-tree vegetation. Quantification of
the temperature effects of land cover in these areas is critically
important due to the large amount of energy used in home cooling
(Akbari, 2002; Pandit and Laband, 2010). This paper draws on a
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dense time series of eight years of thermal data to investigate local
alterations to the UHI caused by Urban Tree Canopy (UTC) change.

UTC coverage is closely tied to LST, because trees provide shad-
ing, increased evaporative cooling, and lower thermal absorption
and retention (McPherson and Simpson, 2003; Nowak and
Dwyer, 2007; Solecki et al., 2005). Absence of UTC coverage in
urban areas causes the increase in LST, causing the Surface Urban
Heat Island (SUHI) effect, which is a component of the overall
UHI (Voogt and Oke, 2003). Therefore, one of the major ecosystem
services provided by urban forests is the reduction of the SUHI
effect by reducing LST, which translates to reduced cooling energy
demands and reduced risks to increased human health and comfort
(Cui and De Foy, 2012; Hamada and Ohta, 2010; Nowak and
Dwyer, 2007). In Worcester, Massachusetts, several state and fed-
eral government reports provide qualitative evidence suggesting
that residents in the city have experienced marked thermal dis-
comfort and increased energy bills due to tree removal, particu-
larly during summer months of June through September, when
air conditioning creates a large demand for electrical energy
(Morzuch, 2013; Palmer et al., 2014). The case of Worcester is rel-
evant to understanding SUHI/LST dynamics because the majority of
tree removal and planting in the city since 2008 has occurred in
lower density private residential areas, rather than in more densely
urbanized areas (Hostetler et al., 2013), which contain a much lar-
ger total population of residents than dense urban areas typically
investigated for heat island effects. Therefore, this study investi-
gates the cooling benefits of trees in areas with mixed vegetation
and impervious cover composition, using four scales of analysis:
city, neighborhood, street, and parcel. This approach allows the
exploration of the scalar nature of the UTC/LST relationship, show-
ing the heterogeneity of UTC loss and corresponding LST change,
and can therefore illustrate the importance of neighborhood-
wide urban forestry efforts.

The research described in this paper analyzes the impact of
Urban Tree Canopy (UTC) change on LST magnitude and seasonal
timing, using a case study in Worcester, Massachusetts, USA. This
study area was selected due to an extremely large amount of tree
canopy change over the brief period from 2008 to 2015. This
change occurred predominantly in low density residential areas
(Hostetler et al., 2013), which comprise a complex patchwork of
impervious surfaces, grass/lawn area, small and large trees, and
exposed soils (Rogan et al., 2013). Therefore, the canopy change
has exposed a mixture of impervious and pervious surfaces. Hypo-
thetically, LST increases in these low density residential locations
due to canopy loss potentially present a weaker signal compared
to dense and highly built urban locations, allowing for a more
nuanced quantification of this relationship, while also providing
a test of the capability of remotely measured LST.

The goals of this study were to: (1) create an up-to-date, high
spatial resolution UTC map of Worcester to monitor the dynamic
UTC conditions; and (2) quantify the magnitude and seasonality
of LST change between 2007 and 2015 within locations of UTC
gain, loss, and persistence. The relationship between UTC reduction
and LST increase is explored at the city, neighborhood, street, and
individual property-parcel scales. Remote sensing provides an
ideal basis for this analysis due to the utility of high-resolution
imagery for effectively mapping fine-scale UTC changes, and the
ability to investigate nuanced temperature trends and cycles using
the large collection of thermal images available over the study
period.
2. Study area

Worcester is located in central Massachusetts, USA (Fig. 1).
With a population of 183,000 and a population density of
1808 persons/km2, it is the second largest city in New England
after Boston. Worcester covers approximately 100 km2, and has a
heterogeneous land-use pattern and composition typical of
medium-sized cities in temperate climates, comprising a mixture
of high- and low-density residential development, woodland areas,
and impervious surfaces (Rogan et al., 2010), typical of many mid-
latitude temperate urban centers. Worcester has a humid conti-
nental climate, with an average daily high of 26 �C in July and
0 �C in January. Average annual precipitation is 1220 mm, as well
as 163 cm of snow per season (www.nws.noaa.gov 2015). Eleva-
tion ranges from 110 to 320 m above sea level. Worcester’s urban
forest consists of a mixture of hardwood and conifer species, with
51% hardwood, 11% conifer, and 38% mixed (Hall et al., 2002;
Rogan et al., 2010). As of 2008, Worcester had 17,113 street trees,
providing roughly $2.4 million dollars of gross ecosystem service
benefits, or $980,000 of net benefits after subtracting maintenance
andmanagement (Freilicher et al., 2008). In addition to these street
trees, Worcester contains a large (as-yet uncounted) number of
trees on public and private property, which constitute the bulk of
the UTC for the study area.

Worcester’s urban forest has been greatly influenced by large
climatological, biological, and anthropogenic disturbance events,
culminating in the recent Asian Longhorned Beetle infestation.
These disturbance events have prompted several extensive plant-
ing efforts to rebuild the urban forest, resulting in a highly dynamic
urban forest (Herwitz, 2001). During the 20th century, these efforts
relied heavily on just a few species of trees, especially the Acer
(maple) genus, which was favored for its urban adaptability, and
which ultimately came to constitute 80% of street trees as of
2008 (Freilicher, 2011; Freilicher et al., 2008). This near-
monoculture approach has made the city vulnerable to outbreaks
of invasive species, which precipitated the city’s most recent UTC
disturbance, caused by the invasive insect, the Asian Longhorned
Beetle (Anoplophora glabripennis, ALB) infestation. This infestation
was first identified in 2008 (Dodds and Orwig, 2011), and contin-
ues to date (2017), presenting an ongoing urban forest manage-
ment problem and a large quantity of UTC change in a short time
period. To exterminate ALB, roughly 30,000 mature trees have been
removed, the bulk of which were removed from the Burncoat and
Greendale residential neighborhoods in the north of Worcester
(Santos and Cole, 2012; WTI, 2015). Approximately 65 ha of UTC
was removed by 2010, a 21% decrease in UTC relative to 2008. Pre-
vious research mapped UTC at 1 m spatial resolution for the years
2008 and 2010, providing a basis for comparison, as well as further
contextual knowledge of the study area (Hostetler et al., 2013).
This dramatic UTC changeover provides an ideal natural
experiment to investigate the temperature mitigation effect of
urban tree cover.
3. Data

To determine the effect of UTC change on LST, two datasets
were assembled and analyzed: the first involves high spatial reso-
lution mapping of UTC and therefore UTC change, and the second
involves LST. High resolution mapping provided the context for
LST trend analysis; the data and methods for UTC mapping are
described in Sections 3.1 and 4.1 below. LST time series analysis
is described in Sections 3.2 and 4.2.
3.1. UTC mapping: fine spatial resolution imagery and Lidar data

The first stage of the analysis involves UTC change detection
between 2008, 2010, and 2015, corresponding to the periods: (1)
directly before tree removal; (2) directly after tree removal; and
(3) after tree planting. Two existing 1 m UTC maps of Worcester
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Fig. 1. Study area map, showing 2008–2010 Urban Tree Canopy (UTC) loss areas, created by Hostetler et al. (2013).

Table 1
Summary of datasets used for UTC mapping and LST time series analysis.

Dataset Date Resolution Purpose

Landsat TM, ETM+, OLI/TIRS 1/1/2007 – 12/31/2015 Multispectral: 30 m; Thermal: 120 m (TM), 60 m
(ETM+), 100 m (TIRS)

Land Surface Temperature measurement,
facilitating temperature trend analysis

WorldView-2
multispectral/panchromatic

5/7/2015 2 m multispectral, 0.5 m pan Urban Tree Canopy mapping. The spectral data for
the pixel-based classification, which was enhanced
by the segmentation

USGS/FEMA Lidar 1/2013 – 5/2014 0.7 m minimum ground return spacing. Pulse rate:
272 kHz, Scan rate: 42.3 Hz, Side lap: 25%

Urban Tree Canopy Mapping. Eight rasters were
created from the Lidar data: canopy coverage %,
canopy density, maximum, minimum, and mean
canopy height, skewness, kurtosis, standard
deviation

Weather Station Temperature
and Water Vapor

1/1/2007 – 12/31/2015 Daily values from 4 permanent stations in study
area

Used in LST derivation, accounting for atmospheric
water vapor contribution to raw thermal values
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were available for 2008 and 2010 from the University of Vermont
Spatial Analysis Lab (https://www.uvm.edu/rsenr/sal/). The UTC
maps were created using 1 m National Agriculture Imagery Pro-
gram (NAIP) true-color aerial imagery and object-based imagery
analysis within the eCognition software package (see Table 1)
(Hostetler et al., 2013). The 2015 UTC map was created using a
combination of airborne Lidar and WorldView-2 multispectral
satellite imagery (DigitalGlobe, 2015). The Lidar data were cap-
tured between November 16, 2013 and April 20, 2014 byWoolpert,
Inc. as part of a joint effort between the Federal Emergency Man-
agement Agency (FEMA) and the United States Geological Survey
(USGS). The data have a nominal post-spacing of 0.7 m, a 4 return
(echo) capability, and vertical RMS error of 0.052 m. Because of its
ability to penetrate tree and shrub canopies, Lidar contributes
vegetation structural information, which is particularly valuable
for differentiating tree canopy from spectrally similar grass and
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shrubs (Dalponte et al., 2008). The Lidar data complemented the
2.5 m WorldView-2 multispectral satellite imagery captured on
05/2015, which were pan-sharpened using the included panchro-
matic band to enhance spatial resolution to 0.5 m. WorldView-2
data comprise of eight spectral bands ranging from 400 to
1040 nm, which facilitates reliable vegetation mapping over a
background of impervious and other exposed urban surfaces.

The UTC map validation data consisted of 500 points placed
randomly throughout two strata: UTC and non-UTC, based on a
preliminary classification. The true category of each site was
defined using Google EarthTM, whose most recent high-resolution
imagery of the study area was collected on May 6 of 2015, very
close to the 0.5 m WorldView-2 imagery used in this study. The
Google Earth imagery for this time and location is of higher spatial
resolution than the WorldView-2 data used for UTC mapping.
Extensive fieldwork also provided the authors with familiarity
with the study area.
3.2. Landsat-derived land surface temperature time series

The second stage of the analysis relied on a time series of eight
years of thermal data from Landsat TM, ETM+, and OLI/TIRS. The
2007 to 2015 temporal window encompasses the period of UTC
removal and subsequent tree planting, with a one-year pre-
removal baseline at the beginning of the series. The analysis used
all available images from path/rows 12/31, 13/30, and 13/31
between 1/1/2007 and 12/31/2015, regardless of cloud cover. This
series comprised 891 distinct dates, with 1319 distinct images,
owing to the two scenes from path 13 rows 30 and 31, which are
acquired on the same day. Overlap between these two rows was
eliminated by removing overlap pixels from path 13, row 31.

To maximize data completeness, a pixel stack approach selected
every cloud-free pixel in the time series, regardless of the overall
cloud cover percentage of a given image. This approach relied on
the USGS-generated cloud, snow, and shadow mask bundled with
each image delivered via the EarthExplorer platform for Landsat
Surface Reflectance products, created using the CFMask algorithm
(Zhu and Woodcock, 2012). LST derivation relied on the thermal
data (band 6, 10.4–12.5 mm, for TM and ETM+, band 10, 10.6–
11.19 mm, for TIRS) were acquired from the Landsat Level 1 pro-
duct, while the spectral and cloud mask bands were acquired from
the Landsat Surface Reflectance High Level product. These surface
reflectance products are generated server-side on www.earthex-
plorer.usgs.gov using Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) for Landsat TM and ETM+, and an
equivalent process for Landsat OLI/TIRS (Schmidt et al., 2013). A
mean LST image was calculated for each month in the time period,
yielding 96 total LST images for time series analysis. Cloud-masked
pixels were excluded from the averaging process, which helped
alleviate data gaps in the time series.
4. Methods

This project relied on two stages of analysis. First, UTC was
mapped in fine spatial detail for the most recent date possible,
which complemented two existing UTC maps of similar spatial
characteristics from 2008 and 2010. These three UTC maps pro-
vided the basis for UTC change detection, which was aggregated
to the coarser Landsat resolution, producing a 30 m grid of net
UTC change. The second stage involved a time series analysis of
all available Landsat thermal imagery, fromwhich LST was derived.
The net UTC change grid produced in the first stage was used to
analyze LST pixel stacks separately, depending on their associated
level of net UTC change. Ultimately, this allows for comparison of
LST trends in UTC loss, persistence, and gain locations.
4.1. UTC mapping and change analysis

Fine spatial resolution (i.e., �1 m) UTC mapping is critical for
urban forest inventory and change analysis (Moskal et al., 2011;
Nowak and Greenfield, 2012; Pu and Landry, 2012). However, the
character of urban forests is highly heterogeneous, ranging from
intact stands of tens or hundreds of trees to lines of street-
adjacent trees to individual trees in residential and institutional
lawn areas (McPherson et al., 1994). This fine grained complexity
renders traditional pixel-based classification of multispectral ima-
gery difficult or impossible, and so alternative approaches such as
image segmentation of high spatial resolution imagery are war-
ranted (Ke and Quackenbush, 2007; Kim et al., 2011; O’Neil-
Dunne et al., 2014). The purpose of image segmentation is to
improve categorical map accuracy by including additional spatial
information such as contiguity, texture, and shape not available
in traditional pixel-based classifiers (Blaschke, 2010; Dey et al.,
2010). This approach is particularly helpful for H-resolution scenes
(sensu Strahler et al., 1986).

Aerial Lidar and WorldView-2 imagery provided the basis for
the 2015 UTC map. Using the Lidar pulse return (echo) cardinality,
eight canopy-specific rasters were derived from the original Lidar
point cloud: mean, maximum, and minimum height; skewness;
kurtosis; standard deviation; canopy coverage; and canopy den-
sity. These metrics were selected because each contains slightly
different information regarding tree canopy, while it was unknown
which if any would contain all necessary information for segmen-
tation. The canopy metrics were rasterized using the same pixel
grid as the WorldView-2 data, such that all sixteen image grids
could be overlaid precisely, facilitating the segmentation
procedure.

A variety of image segmentation methods exist; this study
relied on the segmentation algorithm in the TerrSet GIS software
package (Eastman, 2015), a potentially more cost-effective
approach for land managers. This tool operates by subdividing
input raster bands into homogenous regions that represent scene
objects. This tool consists of three steps: (1) creation of a local vari-
ance image based on all input rasters using a moving window; (2)
delineation of segments based on a watershed process that ‘floods’
pixels with low local variance; and (3) merging of adjacent seg-
ments with acceptable similarity of segment means and variances.
The user defines four parameters that dictate segment size, and
because the size of target objects relative to image pixel size could
potentially be different for any given scene, the segmentation is
highly sensitive to these parameters, and no single parameteriza-
tion is equally optimal for all projects or user needs (Brenner
et al., 2012).

The TerrSet implementation of segmentation-based classifica-
tion also requires a pixel-based classification, in order to assign
classes to the image segments. A random forests (RF) classification
(Breiman, 2001). of WorldView-2 imagery carried out in the R
scripting language (R Core Team, 2013) provided this preliminary
map with the following categories: tree, grass, building, paved sur-
face, bare soil, and water. These categories were ultimately
reduced to UTC and non-UTC in the final map, yielding a binary
map of UTC presence at 0.5 m spatial resolution. The original six
classes were condensed into two classes because the only class
of interest was tree, and validation was therefore concerned only
with identifying this class versus any other. An example of the
UTC mapping process, with a Worldview-2 composite in the back-
ground, Lidar-derived average canopy height shown in greyscale,
and image segments shown in yellow is shown in Fig. 2.

Optimal values for the segmentation parameters were deter-
mined by sequentially modulating each in turn, generating a seg-
mented UTC map, and recording the accuracy using on the Kappa
Index of Agreement (KIA) with reference to previously created val-
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Fig. 2. Urban Tree Canopy (UTC) delineation image, showing two example input layers: Lidar-derived average canopy height and Worldview-2 imagery (CIR composite
shown).

Pixel-based decision tree classifica�on

6

3

9

15

Fig. 3. Effect of segmentation parameter modulation on accuracy rates (Kappa Index of Agreement, KIA). The lines indicate the various windowwidths used: 3, 6, 9, or 15. The
x-axis shows the similarity tolerance iterations. The horizontal dotted line indicates the accuracy of the pixel-based Random Forests map.
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idation sites, as indicated graphically in Fig. 3. This figure shows
KIA as a function of similarity tolerance, with each data series rep-
resenting a window size. Modulation of mean and variance
weights is shown graphically in Fig. 4, which shows KIA as a func-
tion of mean weight, with data series representing similarity toler-
ance/window size pairs. Since mean and variance weights sum to
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Fig. 4. Another view of the effect of segmentation parameter modulation on
accuracy rates (Kappa Index of Agreement, KIA). The lines indicate the various
window widths used, while the x-axis shows the similarity tolerance iterations.
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1, variance weight can be inferred from this graph. The optimal
segmentation parameters were used to segment and classify the
study area, yielding a binary UTC/non-UTC map for 2015. This
map was converted from raster to vector format in order to compli-
ment the 2008 and 2010 binary UTC maps created previously,
which had positional accuracy of ±2 m.

In order to analyze the 30 m spatial resolution Landsat-derived
LST time series using the 0.5 m resolution UTC maps, fractional
UTC images were created on the Landsat 30 m grid. For these
new fractional UTC maps, each pixel’s value represented the
proportional areal coverage of UTC within that pixel. UTC
increases, decreases, and persistence were then calculated by
subtraction of the earlier time period UTC value from the later,
yielding net change; this was conducted for 2008–2010 as well
as 2008–2015, yielding two net UTC change rasters at 30 m spatial
resolution. These rasters were then binned in increments of 10%
fractional UTC value in order to approximate a continuous variable
for UTC change. Therefore, -100% indicates pure UTC loss, while
100% represents pure UTC gain. In order to accommodate map
error, UTC persistence included values from -5% to 5%, and there-
fore the bin boundaries end in 5 (5–15%, 15–25%, 25–35%, etc.).
These bins of net UTC change were used as inputs for the subse-
quent LST time series analysis, allowing the testing of the hypoth-
esis that UTC loss increases LST, while UTC gain mitigates LST.
4.2. LST derivation and time series analysis

4.2.1. LST derivation
Time series analysis was performed on all available Landsat

images for the study area and time period, as defined above. Two
primary obstacles complicate LST retrieval from satellite sensors:
atmospheric effects and Land Surface Emissivity (LSE), both of
which are accounted for using the methods described below. LST
is typically derived using single- or dual-channel methods,
depending on sensor spectral resolution (Li et al., 2013; Wan and
Dozier, 1996). Landsat TM and ETM+ each have a single thermal
channel (10.4–12.5 mm) with spatial resolution of 120 m and
60 m for Landsat 5 and 7, respectively, while Landsat TIRS has
two channels at 100 m (10.6–11.19 mm; 11.5–12.51 mm). These
data have high spatial resolution relative to other widely available
TIR sensors (e.g. MODIS, AVHRR 1 km), and have better temporal
and spatial availability than ASTER TIR data. A stray light error
has yielded the longer waveband unusable, and therefore single-
channel (i.e. mono-window) approaches have been recommended
by NASA (http://landsat.usgs.gov/calibration_notices.php).

Single-channel algorithms traditionally require in situ
radiosoundings and a radiative transfer model such as MODTRAN
(Berk et al., 2003) to account for atmospheric absorption and emit-
tance; however, the methods used for this analysis obviate this
requirement by requiring only in situ water vapor content, and
therefore allow for operational use of the single Landsat TIR band.
This approach, referred to as SCJM&S, was developed by Jiménez-
Muñoz and Sobrino (2003) and was updated for Landsat ETM+
and TIRS by Jiménez-Muñoz et al. (2009, 2014), respectively. It
has been shown to produce acceptably low errors that are similar
to more data- and time-intensive methods that rely on a full in situ
radiosounding, with the SCJM&S methods producing RMSD = 0.9 K
and the full radiosounding showing an only slightly better
RMSD = 0.6 K (Sobrino et al., 2004). Full in situ radiosounding is
not feasible for long, dense time series. For regions of moderate
atmospheric water content (water vapor between 0.5 and
2 g ⁄ cm�2), the SCJM&S approach has expected errors between 1
and 2 K (Cristóbal et al., 2009; Jiménez-Muñoz et al., 2014, 2009).

SCJM&S first calculates at-sensor brightness temperature based
on coefficients provided in the image metadata, and then corrects
for atmospheric optical depth to derive LST in kelvin. LSE is esti-
mated using proportional coverage of vegetation, as described
below (Sobrino et al., 2008). Atmospheric correction uses a series
of so-called atmospheric functions, empirically derived for global
moderate moisture conditions, and localized with in situ water
vapor content from local weather stations. The atmospheric func-
tions account for atmospheric transmissivity, upwelling, and
downwelling irradiance, and were derived by simulation of MOD-
TRAN code (Jiménez-Muñoz et al., 2009; Jiménez-Muñoz and
Sobrino, 2003). The calculation of these atmospheric functions is
shown in Eq. (1), in which w is the atmospheric function and x is
atmospheric water vapor content.
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The two parameters delta (dÞ and gamma (c) are obtained from
a linear approximation of Planck’s law (Jiménez-Muñoz and
Sobrino, 2003), determined from the at-sensor radiance (Tsen), at-
sensor brightness temperature (Lsen), and a sensor-specific conver-
sion constant (bc), as shown in Eqs. (2) and (3).

d � Tsen � T2
sen

bc
ð2Þ

c � T2
sen

bcLsen
ð3Þ

The final SCJM&S LST calculation combines these coefficients,
along with LSE, as described below and shown in Eq. (4), where e
is land surface emissivity and Ts is LST.

Ts ¼ c
1
�
ðw1Lsen þ w2Þ þ w3

� �
þ d ð4Þ

LSE relates radiant temperature, observed by a satellite, to the
kinetic temperature, i.e., LST (Li and Becker, 1993; Ottle and Stoll,
1993). Accounting for LSE is essential, since emissivity errors of
1% can cause LST retrieval errors ranging from 0.3 K to 0.7 K,
depending on atmospheric moisture and temperature conditions
(Dash et al., 2002). While LSE correction is challenging given the
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highly variable emissivity associated with heterogeneous urban
land-covers (Mitraka et al., 2012), operational methods for emis-
sivity estimation have been successfully demonstrated. This study
relies on one such method, using proportional vegetation coverage
to estimate LSE. This method was first described by Van de Griend
and Owe (1993) and further described by Valor and Caselles (1996)
and Sobrino and Raissouni (2000). Using these methods, NDVI is
used to estimate vegetation proportional coverage, which in turn
is used to calculate the emissivity raster for each corresponding
thermal image. This allows accurate LST estimation for each date.
The method models LSE as a continuous function of vegetation
and soil fractional coverage per pixel, with NDVI used as an oper-
ational metric of vegetation proportional coverage. For pure vege-
tation (proportion of vegetation > 0.5) or pure soil (proportion of
vegetation < 0.2) pixels, a pre-determined LSE value is applied, as
the dominant land cover class overwhelms the other’s emissivity
contribution. For mixed pixels (0.2 < proportion vegetation < 0.5),
LSE is continuously modeled as a function of vegetation proportion,
using Eq. (5),

em ¼ esð1� PvÞ þ evPv ð5Þ

where em is mixed pixel emissivity, es is soil emissivity of 0.97, ev is
vegetation emissivity of 0.99, and Pv is vegetation fractional cover-
age. Pv was modeled with Eq. (6), following Sobrino and Raissouni
(2000).

Pv ¼ NDVI � NDVImin

NDVImax � NDVImin

� �2

ð6Þ

Given the large number of distinct soils, a mean soil emissivity
value of 0.97 was taken from 49 soil classes from the ASTER spec-
tral library: http://speclib.jpl.nasa.gov/ (Sobrino et al., 2008). With
broad thermal bands, soil emissivity variations are low, so the use
of a mean soil emissivity value is operationally appropriate; this
method has been shown to produce good agreement between
in situ sensors and remotely sensed LST, with RMSE < 0.01
(Sobrino et al., 2008). Overall, these methods are operational
a

Fig. 5. Final Urban Tree Canopy (UTC) map for
because of their use of widely available in situ data rather than
radiosounding data taken at the time of image acquisition, which
facilitates the use of the extensive Landsat archive.

4.2.2. LST time series analysis
The effect of UTC change on LST was investigated using three

types of trend analysis: OLS regression between UTC and
summer-only LST; monotonic trend analysis of all LST dates; and
Seasonal Trend Analysis (STA) (Eastman et al., 2009) of all LST
dates. Monotonic trend analysis relied on the Theil-Sen median
slope operator (TS), which is capable of determining the trend
slope of noisy data, providing a robust trend measurement (Huth
and Pokorná, 2004). STA is a procedure based on harmonic analysis
of each year in a time series, which extracts a set of shape param-
eters for the seasonal curves. STA begins by performing a harmonic
regression using each image, and then uses Kendall analysis of the
amplitude and phases produced by the regression (Eastman et al.,
2009). Using this analysis, it is possible to determine the magni-
tude (i.e., amplitude) and timing (i.e., phase) of LST cycles over
the course of each year.

For the first and most basic form of trend analysis, summer LST
was regressed against UTC for three UTC map dates: 2008, 2010,
and 2015. Summer LST (June–August) was treated as the depen-
dent variable, with UTC the independent. Only the summer ima-
gery was used for this portion of the analysis because the
potential cooling effect of UTC is greatest at maximum greenness,
and because the existing UTC maps from 2008 and 2010, as well as
the new UTC map for 2015 were all generated using leaf-on ima-
gery, summer LST data were used for each of the three regressions.
To ensure maximum data coverage and lack of cloud gaps, tempo-
rally averaged LST rasters were created for each summer period,
corresponding to the period bounded by June 21 to September
22. Fractional UTC for each time period, which used the same
30 m grid as Landsat, was then regressed against these summer
mean LST images.

Monotonic trend metrics provide robust estimates of increase
or decrease over potentially noisy remotely sensed time series.
The TS operator is a non-linear trend metric, which indicates the
b
Worcester

2015 (a), and 2008–2015 UTC change (b).

http://speclib.jpl.nasa.gov/


Fig. 6. Thiel-Sen median trend slope for the range of Urban Tree Canopy (UTC) bins.
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median slope angle of all pairs of observations, providing a robust
measure of trend (Eastman et al., 2009). A contextual Mann-
Kendall significance method facilitates spatially relevant determi-
nation of monotonic trend significance (Neeti et al., 2011). Contex-
tual Mann-Kendall significance was used to remove areas with
statistically non-significant change, using a p-value threshold of
0.1. The monotonicity metric is particularly important for defining
the baseline trend, a longer-term, large area temperature increase
across the entire study area, not caused by UTC change.

STA summarizes changes to seasonal temperature magnitude
and timing by aggregating the first and last two years of a time ser-
ies, and displaying them graphically (e.g., Fig. 7). Phase (timing)
changes were quantified using a warm-up and cool-down thresh-
olds of percent of maximum, which provides the day of attainment
of a given percent of maximum temperature, either during the
warming or cooling phase of the season. By taking the difference
in decimal days for a given warm-up/cool-down threshold, it is
possible to measure the extension of the warm season experienced
by the end of the time series, relative to the beginning. In order to
compare the gain and loss conditions to persistence, the extension
AUC Difference: 74       AUC Difference: 89.1
Peak Difference: 2       Peak Difference: 2.4 

(a) (b)

Fig. 7. Seasonal Trend Analysis (STA) curves for persistence, loss, and gain pixels. Panes (a
noted criterion. The Area Under Curve (AUC) difference indicates the total difference
maximum vertical difference between the two curves. Note that all y axis units are �C,
of persistence was subtracted from that of gain and loss,
respectively.

Monotonicity and STA analyses were accomplished within the
Earth Trends Modeler in the TerrSet GIS software package
(Eastman, 2015), using the net UTC change bins to define the sam-
ple pixels. To gain a holistic perspective on the study area UTC
change patterns, LST seasonality changes were explored at three
scales of analysis: the entire study area of Worcester (100 km2),
the worst-hit neighborhoods of Burncoat and Greendale
(�10 km2), the individual street (�1 km2), and individual
property-parcel (�100 to 500 m2). UTC change was analyzed at
all three scales, providing information on individual- through
community-level temperature change. Three metrics were used
to determine changes between the seasonal curves for the
beginning of the series versus the end of the series: difference in
peak temperature, date of attainment of a given percent of
warm-up/cool-down, and the difference between the area under
the curve (AUC) for the two curves. For the latter metric, the area
under the curve (AUC) was calculated for all summer dates of each
seasonal curve pair, for each UTC bin, providing units of �C ⁄weeks
               AUC Difference: 64.6  
              Peak Difference: 1.6 

(c)

) through (c) show the seasonal curves generated for all pixels corresponding to the
in temperature over the course of a year, while the peak difference indicates the
and all x axes represent 1 year.
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(degree-weeks), given that the STA curves are drawn as a function
of weeks of the year. The calendar summer months were used to
isolate the period during which the UTC/LST relationship was
potentially strongest, based on deciduous leaf area. To represent
divergences from persistence across the entire range of net UTC
change, the AUC of the beginning-of-series curve was subtracted
from that of the end-of-series to yield the annual change in
degree-weeks. In order to account for the 2008 UTC starting condi-
tion, the AUC differencing process was run for four 2008 fractional
UTC bins: 0% to 25%, 25% to 50%, 50% to 75%, 75% to 100%, and 0% to
100% (i.e. all pixels). These bins differentiate landcover composi-
tion prior to any UTC change, such that pixels that started with
75% coverage and loss 50% could be analyzed separately from those
that started with 25% and lost 50%.

5. Results

5.1. UTC mapping

The combination of fine spatial resolution imagery with Lidar-
derived canopy metrics produced a high-quality UTC map, provid-
ing appropriate units of analysis for the subsequent LST change
analysis. The baseline, pixel-based RF classification produced a
Kappa Index of Agreement (KIA) of 0.65, corresponding to an over-
all accuracy of 82.8% and an overall error of 17.4%. Modulation of
the four segmentation parameters produced maps of both higher
and lower accuracy than a baseline pixel-based classification
(Figs. 3 and 4). The peaks on these figures indicate the optimal seg-
mentation parameters, found to be: window 3, similarity tolerance
5, mean weight 0.3 and variance weight 0.7.

Classified maps produced using the optimal parameters yielded
a KIA of 0.72, corresponding to an overall error rate and accuracy of
14.2% and 85.8%, respectively. The final UTC map is shown in Fig. 5,
panel (a), whose extent is centered on the Burncoat and Greendale
neighborhoods of Worcester. An overlay of UTC change analysis is
shown in Fig. 5, panel (b). The area of UTC persistence (net UTC
change > -5% and < 5%) was 4890 ha, while UTC loss (net UTC
change < 5%) 3863 ha, and gain (net UTC change > 5%) was
1064 ha. Loss occurred in woodlots due to new development, and
the residential areas of Burncoat and Greendale and other neigh-
borhoods due to ALB-caused tree removal, as shown previously
by Hostetler et al. (2013). UTC gain occurred in from new tree
plantings in residential locations, as well as along existing forest
edges.

5.2. LST time series analysis

The three LST/UTC regressions for 2008, 2010, and 2015 were
significant at a 0.01 confidence level, and all produced similar
results, as indicated by Table 2. The explained variance for all
regressions was between 40 and 42%, with roughly a 5.5 �C
decrease caused by a 100% UTC increase.

The baseline for temperature deviations was taken to be the
temperature change in UTC persistence locations. Any temperature
trend in persistence locations can be assumed to be part of a larger
temporal and/or spatial scale weather or climate trend, not medi-
ated by UTC. This background trend is provided by the monotonic
Table 2
Regression outputs from the three time periods of UTC and the associated LST pixels.

Intercept Slope R R2

2008 301.111 �5.7 �0.6333 0.4012
2010 303.575 �5.54 �0.65 0.4221
2015 303.6 �5.63 �0.65 0.4216
Mean of parameters 302.762 �5.62333 �0.64443 0.414967
Theil-Sen (TS) median trend analysis. Monotonic trends for all UTC
bins are shown in Fig. 6, which indicates a decreasing trend of TS
median slopes with increasing net UTC change, as expected. Aggre-
gated persistence locations for the entire study area show a TS
median slope of 0.014789 �C/year, implying a slight temperature
increase. Both UTC gain and loss locations showed higher TS med-
ian slopes as high as 0.023201 �C/year for 95% UTC loss and
0.01015 �C/year for 95% UTC gain. While all locations showed pos-
itive TS median slopes, the persistence locations showed the small-
est slope, while gain and loss showed intermediate and highest
slopes, as could be expected based on UTC-caused cooling.

STA results for the entire study area are shown in Fig. 7, which
shows the seasonal temperature curves for all persistence (net UTC
change >�5% and <5%) (a), all losses (net UTC change <�5%) (b),
and all gains (net UTC change >5%) (c) locations, respectively.
These curves represent the aggregated LST cycle for the first and
last two years of the study period, and show distinct temperature
trends for UTC loss locations versus gain and persistence. Each
pane’s corresponding AUC difference and peak difference metrics
indicate the difference between beginning- and end-of-series sea-
sonal curves. The baseline for comparison, persistence, shows a
peak difference of 2 �C between the beginning and end of the time
series, with an increase of 74 degree-weeks, calculated from the
difference between beginning and ending AUC. All loss pixels show
a slightly larger peak difference of 2.4 �C, while gain areas show the
smallest peak difference of 1.6�. AUC differences are commensu-
rate, with loss showing the largest (89.1 degree-weeks) and gain
showing the smallest (64.6 degree-weeks). However, because STA
curves were created for each 10%-wide net UTC bin, more detail
concerning the LST/UTC relationship is available, as illustrated by
Fig. 8.

Fig. 8 shows the AUC differences during the summer period
when the potential UTC/LST relationship is strongest, and shows
different lines representing the range of initial UTC coverage in
2008. The values on the graph are relative to the persistence value
of each 2008 UTC coverage bin, as a baseline. The majority of UTC
loss bins for all 2008 coverage proportions show an AUC difference
greater than persistence, except the �35% to �25% bin for the 50%
to 75% and all pixels starting conditions, which show values just
less than 0. This indicates a larger increase in temperatures for loss
pixels than for persistence. The greatest LST increases were associ-
ated with the greatest loss of UTC, with the 25–50% starting condi-
tion indicating the overall highest change. All gain bins show AUC
differences less than or equal to persistence, implying a smaller
difference over the time period for areas with new UTC. Gain bins
showed smaller absolute differences from persistence than loss
bins, with a less clear trend overall. However, as each bin
approached its maximum potential coverage, seasonal LST
increases were minimized, as shown most clearly by the 50–75%
line.

Table 3 summarizes these STA curves in a different way, show-
ing various warm-up and cool-down thresholds, where each row
indicates a percent of the maximum LST value, and the date col-
umns indicate the date associated with that value as it increases
(warm-up) and decreases (cool-down). The table also shows the
total number of days of seasonal elongation, and the number of
days of elongation minus the persistence elongation, for reference.
All three UTC conditions were measured in this way, using ±5% as
the persistence criterion, and corresponding negative or positive
proportions for loss and gain, respectively. The table indicates that
for any given warm-up/cool-down threshold, net UTC loss areas
experienced longer periods of elevated temperatures than persis-
tence or gain areas, relative to each treatment’s respective 2007
seasonality.

Zooming into the neighborhoods with largest UTC loss (Fig. 9), a
broad-area LST trend is apparent. The square query box shown in



Fig. 8. Area Under Curve (AUC) differences between the beginning and end Seasonal Trend Analysis (STA) curves for various Urban Tree Canopy (UTC) change thresholds. The
different lines indicate different 2008 UTC cover proportions, with orange indicating any starting condition (i.e. all pixels). This figure indicates that as net UTC loss increases,
the difference between STA curves from beginning to end of series also increases, indicating seasonal Land Surface Temperature (LST) increases.

Table 3
Seasonal timing of Land Surface Temperature (LST) as derived by Seasonal Trend Analysis (STA), showing warm-up and cool-down dates for various thresholds, for loss, gain, and
persistence locations, respectively. Each threshold represents the percentage of maximum LST achieved. The warm up/down difference columns indicate the difference in
attainment of the given threshold from the beginning to the end of the series, reported in decimalized days. The seasonal elongation columns represent the difference between the
absolute values of the preceding two columns, with the right-most column indicating the seasonal elongation of gain or loss minus that of persistence, the baseline.

UTC Persistence (Net UTC <5% and >�5%)
Series Beginning (2007) Series End (2015)

Percent of annual
maximum temperature

Warm-up Cool-down Warm-up Cool-down Warm-up
difference (days)

Cool-down
difference (days)

Seasonal
elongation

Seasonal elongation
relative to persistence

25 23-Feb 21-Nov 19-Feb 1-Dec �3.65 10.2 13.85 0
50 19-Mar 26-Oct 18-Mar 3-Nov �1.26 7.88 9.14 0
75 14-Apr 26-Sep 13-Apr 5-Oct �1.15 8.22 9.37 0
100 5-Feb 9-Dec 25-Jan 27-Dec �10.9 17.5 28.4 0

UTC Gain (Net UTC > 5%)
Series Beginning (2007) Series End (2015)

Percent of Annual
Maximum Temperature

Warm-Up Cool-down Warm-Up Cool-down Warm-Up
Difference (Days)

Cool-down
Difference (Days)

Seasonal
Elongation

25 22-Feb 22-Nov 15-Feb 30-Nov �6.62 8.21 14.83 0.98
50 18-Mar 27-Oct 14-Mar 1-Nov �3.57 5.67 9.24 0.1
75 12-Apr 27-Sep 9-Apr 3-Oct �2.7 6.38 9.08 -0.29
100 4-Feb 10-Dec 20-Jan 27-Dec �15.6 17 32.6 4.2

UTC Loss (Net UTC < �5%)
Series Beginning (2007) Series End (2015)

Percent of annual
maximum temperature

Warm-up Cool-down Warm-up Cool-down warm-up
difference (days)

Cool-down
difference (days)

Seasonal
elongation

25 22-Feb 21-Nov 17-Feb 4-Dec �4.87 13.5 18.37 4.52
50 18-Mar 26-Oct 16-Mar 5-Nov �2.5 10.3 12.8 3.66
75 13-Apr 27-Sep 10-Apr 7-Oct �3.49 10.3 13.79 4.42
100 4-Feb 9-Dec 19-Jan 4-Jan �16.5 26 42.5 14.1

A. Elmes et al. / ISPRS Journal of Photogrammetry and Remote Sensing 128 (2017) 338–353 347
Fig. 9 indicates an area with mean net UTC change of �23%; the
STA curves generated from this location show a 4 �C higher peak
LST (July) for the end of the series relative to the beginning, as well
as a longer summer temperature duration of 11.58 days, as indi-
cated by the sum of the 75% warm-up/cool-down thresholds speci-
fic to this location. Elevated temperatures can also be observed
between loss and persistence locations at the end of the time ser-
ies. Gain locations showed intermediate temperature increases rel-
ative to persistence and loss, with a 3 �C increase in summer peak
temperature. A warmer-than-average winter in 2013 caused ele-
vated seasonal curves for the end of series curves (in red), as deter-
mined by the in situ weather station data; therefore, the winter
deviations in seasonal curves are not due to UTC changes.
Additional results of neighborhood-scale analysis are shown in
Fig. 10, which shows an areas of UTC persistence directly adjacent
to these neighborhoods. Whereas previous graphs were generated
for the entire study area with UTC net change bins, these two fig-
ures show the seasonal graphs as calculated for a square sample
region indicated on the map. This technique highlights subsets of
the study area of particular interest, rather than indicating the
aggregated effects of UTC loss or persistence.

Parcel-scale analyses of UTC loss focused on the LST changes
caused by the removal of individual or small groups of trees (as
illustrated by Fig. 11). This figure shows the change in LST seasonal
curves for the highlighted tree loss polygon, which in this case rep-
resents a single large tree. This particular tree removal, typifying
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Fig. 9. STA for large portion of the Burncoat and Greendale neighborhoods in north Worcester, MA, as indicated by the square subsample, highlighted in cyan. These areas
were hardest-hit by the ALB-related tree removal effort, and therefore saw considerable UTC reduction between 2008 and 2010. The area within the cyan square showed a net
UTC change of �23.0% between 2008 and 2010, with limited regrowth by 2015, showing a net UTC change of 0.5%.

0 250 Meters
UTC Loss

Fig. 10. STA graph and corresponding map for a persistent woodland area adjacent to the Burncoat and Greendale neighborhoods. This area showed less than 1% net UTC
change between 2008 and 2015.
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many similar locations, is associated with a marked increase in
both summer temperature and length, with peak season increase
of 4 �C, representing a 15% increase from the pre-loss condition.
Additionally, this location experiences an increase of summer
duration of approximately 3 days.

Street-scale analysis of UTC loss revealed larger increases in LST
compared to the parcel-scale. Granville Avenue, shown in Fig. 12,
typifies the areas with maximum UTC decrease. This street experi-
enced a nearly complete removal of all UTC, which had previously
comprised mature Acer spp. shade trees. This loss is shown by the
highlighted polygons in the figure. Consequently, peak LST
increased by 5 �C during July and August, a 19% increase from
pre-loss conditions, and the summer season was prolonged by
8 days.

Seasonal timing of LST was also altered by UTC loss, as indicated
by Table 3. The right-most columns indicate the change in warm-
up and cool-down dates in days, with negative values indicating an
earlier date of percentage attainment from the beginning to the
end of the series, and positive values indicating a later date of
percentage attainment from the beginning to the end of the series.
This table quantifies the pattern of earlier warm-up and delayed
cool-down evident in Figs. 9 and 11, particularly indicating that
cool-down tended to occur later in the year the loss class, relative
to the persistence class.
6. Discussion

6.1. UTC mapping

Traditional field methods and manual image interpretation of
UTC can provide highly detailed inventories and cover estimates,
but do not produce detailed or wall-to-wall information on tree
cover locations (Freeman and Buck, 2003; Moskal et al., 2011;
O’Neil-Dunne et al., 2014; Pu and Landry, 2012). This paper illus-
trates the effectiveness of fine spatial resolution remote sensing
products for UTC mapping and inventory applications, particularly
using image segmentation methods combined with freely available
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UTC Loss Highlight

UTC Loss

Fig. 11. The STA graph can be created for a single pixel, such as in this case of a typical single tree removal, as shown in satellite imagery (top left) and in Google Street ViewTM.
The pixel containing the highlighted tree showed a net UTC decrease of 16.9% between 2008 and 2010, corresponding with the loss of the tree.
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Lidar and fine spatial resolution imagery. Although WorldView-2
data are not free, NAIP aerial imagery may be used as a free substi-
tute. Lidar, also freely available for certain areas, provides valuable
canopy structural information, which facilitates precise tree/non-
tree segmentation that is particularly helpful for discriminating
trees from other green vegetation. The spectral and spatial detail
contributed by the WorldView-2 imagery allows for separation of
tree segments from other, typically man-made, objects with verti-
cal structure, such as buildings, telephone poles, and streetlights.

Segmentation was conducted using two different input data-
sets: a combination of Lidar and spectral (i.e. all eight Lidar-
derived rasters and also all eight WorldView-2 spectral bands),
and using only the Lidar-derived rasters. Optimal results were
found using the Lidar-only dataset, as the spectral bands tended
cause under-segmentation of vegetation, combining adjacent tree
and grass or shrub areas into single image segments. This under-
segmentation is likely the result of similar vegetation spectral sig-
nature, shared by grass, shrubs, and trees. Rigorous accuracy com-
parison of lidar-only versus lidar-and-spectral bands was omitted
from this paper for brevity, but for a small test site, typical KIA val-
ues for spectral and Lidar segmentation ranged between 0.2 and
0.4, while for Lidar-only segmentation, using the same pixel-
based classification input, typical values ranged from 0.4 to 0.7.

Parameterization of segmentation algorithms is not straightfor-
ward, since the size, shape, and texture of target objects may be
unique for a particular user and application (Blaschke, 2010;
Mathieu et al., 2007; Pu and Landry, 2012). The TerrSet segmenta-
tion implementation requires just four parameters, but neverthe-
less the appropriate values for these parameters may be different
for each mapping application, and even with only a small range
of experimental values for each parameter, the number of combi-
nations is potentially quite large. This implementation is particu-
larly difficult given that remotely sensed imagery spans a wide
range of Ground Sample Distances (GSD) and therefore pixel
dimensions, implying that the user must consider the relationship
between target objects and image spatial resolution. Therefore, this
paper proposes a ‘scale free’ approach, in which segmentation
parameters are not defined a priori, but rather are determined
empirically based on previously-created validation points, using
parameter iteration with modulation. This procedure is similar to
that of previous studies that have relied on trial-and-error to deter-
mine optimal segmentation parameters (e.g., Mathieu et al., 2007),
but because optimization is based on previously determined vali-
dation points, it can be viewed as an objective approach. The pro-
cedure finds the best combination of parameters regardless of the
object-to-pixel size ratio or any other object properties, and is
therefore applicable to a wide range of imagery and target object
types. Furthermore, this type of procedure is software agnostic,
provided the user’s selected software can be accessed via a script-
ing or command-line interface. The segmentation algorithm in
TerrSet is rather straightforward compared to that of a dedicated
object-based software such as eCognition (and the license fee is
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Fig. 12. STA for Granville Avenue in the Greendale neighborhood. The street-level photos show the UTC change from 2008 to 2015, while the highlighted polygons on the
map show mapped UTC loss and the black grid shows the Landsat-scale units of analysis. The STA graph indicates an increase of 6 �C during August. The location indicated by
the square sample region saw a �23.2% net UTC change from 2008 to 2015.
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considerably lower), and the procedures outlined by this paper
produced high quality, segmentation-based UTC maps. The seg-
mentation parameters ultimately used in this analysis may also
be well suited for different datasets of similar resolution, but it is
likely that different input data would yield different optimal
parameters, and thus the parameter selection process should be
run for each new study area.

Change analysis typically relies on data from the same sensor or
suite of sensors, which removes problems associated with change
of GSD, spectral resolution, and radiometric calibration. However,
because fine spatial resolution sensors cover small swaths and
require large revisit times (or considerable expense and different
viewing angles), it is often necessary to complete change mapping
with multiple sensors and/or platforms. This analysis required fine
spatial resolution (�1 m) UTC maps for three time periods, and
therefore drew on maps produced using both aerial imagery and
a combination of satellite and aerial Lidar data. The 2008 and
2010 UTC maps had a reported positional accuracy of ±2 m, mean-
ing that some misclassification of UTC was possible. Additionally,
since the 2015 UTC map drew on slightly different datasets, it is
possible that some error was produced between the 2008, 2010,
and 2015 maps. Although these UTC maps have slightly different
spatial characteristics, as shown in Fig. 5, the feature detection
was overall deemed to be high quality, and acceptable UTC change
detection.

6.2. LST time series analysis

UTC provides several valuable ecosystem services, and is
increasingly seen to be an indispensable component of sustainable
city design (Nowak and Greenfield, 2012; Nowak and Dwyer,
2007). Of particular note is the mitigation of the urban heat island
effect by urban trees, caused by increased evaporative cooling and
canopy shade provision (McPherson and Simpson, 2003). It is
essential to understand the magnitude of this ecosystem service,
and Worcester provides an excellent test scenario for this goal,
because it has experienced a large degree of canopy loss and
regrowth during a relatively short time.

The spatial relationship between LST and UTC was demon-
strated by the OLS regressions for each year of available UTC data,
and is reflected in Table 2. The coefficient of determination (R2) of
these relationships was around 0.40–0.42. This shows a moderate
amount of explanatory power from UTC fractional coverage, but
given the range of variables potentially affecting LST at any given
pixel, these numbers were considered reasonably large. Within a
single time period, UTC coverage fraction was shown to be respon-
sible for a roughly 5.5 �C difference in LST, which is commensurate
in magnitude to the STA findings discussed below.

The monotonic trend results provide a temporal metric that
shows the effect of UTC change on LST. Theil-Sen median slope val-
ues were highest for UTC loss bins and lowest for gain bins, imply-
ing that presence of trees slowed the increase of temperatures
during the study time period, relative to locations of UTC persis-
tence. UTC persistence locations provide a suitable basis for com-
parison to gain and loss, as they capture the background trend in
LST over the time period, and it can be assumed that any trend
in areas of no UTC change is caused by external climate or weather
variability. The slight monotonic increase in LST for persistence
locations was outpaced by all loss bins, while gain bins tended to
show lower monotonic increases, suggesting that UTC change is
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indeed driving these LST increases. The slightly stronger effect of
UTC loss than UTC gain on LST change can be explained by the fact
that UTC in this case is a two-dimensional measure of cover, and
does not incorporate tree vertical structure or canopy volume,
and therefore cannot incorporate the total leaf area or height of
the trees. Since much of the UTC loss reflected the removal of
mature shade trees and UTC gains include small, juvenile trees,
the LST mitigation of UTC gain is smaller than loss.

Seasonal Trend Analysis results confirm the results of the
monotonic trend analysis, showing that, irrespective of 2008 UTC
fractional coverage (i.e. the starting condition), the majority of
net UTC loss bins showed a larger AUC difference than persistence,
indicating warmer summer periods for locations with high
amounts of tree loss (Fig. 8). Locations with less initial coverage
showed a larger increase in LST magnitude than areas with greater
initial coverage for an equal amount of UTC loss, highlighting the
importance of even partial tree coverage. Furthermore, all gain bins
indicated a smaller or equal AUC difference than for persistence
area, meaning that any amount of UTC gain equated to a cooling
benefit, or at worst no change. While the gain bins showed a
weaker, less clear signal of LST seasonality than the loss bins, the
change to maximum tree coverage was always associated with
an increase in LST mitigation, and all change bins outside the
55–75% range showed LST mitigation. This suggests that small,
newly planted trees may have a measurable impact on LST season-
ality, although an extended time series will be necessary to con-
firm and nuance this relationship, and to determine the
anomalous 55–75% bins.

The extension of the warm season in UTC loss areas is further
quantified by the proportional warm-up/down information pro-
vided by Table 3. This table indicates seasonal extensions ranging
from 3.66 to 14.1 days for UTC loss areas, relative to persistence.
This corroborates the AUC difference metrics, and provides the
additional information of days of extended season, a metric poten-
tially more useful or interesting to policy makers or members of
the interested public. UTC gain areas also show slight seasonal
extensions relative to persistence, except for using the 75%
warm-up/down threshold. However, the divergence from persis-
tence is quite small, ranging from 0.1 to 4.2 days. Furthermore,
the 100% threshold, the largest divergence for both gain and loss,
indicates the difference in peak temperature attainment, and
may not be as useful for season-long comparisons.

Taking individual, parcel-scale observations in increasingly
large aggregations shows the street-, neighborhood-, and city-
scale UTC loss effects, as shown in Figs. 7–12. Fig. 9, showing sea-
sonal curves for the whole neighborhood of Burncoat/Greendale
irrespective of the UTC change polygons, shows that the large
quantity of UTC loss in the worst-impacted neighborhoods have
driven aggregate LST increases that overwhelm the cooling pro-
vided by smaller magnitude UTC gains and persistent trees. This
figure also shows that the entire neighborhood experienced an
elongated period of elevated temperatures. Therefore, although
clear heterogeneity of LST seasonality exists within the study area,
contingent on individual tree/stand removal, the overall trend at
the largest scale of analysis is of increasing LST due to the large
decrease in UTC cover. UTC gain locations show somewhat miti-
gated LST increases caused by newly planted juvenile trees, but
the UTC loss effect is much stronger since it indicates the loss of
large, mature shade trees.

LST increases of the magnitude shown could potentially cause
significant increases in home cooling costs, especially when
viewed in aggregate of an entire urban area. It should be empha-
sized that much of the UTC loss in Worcester occurred on private
residences, often exposing grass and other vegetation rather than
impervious surface, as may be expected in a more heavily urban-
ized area with ‘street trees’. Because vegetated surfaces inherently
experience less heat retention and thus SUHI, it should be expected
that tree loss in more densely urbanized areas will exhibit an even
stronger effect on LST.

Future work will extend the time series of analysis to further
track the growth of newly planted trees, and quantify the ongoing
LST reductions caused by new UTC coverage. Quantification of LST
reductions by trees at various growth stages will facilitate predic-
tions of future ecosystem services by the urban forest. This future
work will rely on extended Landsat LST time series, relying primar-
ily on Landsat-8, and also on high-resolution UTC maps created
using the methods outlined in this paper. Incorporation of field
data for tree and stand dimensions may help refine future UTC
maps.
7. Conclusions

This paper contributes substantive empirical knowledge on the
relationship between UTC loss and LST seasonal dynamics, lending
further support to the notion that UTC significantly reduces LST,
even in low-density, residential neighborhoods with existing veg-
etation. Such areas are less susceptible to the SUHI because of their
more natural material composition, and so the cooling effect of
UTC is likely to create a smaller signal. Nevertheless, this signal
was isolated in this research at city, neighborhood, street, and par-
cel scales. This research highlights the importance of urban forests
for the vital ecosystem service provision of reduced SUHI, and illus-
trates the effectiveness of remote sensing for monitoring urban for-
ests and LST.

Overall, this research demonstrates the capacity for data fusion
and thermal image analysis to effectively monitor urban forest
inventories. This research also illustrates an important application
of UTC change detection by exploring the relationship between
UTC and LST at a fine scale and using a combination of methods
that have not been used by any previous study. LST was shown
to increase with decreasing UTC, and canopy regeneration was also
shown to be associated with reduced LST, although this relation-
ship was weaker given the limited amount of time provided for
tree growth. Furthermore, STA revealed that summer LST increased
in both magnitude and duration for UTC loss areas, exacerbating
SUHI effects and potentially causing increases in home cooling
costs. Using a multi-scale approach allows for measurement of
changes to temperature magnitude and timing from parcel- to
neighborhood-scales, which provides invaluable information to
individual residents, land managers, and city policy makers.
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