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BACKGROUND: Turbidity has been used as an indicator of microbiological contamination of drinking water in time-series studies attempting to discern
the presence of waterborne gastrointestinal illness; however, the utility of turbidity as a proxy exposure measure has been questioned.

OBJECTIVES: We conducted a review of epidemiological studies of the association between turbidity of drinking-water supplies and incidence of acute
gastrointestinal illness (AGI), including a synthesis of the overall weight of evidence. Our goal was to evaluate the potential for causal inference from
the studies.

METHODS: We identified 14 studies on the topic (distinct by region, time period and/or population). We evaluated each study with regard to modeling
approaches, potential biases, and the strength of evidence. We also considered consistencies and differences in the collective results.

DiscussIoN: Positive associations between drinking-water turbidity and AGI incidence were found in different cities and time periods, and with both
unfiltered and filtered supplies. There was some evidence for a stronger association at higher turbidity levels. The studies appeared to adequately
adjust for confounding. There was fair consistency in the notable lags between turbidity measurement and AGI identification, which fell between 6
and 10 d in many studies.

CoNcLUsIONS: The observed associations suggest a detectable incidence of waterborne AGI from drinking water in the systems and time periods stud-
ied. However, some discrepant results indicate that the association may be context specific. Combining turbidity with seasonal and climatic factors,

additional water quality measures, and treatment data may enhance predictive modeling in future studies. https://doi.org/10.1289/EHP1090

Introduction

Treatment of drinking water by utilities has remarkably
improved public health by decreasing the risk of waterborne
infection in regions served by these water supplies (Ford
2016). Nevertheless, acute gastrointestinal illness (AGI) inci-
dence attributable to community water systems has been esti-
mated to be as high as 12-16.4million cases annually in the
United States. (Colford et al. 2006; Messner et al. 2006).
There are substantial challenges to the quantification of water-
borne illness from drinking water. Microbiological pathogens
are diverse, including viruses, bacteria, and protozoa; there-
fore, it is not realistic to routinely measure all of the patho-
gens that contribute to AGI within any particular water
system (e.g., for screening purposes). Proxy measures may
give a global indication of potential microbiological contami-
nation, with the tradeoff of nonspecificity.

Turbidity, a measure of the cloudiness of water, has often
been used as a proxy for microbiological contamination. Some
studies have found that turbidity was correlated with microbio-
logical contamination in source water and filtered drinking water
(LeChevallier et al. 1991a, 1991b). However, turbidity is a non-
specific measure of the scattering of light by particles suspended
in water and is thus influenced by various types of particulates,
including silt, clay, and organic matter, that can differ in
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prevalence among water systems (Burlingame et al. 1998).
Particulates are of concern in water systems not only because
microbes themselves are particulates, but more importantly
because other, nonmicrobe particulates may serve as indicators of
pathogen presence (e.g., runoff may produce spikes in turbidity
as both sediments and pathogens are washed into source waters),
and furthermore, these other particulates may protect the patho-
gens from disinfectants. Given that turbidity is a nonspecific indi-
cator of particulates, turbidity itself is not directly linked to
health concerns and is not expected to be a consistent indicator of
the microbiological quality of water.

Despite its limitations, turbidity has been judged to be of
sufficient relevance to be included in the drinking-water regu-
lations of many developed countries. The U.S. rules surround-
ing turbidity (U.S. EPA 2015), which have been amended and
revised since the 1989 Surface Water Treatment Rule, cur-
rently require filtered water supplies to conduct monitoring for
turbidity at each individual filter at 15-min intervals; the rules
specify that turbidity of combined filter effluent should be
<0.3 nephelometric turbidity units (NTU) in at least 95% of the
measurements taken each month and no single measurement
should exceed 1 NTU. The U.S. requirements are less strin-
gent for unfiltered water supplies where the source water is
considered sufficiently protected against microbiological contami-
nation, allowing a maximum turbidity of 5 NTU. Although regula-
tions surrounding turbidity differ between developed countries,
rules establishing maximum limits are in place in many regions
worldwide, including European countries, Canada, Australia,
Japan, and South Africa (CWWA 2002). In several regions, water
utilities strive to optimize filtration performance to achieve turbid-
ity levels below the regulatory limits (CWWA 2002), such as the
voluntary goal of 0.1 NTU set by the American Water Works
Association Partnership for Safe Water (AWWA 2014).

Several epidemiological studies have investigated the associa-
tion between turbidity of drinking-water supplies and incidence
of AGI. These studies have generally been analyzed as time-
series, correlating regional turbidity levels to AGI counts over
time. Mann et al. reviewed six of the studies published before
2007 (Mann et al. 2007), and concluded that an association
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between turbidity and AGI is likely in some settings or over a
certain range of turbidity. Several additional studies have been
published on this topic since the Mann review, conducted in
Le Havre and Nantes, France (Beaudeau et al. 2012, 2014b) and
in Eastern Massachusetts, Atlanta, and New York City in the
United States (Beaudeau et al. 2014a; Hsieh et al. 2015; Tinker
et al. 2010). Positive results have been interpreted by some to
suggest that there was a detectable excess risk of AGI from drink-
ing water in the populations studied. However, there are issues
with the research that complicate causal inference, such as the
uncertain utility of turbidity as a universal proxy for microbiolog-
ical contamination, confounding by season and climatic varia-
bles, and regional differences in source-water quality and
treatment practices.

Given a previously described association (Mann et al. 2007)
and multiple new studies on the topic, we conducted a review to
synthesize the evidence for an association between drinking-
water turbidity and AGI incidence. In addition to synthesis, we
aimed to describe differences between the studies that may
explain discrepant results. Our goal was to evaluate the potential
for causal inference from the studies, in other words, the extent to
which the observed associations may be interpreted as indicating
the presence of waterborne AGI from drinking water in the
regions and time periods studied. Because our focus was on
causal inference, rather than the strength of associations, we used
qualitative, rather than quantitative, review methods to synthesize
and compare information from the studies. A secondary aim,
based on our review, was to identify the seemingly most promis-
ing approaches for future research. This body of work may pro-
vide insight into the utility of turbidity measurements and the
time-series study design to detect increased risk of waterborne
AGI from microbiological contamination of drinking-water
supplies.

Methods

We conducted a literature search to identify and select epidemio-
logical studies that have examined drinking-water turbidity in
relation to AGI. Our review was open to inclusion of studies writ-
ten in English and published as articles in peer-reviewed journals,
as government reports, or in gray literature including conference
proceedings and dissertations. Our inclusion criteria did not spec-
ify any particular time period or region. We identified studies by
conducting searches in MEDLINE (PubMed), JSTOR, and
ProQuest databases, using search terms such as “turbidity AND
water AND gastrointestinal.” In addition, we reviewed the citation
lists of published reports to find additional studies, and conducted
a Web of Science database linkage of identified peer-reviewed
papers to all subsequent studies appearing in the peer-reviewed lit-
erature that cited one of the articles. We reviewed the abstract for
each retrieved study to evaluate its suitability for inclusion in the
literature review. The steps and results of our literature search are
detailed in Table 1. One additional study that was published
shortly after we conducted our database search met our criteria
and was also included (Hsieh et al. 2015).

We extracted information from each study including design,
region and time period, exposure (turbidity) measurement, out-
come (AGI) definition and identification, statistical methods,
assessment of confounding and other potential biases, effect mod-
ification (interaction) by age or other factors, and the authors’
overall conclusions. For each study region, we recorded the
authors’ description of source water, water treatment practices,
and turbidity levels. We noted the few studies that were con-
ducted during a recognized outbreak of waterborne AGL. We
specified the water sample collection points for the turbidity
measurements included in the research (e.g., finished effluent,
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source water, or from within the distribution system) and the
summary turbidity metric used in regression models (e.g., daily
average, maximum). Studies evaluated multiple lags to test
hypotheses regarding the length of time by which an increase in
turbidity is followed by an increase in AGI incidence. We sum-
marized each study’s approach for testing lags and recorded the
lags with notable results. We also compared the notable lag times
across the studies to evaluate consistency in the collective find-
ings. For each study, we summarized the potential confounders
considered and discussed important omissions. We also noted the
impact of adjustment for individual covariates, where presented
by the study authors. We described where the association was
stronger in, or limited to a specific subgroup of the study popula-
tion or the data, such as in analyses by age group, season, water
supply service area, or AGI definition. We noted subanalyses that
were conducted in each study, such as sensitivity analyses to
evaluate the influence of extreme turbidity levels, and described
where results differed from the overall analysis. Each of the co-
authors reviewed the studies independently, before coming to-
gether to discuss and critically evaluate the methods of the indi-
vidual studies and overarching issues with the body of literature.

Results
Design and Methods of the Studies

We identified 14 studies reporting on the association between
measured levels of turbidity of drinking-water supplies and inci-
dence of AGI (Aramini 2002; Bateson 2001; Beaudeau et al.
2012, 2014a, 2014b; Egorov et al. 2003; Gilbert et al. 2006;
Hsieh et al. 2015; Lim et al. 2002; Morris et al. 1998; Naumova
et al. 2003; Schwartz et al. 1997, 2000; Tinker et al. 2010). These
were considered 14 distinct studies as they were conducted in dif-
ferent regions, time periods, and/or population subgroups.
Several other reports were reviewed but were not considered dis-
tinct studies becauses they reported results found in one of the
references cited above (Aramini 2000; Bateson et al. 2000;
Beaudeau et al. 1999; Tinker 2007) or covered the same region,
time period, and population (Morris et al. 1996). The first study
was conducted following a documented outbreak of waterborne
cryptosporidiosis in Milwaukee, Wisconsin in 1993 (Morris et al.
1996, 1998). Investigators evaluated the association between tur-
bidity levels and AGI both during and before the outbreak, using a
broad definition of AGI, not specific to cryptosporidiosis.
Additional studies have been conducted elsewhere in the United
States (Philadelphia, Seattle, Atlanta, Eastern Massachusetts,
and New York City), Canada (Vancouver, Edmonton, and
Quebec City), France (Le Havre and Nantes), and Russia
(Cherepovets). All of the studies were designed as time se-
ries, in which turbidity measurements and AGI counts were
summarized within small time increments (usually daily) and
the summary measures were correlated over the study period
in order to estimate the relative incidence of AGI when com-
paring across turbidity levels. Table 2 describes the source
water, drinking-water treatment methods including filtration
and type of disinfection, and turbidity levels of the water sup-
plies studied. Table 3 shows details of the studies including
AGI definition, covariates, and findings.

Some of the studies were conducted under conditions that
would not comply with current U.S. water quality regulations
(Table 2). In the studies of the outbreak and pre-outbreak condi-
tions in Milwaukee (Morris et al. 1996, 1998; Naumova et al.
2003), the turbidity in the Linwood (North) Plant would not be in
compliance with the current U.S. requirement to be <0.3 NTU in
95% of samples, even before the outbreak period. The water qual-
ity for studies in Le Havre, France (Beaudeau et al. 2012) and
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Table 1. Database search for studies on turbidity of drinking-water supplies and risk of acute gastrointestinal illness.

Database and search terms

Articles selected for review (not listed if

Number of items retrieved identified in previous search)

PubMed: turbidity AND water AND gastrointestinal
Search limited to peer-reviewed literature with all three of the search
terms appearing in any search field (title, key word, etc.)

PubMed: turbidity AND water AND gastroenteritis

Search limited to peer-reviewed literature with all three of the search
terms appearing in any search field (title, key word, etc.); Differs from
first search by use of word “gastroenteritis”

JSTOR: turbidity water gastrointestinal

Search that casts a wide net to identify journal articles, conference

abstracts, and books that include any combination of the search terms
JSTOR: turbidity AND gastro# AND “drinking water”

Search includes a ‘wild card’ symbol (#), which will retrieve articles
with any word starting with “gastro,” including both gastrointestinal
and gastroenteritis, and is also limited to items containing the words
“drinking water” in any search field

Web of Science, cited reference search: for each previously selected peer-
reviewed publication, search identifies subsequent articles that cited the
paper

Search of citations in each of the studies identified

Proquest dissertations and theses: turbidity AND water AND (gastrointes-
tinal OR gastroenteritis) in any search field except full text (including
full text retrieved thousands of items)

Contacted author directly to obtain full report

All articles citing each selected article

All studies cited in each study

21 Beaudeau et al. 2014a
Egorov et al. 2003
Gilbert et al. 2006
Morris et al. 1996
Morris et al. 1998
Schwartz et al. 1997
Schwartz et al. 2000
Tinker et al. 2010

19 Beaudeau et al. 2012
Beaudeau et al. 2014b
Naumova et al. 2003

526 No additional studies were identified

200 Bateson et al. 2000 (Abstract)

No additional studies were identified

Aramini et al. 2000 (Government report)
Lim et al. 2002

Beaudeau et al. 1999

14 Aramini 2002 (Dissertation)

Tinker 2007 (Dissertation)

1 Bateson 2001 (Dissertation)

Cherepovets, Russia (Egorov et al. 2003) frequently had finished
water turbidity exceeding 0.3 NTU. There are a number of more
recent studies of water systems with turbidity levels generally
<0.3NTU, including unfiltered water supplies from protected
sources, such as in Seattle (Bateson 2001), Eastern
Massachusetts (Beaudeau et al. 2014a), New York City (Hsieh
et al. 2015), and Vancouver (Aramini 2002) and filtered supplies
derived from surface-water sources in Philadelphia (Schwartz
et al. 1997, 2000), Atlanta (Tinker et al. 2010), Edmonton (Lim
et al. 2002), and Nantes, France (Beaudeau et al. 2014b). It
should be noted that because of changing regulations and treat-
ment practices, the turbidity levels reported within a particular
region are only directly representative of the time period studied.

The studies defined exposure using turbidity measurements
performed as part of standard monitoring of drinking-water sup-
plies. The specific instrumentation and methods used for mea-
surement were not stated in most of the studies; however,
regulatory bodies such as the U.S. EPA stipulate sampling meth-
ods for compliance with regional rules (U.S. EPA 2015). The col-
lection points for turbidity measurement in the studies were
primarily finished (filtered) effluent from treatment plants and
source (raw) water of either unfiltered or filtered water supplies.
Only one study included measurements taken within the distribu-
tion system (Hsieh et al. 2015). Multiple daily measurements
were summarized for statistical analyses into daily mean, median,
minimum, or maximum values or were summarized over longer
time increments as a moving average.

Cases of AGI were defined in most of the studies by AGI-
related diagnosis codes (e.g., ICD-9) for hospital admissions,
emergency department visits, or physician office (outpatient) vis-
its (Table 3). The sources of data for case identification were
Medicare records (reported by the Health Care Financing
Administration) (Bateson 2001; Beaudeau et al. 2014a; Naumova
et al. 2003; Schwartz et al. 2000), specific regional health care
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providers (Morris et al. 1996; Morris et al. 1998, Schwartz et al.
1997; Tinker et al. 2010), or the government healthcare system in
Canada (Aramini 2002, Lim et al. 2002). Other AGI case defini-
tions were based on prescription drug sales in France (Beaudeau
et al. 2012, Beaudeau et al. 2014b), calls to a health information
line in Quebec City, Canada (Gilbert et al. 2006), and self-
reported symptoms during a short-term longitudinal data collec-
tion in Russia (Egorov et al. 2003). The study conducted in New
York City used syndromic surveillance of the chief complaint
reported in emergency department visits to classify a diarrhea
syndrome (Hsieh et al. 2015).

The studies typically applied generalized additive Poisson
regression models to the time-series data. Early application of
generalized additive models (GAMs) to study the association
between water turbidity and AGI was given in Schwartz et al.
(1997). Since then, other researchers of this topic have followed
a similar method with some variations. The studies frequently
applied nonparametric smoothing methods, such as local polyno-
mial regression (LOESS) or smoothing splines to adjust for pos-
sible nonlinearity of the effects of seasonal cycles, long-term
trends, climatic factors, or other covariates. Studies also adjusted
for potential autocorrelation by inclusion of an autoregressive
term representing lagged values of the AGI outcome (Aramini
2002; Beaudeau et al. 2012, 2014b; Gilbert et al. 2006; Lim et al.
2002; Morris et al. 1998; Naumova et al. 2003). Turbidity has
been modeled using either a linear term or nonparametric
smoothing, or with exploration of both types of relationships in
separate models. All of the studies evaluated multiple lag times
representing the latency between turbidity measurement and AGI
case identification. The lag times were generally tested in multi-
ple, separate models, and a few studies also considered multiple
lags simultaneously in distributed lag models (Hsieh et al. 2015;
Schwartz et al. 1997; Tinker et al. 2010). Significance testing,
model fit, and various graphical methods such as temporal
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exposure response surface (TERS) plots were used to determine
the importance of lagged effects. Multiple authors implemented
modeling approaches equipped to deal with possible overdisper-
sion of the AGI count data, such as assuming a quasi-Poisson dis-
tribution (Beaudeau et al. 2012, 2014b; Hsieh et al. 2015), or
alternatively using negative binomial regression (Hsieh et al.
2015) or robust regression (M-estimation) (Bateson 2001;
Schwartz et al. 1997), or by scaling variance estimates to account
for overdispersion (Tinker et al. 2010). Additionally, several
studies assessed the influence of extreme turbidity values by
exclusion of the highest values (Bateson 2001; Beaudeau et al.
2012, 2014a, 2014b; Hsieh et al. 2015). Other approaches used
by investigators to assess the sensitivity of results to modeling
choices and model fit included comparison of a case—control
study design to the time-series analysis (Aramini 2002; Lim et al.
2002), and following a split-sample approach to fit and test their
models in different subsets of the data (Beaudeau et al. 2012,
2014b).

Study Findings

Table 3 shows the study findings. Positive associations between
turbidity and AGI incidence were found in unfiltered water sup-
plies from protected sources, such as in Seattle (Bateson 2001),
Eastern Massachusetts (Beaudeau et al. 2014a), New York City
(Hsieh et al. 2015), and Vancouver (Aramini 2002). Associations
were also observed in filtered supplies with relatively low turbid-
ity levels, in Philadelphia (Schwartz et al. 1997; Schwartz et al.
2000) and Nantes, France (Beaudeau et al. 2014b). Findings were
robust to alternate model specification (e.g., negative binomial
models; M-estimation) (Bateson 2001; Hsieh et al. 2015;
Schwartz et al. 1997) and exclusion of extreme turbidity values,
above the 98th percentile (Beaudeau et al. 2012, 2014a, 2014b;
Hsieh et al. 2015). The results of Tinker et al. (2010), from
Atlanta, are mixed. In this study, the multi-day association lagged
over 0 to 20 d was significant for only one of eight filtered water
supplies; however, there was a positive association with source
(raw) water turbidity. The one study that reported no relationship
between turbidity and AGI examined a filtered water supply in
Edmonton with low levels of turbidity; the investigators
observed some statistically significant increases of AGI at spe-
cific lags, but no overall “significant” relationships according
to their criteria involving model fit and statistical significance
of lags over at least 2 consecutive days (Lim et al. 2002).
Comparison of estimated effect sizes was hindered by differ-
ences between the studies, such as the turbidity contrasts used in
risk estimation, assumption of a linear or nonlinear association
between turbidity and AGI incidence, and the turbidity exposure
metric used in the time-series (e.g., daily or multi-day average,
maximum). As shown in Table 3, there were some relatively
large magnitude effects with large turbidity contrasts, such as 73—
182% increases in AGI incidence observed per 0.5-NTU increase
in Milwaukee water 2-wk average turbidity during the outbreak
(Morris et al. 1996) and 33-76% AGI increases with a contrast of
0.48 NTU daily mean turbidity found in Quebec City (Gilbert
et al. 2006). Smaller magnitude effect sizes were generally found
with smaller turbidity unit contrasts, such as 7-9% AGI increases
per 0.04 NTU daily mean turbidity in Philadelphia (Schwartz
et al. 1997, 2000) and 3% increase per 0.01 NTU daily mean tur-
bidity in Nantes, France (Beaudeau et al. 2014b). Higher magnitude
effects were estimated in Le Havre, France (23-27% AGI increases
per 0.1 NTU in the Saint Laurent plant) and Cherepovets, Russia
(64% AGI increase per 0.27 NTU), regions considered vulnerable
to contamination during the time periods studied (Beaudeau et al.
2012; Egorov et al. 2003). Other effects were disproportionally
small, such as the 6% increase in AGI per 10-NTU increase in 3-d
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maximum turbidity of AGI source (raw) water in Atlanta (Tinker
et al. 2010), and the 5% increase in AGI per approximately
1.0-NTU increase of distribution system turbidity (turbidity inter-
quartile range estimated from figure) found in New York City dur-
ing the spring season (Hsieh et al. 2015). Interpretation of these
comparisons is speculative, as the broad variation in effect sizes
may reflect differences in methods as well as true heterogeneity of
effectamong the studies.

In some studies, the association between turbidity and AGI
incidence was limited to relatively high turbidity values. In the
two studies that stratified data by season (Bateson 2001; Hsieh
et al. 2015), positive findings were limited to the season with the
highest turbidity levels [winter, defined as October through
March in Bateson (2001); spring in Hsieh et al. ( 2015)]. In the
spring season in New York City, when median distribution sys-
tem turbidity levels were generally greater than 1.0 NTU, Hsieh
et al. (2015) found that this association was attenuated and lost
statistical significance when excluding the top 20% of values.
Further evidence of an association limited to higher turbidity lev-
els comes from studies of the Milwaukee 1993 outbreak, in which
exclusion of the outbreak period, during which turbidity levels
peaked at 1.7NTU, resulted in loss of the association at the
Howard Avenue (South) plant, which measured turbidity levels
lower than 0.2NTU for most of the remaining study period
(Morris et al. 1996, 1998; Naumova et al. 2003). Even during the
outbreak period, the association appeared strongest at the highest
turbidity levels, with a sharp increase in AGI incidence with tur-
bidity greater than 1.0NTU (estimated from TERS plots in
Morris et al. 1998). The association observed in Cherepovets,
Russia, a region with relatively high turbidity levels, was limited
to participants who consumed nonboiled tap water (Egorov et al.
2003). Furthermore, this association only appeared at the higher
turbidity levels observed in the study, with daily averages greater
than approximately 0.9 NTU (estimated from figure). Evidence
of nonlinearity was also found in Nantes, France, in a water sup-
ply with very low overall turbidity, averaging 0.05 NTU during
the study period (Beaudeau et al. 2014b). In this study, there was
no clear association at turbidity levels lower than 0.045NTU,
and a nearly linear positive association with AGI incidence at tur-
bidity levels beyond this point. Complicating interpretation, some
studies found evidence that the association was restricted to lower
turbidity values. The association during winter season in Seattle
was observed only when the data were restricted to days with
source-water (unfiltered supply) turbidity levels <1 NTU (80.5%
of days) (Bateson 2001). In the study of an unfiltered water sup-
ply in Eastern Massachusetts (Beaudeau et al. 2014a), the rela-
tionship between turbidity and AGI showed increasing risk up to
a turbidity level of 0.33 NTU and no apparent additional increase
in risk at higher levels.

Several studies examined source (raw) water turbidity in addi-
tion to turbidity of finished water. In Nantes, France, source-
water turbidity was significantly associated with AGI incidence,
but without the consistency of effect across lags that was observed
for the association with finished (filtered) water (Beaudeau et al.
2014b). In Atlanta, source-water turbidity was associated with
daily counts of AGl-related emergency department visits, but fin-
ished (filtered) water turbidity was not (Tinker et al. 2010); the
authors reported that there was little correlation between turbidity
measures from the source and finished water. Nevertheless,
the pattern of association of 3-d moving average turbidity
with AGI in the Atlanta study (Tinker et al. 2010) was some-
what similar between the minimum source-water turbidity and
average finished water turbidity, with the effect rising from
0-d lag to a peak at a 6- to 7-d lag, dipping to a low at an
11- to 13-d lag, and rising again with a peak at 15-d lag
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(estimated from figure), albeit with no statistically significant
effects for finished water. Similarly, the source-water turbidity
of the Radicatal plant in Le Havre, France was strongly asso-
ciated with AGI-related prescriptions, whereas the finished
(filtered) effluent turbidity had a similar magnitude effect that
was not statistically significant (Beaudeau et al. 2012). In
Edmonton, there was consistency in the lack of an overall
relationship for both source-water and filtered-water turbidity
with AGI (Lim et al. 2002).The study by Hsieh et al. (2015),
conducted in New York City, was the only study to include
turbidity measurements taken from within the distribution sys-
tem. The authors found that an association between distribu-
tion system water turbidity (unfiltered supply) and diarrheal
events, observed during the spring season, was almost com-
pletely explained by the variation in source-water turbidity
(Hsieh et al. 2015).

Season was an important confounder and every study adjusted
for it, by modeling covariates or by stratification. Hsieh et al.
(2015) and Bateson (2001) presented only season-specific analy-
ses. Other investigators demonstrated that they effectively
adjusted for the nonlinear effects of season and other time trends
by showing plots of the residuals over the study period (Schwartz
et al. 2000) or by describing noncorrelation of the residuals
(Egorov et al. 2003; Tinker et al. 2010). Air temperature, day-of-
the week, and holidays were also important confounders in most
studies. Several studies found that precipitation was not a con-
founder of the association between turbidity and AGI (Aramini
2002; Beaudeau et al. 2014b; Gilbert et al. 2006; Hsieh et al.
2015; Lim et al. 2002) and other studies reported an association
between turbidity and AGI even with adjustment for precipitation
(Bateson 2001; Tinker et al. 2010). The studies in Canada
(Aramini 2002; Lim et al. 2002) evaluated residual confounding
from season and weather indirectly by conducting concurrent
time-series and case—control studies including the same AGI
cases, with controls identified from healthcare visits for acute re-
spiratory illness. The rationale behind control selection was that
turbidity (as a proxy for pathogens) was not expected to be a
cause of acute respiratory illness, but the seasonal pattern of the
control diagnoses was expected to be similar to AGI (peaking in
the winter months), thereby providing indirect adjustment for
seasonal trends. Aramini (2002) found similar results in the case—
control and time-series studies in Vancouver, with excess risk of
AGI peaking around the same turbidity levels and with similar
lag times (as shown in TERS plots in the study), and Lim et al.
(2002) reported null results with both study designs in
Edmonton. The similarity of results with the two study designs
suggests adequate adjustment of seasonal trends in the time-
series analyses. Egorov et al. (2003) was the only study to collect
individual-level information on potential confounders, from
which they adjusted their time-series for behavioral factors such
as recreational water contact, attendance at summerhouses (with
implied lack of running water), and out-of-town trips. The associ-
ation between drinking-water turbidity and AGI was strengthened
by adjustment for the individual behaviors (Egorov et al. 2003);
however, potential biases from self-reported AGI in this study
limit interpretation.

There was limited and inconsistent evidence for effect mod-
ification by age or AGI definition. Several studies that exam-
ined multiple age groups found that associations were strongest
in children (Beaudeau et al. 2014b; Hsieh et al. 2015; Morris
et al. 1996; Tinker et al. 2010) or the oldest of the elderly
(Bateson 2001; Schwartz et al. 2000), although another found
no association among the elderly (Hsieh et al. 2015). Some
studies conducted separate analyses for AGI counts based on
different case definitions. Morris et al. (1996) found generally
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higher relative risks for the association of turbidity with AGI
illness from emergency department visits and hospital admis-
sions (combined) than from outpatient physicians’ office visits
in Milwaukee. In Philadelphia children, the association with
turbidity did not differ remarkably between AGI defined from
emergency visits or hospitalizations (Schwartz et al. 1997). The
results of the Vancouver study (Aramini 2002), analyzed by
AGI definition and age group, do not show any clear patterns
of effect modification; however, not all results were shown.

Several studies considered multiple variables for characteris-
tics of source water, treatment, and water quality in their models,
in addition to turbidity. The study in Eastern Massachusetts
examined confounding by other measurements taken in the water
system, including fecal coliforms, UV-absorbance, algae, cyano-
bacteriae, and water temperature, and found that adjustment for
these variables did not remarkably change the main association
of AGI incidence with turbidity of the unfiltered water supply
(Beaudeau et al. 2014a). They did find, however, that algae-
corrected turbidity was more strongly associated than overall tur-
bidity with AGI-related hospital admissions, and resulted in
improved model fit. Source-water temperature was strongly and
inversely associated with AGI, and replacement of the independ-
ent model terms for algae-corrected turbidity and water tempera-
ture with a bidimensional spline term (to model interaction
between the two variables) also significantly improved the fit of
the model (Beaudeau et al. 2014a). The study conducted in
Nantes, France found a strong association of AGI with finished
(filtered) water turbidity on days with high river flow, and a
weaker association at low flow, with a significant interaction
between the two variables (Beaudeau et al. 2014b). In Le Havre,
France, the model fit for finished effluent turbidity was signifi-
cantly improved by inclusion of an interaction term indicating
days with additional coagulation-flocculation-settling that was
imposed during times of high turbidity (Beaudeau et al. 2012).
There was a statistically significant increased risk of AGI associ-
ated with finished effluent turbidity on days without settling in
both children and adults, whereas the association was inconsis-
tent between children and adults on days with the additional set-
tling treatment.

Most studies evaluated lags between turbidity measurement
and AGI outcome spanning from 1 to 13 or 14 d, and a few con-
sidered lags extending beyond 20 d (Aramini 2002; Beaudeau
et al. 2014a; Gilbert et al. 2006). Some investigators presented
results for the entire span of lags examined, in tables or figures,
such as three-dimensional TERS plots (Aramini 2002; Beaudeau
et al. 2012; Egorov et al. 2003; Gilbert et al. 2006; Hsieh et al.
2015; Lim et al. 2002; Morris et al. 1998). In other studies, lim-
ited results were shown. Some studies took measures to avoid
false positive results within the multiple testing framework, such
as by choosing an a priori lag structure for their main analysis
(Beaudeau et al. 2014a; Tinker et al. 2010), only reporting on
lags with statistical significance for multiple days in a row
(Gilbert et al. 2006; Lim et al. 2002), or only reporting on the
best fitted model (Bateson 2001). Others addressed multiple com-
parisons by estimating the likelihood of the total number of posi-
tive associations observed, relative to the number expected under
the null hypothesis (Schwartz and Levin 1999; Schwartz et al.
2000).

Specific lag times with notable associations are shown in
Figure 1. Many of the studies found the most prominent or sig-
nificant associations with turbidity exposure lagged by 6 to 10 d
(Aramini 2002; Bateson 2001; Beaudeau et al. 2012, 2014a,
2014b; Egorov et al. 2003; Hsieh et al. 2015; Morris et al.
1998; Schwartz et al. 1997, 2000, Tinker et al. 2010). Some
also found associations with shorter (Egorov et al. 2003; Morris
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Region (Study) Population ‘Association Approach for selection of lags
subgroup
21-40
Milwaukee, USA Linwood Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris etal. 1998) | (North) plant, physician visits, pre-outbreak lags shown)
Children
Milwaukee, USA Linwood Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) (North) plant, physician visits, outbreak lags shown)
Children
Milwaukee, USA Linwood Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) | (North) plant, physician visits, pre-outbreak lags shown)
Adults
Milwaukee, USA Linwood Avenue | Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) (North) plant, physician visits, outbreak lags shown)
Adults
Milwaukee, USA Howard Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) | (South) plant, physician visits, pre-outbreak lags shown)
Children
Milwaukee, USA Howard Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) (South) plant, physician visits, outbreak lags shown)
Children
Milwaukee, USA Howard Avenue Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris et al. 1998) (South) plant, physician visits, pre-outbreak lags shown)
Adults
Milwaukee, USA Howard Avenue | Mean daily turbidity with Two strongest correlation coefficients (results for all
(Morris etal. 1998) | (South) plant, physician visits, outbreak lags shown)
Adults
Milwaukee, USA Howard Avenue | Maximum daily turbidity with Statistically significant associations in linear models’ in
(Naumova et al. (South) plant, hospital admissions, outbreak addition to peaks on TERS plots (results for all lags
2003) Elderl shown)
Milwaukee, USA Howard Avenue Maximum daily turbidity with Highest peak on TERS plot (results for all lags shown)
(Naumova et al. (South) plant, hospital admissions, pre-
2003) Elderly outbreak
Philadelphia, USA Children Mean daily turbidity with Highest relative risks"
(Schwartz et al. emergency department visits
1997)
Philadelphia, USA Belmont plant, Mean daily turbidity with Highest relative risks®
(Schwartz et al. Children emergency department visits
1997)
Philadelphia, USA | Queen Lane Mean daily turbidity with Highest relative risks®
(Schwartz et al. plant, Children emergency department visits
1997)
Philadelphia, USA Baxter plant, Mean daily turbidity with Highest relative risk and most predictive”
(Schwartz et al. Children emergency department visits
1997)
Philadelphia, USA Children Mean daily turbidity with Highest relative risk"
(Schwartz et al. hospital admissions
1997)
Philadelphia, USA Elderly Mean daily turbidity with Highest relative risk and minimization of Akaike’s
(Schwartz et al. hospital admissions Information Criterion®
2000)
Philadelphia, USA | Elderly, Belmont | Mean daily turbidity with Highest relative risks and minimization of Akaike’s
(Schwartz et al. plant hospital admissions Information Criterion*
2000)
Philadelphia, USA Elderly, Queen Mean daily turbidity with Highest relative risk and mnimization of Akaike’s
(Schwartz et al. Lane plant hospital admissions Information Criterion®
2000)
Philadelphia, USA Elderly, Baxter Mean daily turbidity with Highest relative risk and minimization of Akaike’s
(Schwartz et al. plant hospital admissions Information Criterion®
2000)
Seattle, USA Winter season, Maximum daily turbidity with Minimization of Akaike’s Information Criterion®
(Bateson 2001) ages >80 years hospital admissions, turbidity To 21
<INTU
Atlanta, USA All Mean daily turbidity 3-day Highest relative risk (from figure; results for all lags
(Tinker et al. 2010) average with emergency shown)
department visits
Atlanta, USA All Source water minimum daily Highest relative risk (from figure; results for all lags
(Tinker et al. 2010) turbidity 3-day average with shown)
ED visits
Massachusetts, USA | Elderly Mean daily turbidity with Selected a priori as most plausible lag period and
(Beaudeau et al. emergency hospital admissions To37 | statistically significant association”
2014a)
New York City, Spring season Median daily turbidity with Highest relative risk (from figure; results for all lags
USA (Hsieh et al. syndromic surveillance of ED shown)
2015) data
New York City, Summer season Median daily turbidity with Highest relative risk (from figure; results for all lags
USA (Hsieh et al. syndromic surveillance of ED shown)
2015) data
New York City, Spring season Source water mean daily Highest relative risk (from figure; results for all lags
USA (Hsieh et al. turbidity with syndromic shown)
2015) surveillance of ED data
New York City, Summer season Source water mean daily Highest relative risk (from figure; results for all lags
USA (Hsieh et al. turbidity with syndromic shown)
2015) surveillance of ED data
Vancouver, Canada Capilano supply, Mean daily turbidity with Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 2-18 years physician visits (nonlinear) To39 | all lags shown)
Vancouver, Canada Capilano supply, Mean daily turbidity with To39 | Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 19-65 years | physician visits (nonlinear) (lag | all lags shown)
at 25)
Vancouver, Canada | Capilano supply, | Mean daily turbidity with To39 | Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 2-18 years hospital admissions (lag all lags shown)
(nonlinear) at27
Vancouver, Canada Capilano supply, Mean daily turbidity with To39 | Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 2-18 years emergency department visits (lag | all lags shown)
(nonlinear) at 25)
Vancouver, Canada | Seymour supply, | Mean daily turbidity with Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 19-65 years physician visits (nonlinear) To 39 all lags shown)
Vancouver, Canada | Seymour supply, | Mean daily turbidity with To39 | Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) ages 19-65 years | hospital admissions (lag | all lags shown)
(nonlinear) at 30)
Vancouver, Canada Coquitlam Mean daily turbidity with To39 | Prominent peaks on TERS plot (from figure; results for
(Aramini 2002) supply, ages <2 hospital admissions (lag | all lags shown)
ears (nonlinear) at 26)
Quebec City, All Mean daily turbidity Prominent peaks on TERS plot (results for all lags
Canada (Gilbert et (nonlinear) with calls to health To 40 shown)
al. 2006) information line
Le Havre, France Saint-Laurent Mean daily turbidity (linear) Highest relative risk (results for all lags shown)
(Beaudeau et al. plant, phi500 with AGI-related prescriptions
2012) drain, 1997-2000

Figure 1. This table provides information on lag days with associations reported in the epidemiological studies of drinking water turbidity in relation to acute
gastrointestinal illness. Note: Dark gray shading indicates lag day with notable association (*indicates lagged multiday average); light gray shading indicates
lag day not examined in the study. AGI, acute gastrointestinal illness; TERS, temporal exposure response surface.

“Stated by the author (comprehensive results not shown).

bp<0.05.
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Le Havre, France Saint-Laurent Mean daily turbidity (linear) Highest relative risk (results for all lags shown)
(Beaudeau et al. plant, phi900 with AGl-related prescriptions

2012) drain, 1997-2000

Le Havre, France Radicatel plant, Mean daily turbidity (linear) Highest relative risk (results for all lags shown)
(Beaudeau et al. without settling, with AGI-related prescriptions

2012) 1997-2000

Le Havre, France Radicatel with Mean daily turbidity (linear) Highest relative risk (results for all lags shown)
(Beaudeau et al. settling, 1997- with AGl-related prescriptions

2012) 2000

Nantes, France Children Mean daily turbidity with AGI- Selected a priori as most plausible lag period and
(Beaudeau et al. related prescriptions statistically significant association”

2014b)

Nantes, France Adults Mean daily turbidity with AGI- Selected a priori as most plausible lag period and
(Beaudeau et al. related prescriptions statistically significant association”

2014b)

Cherepovets, Russia | All
(Egorov et al. 2003)

Mean daily turbidity with self-
reported AGI (linear)

Highest relative risk (results for all lags shown)

Cherepovets, Russia
(Egorov et al. 2003)

Participants with
consumption of
non-boiled water

Mean daily turbidity with self-
reported AGI (linear)

Highest relative risk (results for all lags shown)

Figure 1. (Continued.)

et al. 1998; Schwartz et al. 1997) or longer lags (Aramini 2002;
Beaudeau et al. 2012; Gilbert et al. 2006; Morris et al. 1998).

Discussion

A positive association between turbidity of drinking water and
AGI incidence has been observed in different cities and time peri-
ods, in regions with varying characteristics of source water, with
both unfiltered and filtered supplies, and with varying turbidity
levels. There is some consistency in the lag times with associa-
tions (i.e., the time between the measured turbidity and identifica-
tion of the AGI case), which fall between 6 and 10 d in many
studies. The studies appear to adequately adjust for possible
biases of the time-series design, including confounding by sea-
sonal cycles and other time trends, although it is acknowledged
that unknown biases may still occur. There is evidence for nonli-
nearity of the association from several studies, showing stronger
associations at higher levels of turbidity. The collective results
reveal a broad association between turbidity and AGI that sug-
gests low-level incidence of waterborne AGI from drinking water
within the systems and time periods studied.

The potential for causal interpretation was strongest from
studies that presented results for all individual lags and found a
pattern of increased risk at several consecutive lags, rather than a
single peak (Aramini 2002; Beaudeau et al. 2012; Hsieh et al.
2015). Causal inference was also strengthened when investigators
found similar results between their main analysis and with alter-
nate modeling strategies (Aramini 2002; Hsieh et al. 2015;
Schwartz et al. 1997; Schwartz et al. 2000) or with model valida-
tion such as fitting and testing in a split sample (Beaudeau et al.
2012, 2014b). The potential for causal inference was more lim-
ited from studies that showed fewer, selected results (Bateson
2001; Schwartz et al. 1997, 2000) or with results averaged across
multiple lag days, such as from distributed lag models (Tinker
et al. 2010). Findings of effects limited to low turbidity levels are
inconsistent with the hypothesized causal relationship (Bateson
2001; Beaudeau et al. 2014a), although not inconceivable. Some
studies had potential biases that rendered the results suggestive,
at most, such as possible bias from self-reported AGI (Egorov
et al. 2003) or diagnosis bias that could have followed news
reporting of the 1993 outbreak in Milwaukee, although this bias
would not have affected positive results found during the pre-
outbreak period (Morris et al. 1996; Morris et al. 1998; Naumova
et al. 2003).

Given that the ratio of particulates to pathogens can vary
greatly among water systems, turbidity alone may not be
adequately correlated with microbiological contamination to
serve as a useful proxy in every situation. The findings from New
York City (Hsieh et al. 2015) and Seattle (Bateson 2001), in
which an association was observed only in the season with the
highest turbidity, and those from Atlanta (Tinker et al. 2010) and
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Le Havre, France (Beaudeau et al. 2012) in which there was a
significant association with source (raw)-water turbidity but not
with finished (filtered) water suggest that in some water sys-
tems, the utility of turbidity as a proxy for microbiological con-
tamination may be limited to high-turbidity scenarios.
Nevertheless, as other studies found an association at low levels
of turbidity similar to those measured in Atlanta finished water
(Beaudeau et al. 2014b; Schwartz et al. 1997, 2000), the dis-
crepancies also suggest that the utility of turbidity as a proxy
may be context specific—dictated by watershed characteristics,
treatment system approaches and performance, and local envi-
ronmental factors related to season. For this reason, future stud-
ies would be most informative not by asking “Is there an
association?”” but, rather, “Under what conditions does an asso-
ciation exist?”

The body of work demonstrates the efficacy of studies corre-
lating turbidity with AGI counts in time-series for preliminary
investigation of the safety of water supplies. However, the
apparent context-specific nature of turbidity in its association
with AGI has implications for the optimal conduct of such stud-
ies, including design issues and modeling strategies aimed to-
ward elucidating specific- rather than generalized associations.
Additionally, based on our review, we propose recommenda-
tions for enhancing the potential for causal interpretation from
future studies.

Exposure Measurement

Turbidity measurements for the purpose of monitoring filtration
performance are generally taken using continuously operating,
automated turbidimeters at each individual filter [as per U.S.
EPA guidance (U.S. EPA 2004)]. The measurement of turbidity
using automated turbidimeters is known to be imprecise, particu-
larly at low levels (Burlingame et al. 1998). However, averaging
of multiple measurements per day for use in time-series regres-
sion would result in a summary measure with lower error than an
individual measurement. Some studies used longer averaging
periods than 1 d, such as Morris et al. (1996) who examined
Milwaukee water 2-wk average turbidity (lagged by 1 wk) in
relation to 2-wk AGI counts, or Tinker et al. (2010) who analyzed
Atlanta water turbidity as a 3 d moving average across lags.
Although the error of individual measurements is greatly
decreased with such an approach, the loss of variation by averag-
ing over a longer time period may result in dilution of any
true association. Two studies relied on a single turbidity measure-
ment for their defined daily exposure—the daily maximum
(Bateson 2001, Naumova et al. 2003)—and these single measure-
ments are more subject to error than averages. The error and re-
sultant misclassification of turbidity measurements would occur
nondifferentially with respect to the AGI outcome (when consid-
ering a linear relationship), but with left-truncation of low-level
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turbidity values at 0, it is unclear how such measurement error
might bias the results. Evaluation of both short-term averages
(such as daily) and single measurements (such as maximum or
minimum) of turbidity may be a reasonable approach to fitting
the most predictive model in a study, when coupled with evalua-
tion of the influence of the averaging period and extreme outliers.

People consume water outside of their home, and potentially
outside their service area, and also consume bottled water.
Individual use patterns may result in nonrepresentativeness of
one regional turbidity value for exposure of individual cases; this
is an inherent weakness given the ecological nature of data used
in the time-series design. The lack of individual-level information
on nontap water consumption and resultant exposure misclassifi-
cation detracts from evaluation of the etiologic association
between microbiological quality of a drinking-water supply (as
indicated by turbidity as a proxy measure) and AGI incidence.
However, it should be noted that the lack of information does not
detract from the results of these studies for estimation of the
population-wide AGI risk associated with regional drinking-
water quality, given real patterns of use, the interpretation most
relevant for management of a specific water system.

Because the utility of turbidity as an exposure proxy for
microbiological contamination may be context specific, epidemi-
ological research would be enhanced by combining turbidity with
additional seasonal and climatic variables, water quality, and
treatment measures to optimize predictive models of AGI inci-
dence. Indeed, the association between turbidity and AGI differed
by season in the only studies that reported this stratification
(Bateson 2001; Hsieh et al. 2015), and studies that evaluated mul-
tiple water indices found significant interactions of turbidity with
factors such as streamflow, water temperature, and systems oper-
ations in their associations with AGI (Beaudeau et al. 2012,
2014b). Climatic variables considered as confounders in the stud-
ies, such as season and air temperature, could theoretically deter-
mine the conditions in which turbidity is most correlated with
microbiological contamination, and as such these variables
should first be evaluated as effect modifiers, and secondly as
confounders.

Two studies suggest that the association between turbidity
and AGI is more significant for source (raw) water than finished
(filtered) water (Tinker et al. 2010; Beaudeau et al. 2012). This
might seem counterintuitive as finished water would be expected
to be more representative of human exposure than raw water
(except given exposure by recreational contact). The findings
may be spurious or they may be confounded by recreational con-
tact with surface waters, but they may alternatively be interpreted
as indicating that turbidity of raw water may be more strongly
correlated with microbiological contamination than the turbidity
of filtered water. One would expect raw water pathogen loads to
vary greatly, even over orders of magnitude, which should exceed
the variability following an engineered and tightly monitored pro-
cess such as water filtration. Again, with the goal of elucidating
the specific conditions under which an association exists, raw
water turbidity should be routinely evaluated, in addition to, and
in combination with finished water turbidity.

Qutcome Assessment

Nondifferential misclassification of AGI is certainly present in
the studies. Many of the studies identified cases based on a broad
grouping of diagnosis codes for infectious gastroenteritis and
also included a catch-all code for noninfectious AGI, as well as
symptom codes. The grouping of specific diagnoses into broad
categories (such as all infectious gastroenteritis including ICD-9
codes 001-009) results in less misclassification for the group,
overall, than for specific diagnoses. The most representative set
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of diagnosis codes for waterborne AGI has not been determined;
however, studies that evaluated the sensitivity of study results to
variations in case definition found little impact on their findings
(Schwartz et al. 1997; Tinker et al. 2010). More extensive evalua-
tion of the sensitivity of results to various case definitions would
be prudent, given the expected misclassification in diagnosis
codes.

The AGI outcome definitions are also subject to undercount-
ing, resulting from lack of sensitivity of the data sources used.
For example, although Medicare claims can be expected to be
fairly complete in capturing hospital admissions for persons
>65 y in the United States, hospitalizations are not a complete
representation of all incident AGI cases. Other sources of data,
such as prescriptions for AGI-related drugs or calls to a health in-
formation line are also likely to represent only a fraction of all
AGI cases on any given day. Undercounting was reflected in the
Schwartz et al. (1997) study in Philadelphia, in which AGI cases
in children were identified through emergency department visits
to one hospital, and rates differed considerably between the water
treatment service area located closest to the hospital (18.9 per
1,000 person-years) and the service area located farthest away
(1.5 per 1,000). Such undercounting of AGI, likely common to
all the studies, reduces the study power but will not cause bias, as
long as the variation in counts over time is representative of the
variation in the underlying true counts (i.e., day-to-day increases
or decreases in the number of AGI-related hospitalizations are
representative of day-to-day changes in the true underlying num-
ber of AGI cases). This assumption may be reasonable unless tur-
bidity is related to the severity of AGI symptoms. In this
situation, AGI identified from data sources capturing more severe
cases (e.g., hospitalizations, emergency department visits) may
be disproportionately represented. This suggests that studies
should explore effect modification by the sources of data used for
AGI identification, in order to detect associations that may differ
by case severity.

Confounding

It is difficult to conceive of a variable not examined in the studies
that could plausibly confound the relationship between turbidity
and AGI incidence to the extent that it would produce a false pos-
itive association in a consistent manner between the many study
regions and time periods examined. Season is a major factor of
concern for confounding, as AGI exhibits seasonal cycles that
have nothing to do with microbiological water quality, such as
from low air exchange rates in winter that make indoor transmis-
sion of pathogens more common, and season (and related climatic
factors) is also highly correlated with source-water turbidity.
Most studies used flexible nonlinear terms to estimate seasonal
trends and potential confounding effects of air temperature or
other climatic variables, and several studies described adequate
adjustment based on independence of the residuals over time
(Egorov et al. 2003; Schwartz et al. 2000; Tinker et al. 2010). In
other studies there was little information reported on the model fit
with respect to the covariates. Because the studies in Vancouver
and Edmonton, Canada (Aramini 2002; Lim et al. 2002) found
similar patterns of association of turbidity with AGI in both time-
series and case—control analyses, this suggests that seasonal trends
were accounted for in the time-series analyses, and also strongly
argues against false positive findings in the Vancouver study. In
addition to primary consideration of seasonal and climatic factors
as effect modifiers in future analyses (discussed above) and sec-
ondarily as confounders, improved reporting of the adequacy of
seasonal trends adjustment would enhance causal interpretation of
the results.
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Multiple studies have reported an association between heavy
precipitation and increases in AGI incidence using the time-series
study design (Guzman Herrador et al. 2015). Overadjustment is a
concern, as precipitation directly affects turbidity levels by caus-
ing runoff of pathogens into source waters (thus, precipitation
may be a proxy for turbidity). Nevertheless, adjustment for pre-
cipitation was inconsequential in the studies that examined it,
possibly suggesting that other local factors influence turbidity to
a greater extent than precipitation. It seems most prudent to
exclude precipitation from models of the turbidity—AGI relation-
ship as it may interfere with accurate estimation of the turbidity
effect.

An advantage of the time-series design is its inherent adjust-
ment for potential confounders that do not greatly vary by the
time scale used in the analysis (e.g., such as socioeconomic status
and neighborhood factors, which do not vary by day); for this
reason, individual-level measurements are often not needed.
Despite this practical advantage, targeted data collection on
potential confounders would be useful to inform the evidence
base for causal inference from studies of drinking-water turbidity
and AGI incidence. The hybrid design employed by Egorov
et al. (2003) in Russia illustrates collection and examination
of individual-level information (recreational water contact,
consumption of nonboiled tap water, out-of-town trips) for
inclusion in a time-series analysis; however, the small size of
the study (367 participants), which allowed for data collec-
tion, also limits study power and is likely not a feasible strat-
egy in regions with lower rates of AGI and more pristine
drinking-water conditions. Rather than individual-level data
collection from each person in a study, efforts could instead
focus on data collection from a representative sample of per-
sons in the region to obtain information on the variation of
potential confounders over time. For example, recreational
contact with source waters is known to pose an increased risk
of AGI (Sunger and Haas 2015). Such contact would vary by
season, and could thus confound the association between
drinking-water turbidity and AGI. The sheer number of per-
sons exposed through drinking water greatly overwhelms the
number of persons exposed through recreational contact,
which argues against the potential for unmeasured recrea-
tional water contact to cause a spurious association between
turbidity and AGI. Nevertheless, studies would benefit from
collection of additional information on recreational water
contact by regional residents, such as the frequency and var-
iability of contact over time—by season, day-of-the week,
and holidays. This distributional information would allow
for application of probabilistic bias analysis methods to
place bounds on the possible bias from the (unmeasured)
confounder on the risk estimates for the main effect of inter-
est (Lash et al. 2009).

Evaluation of Multiple Lags

All of the studies evaluated multiple lag times to test multiple
hypotheses regarding the latency between exposure and AGIL.
The lags represent the elapsed time from the point of sampling
(usually as effluent from the water utility) until presentation of an
AGI case to the health system, theoretically incorporating the
time before water reaches the consumer’s tap, incubation periods
for common waterborne microbiological infections, and delay in
seeking medical care for AGI. Given the ecological nature of the
time-series study design, the lag time represents the average lag
among AGI cases within the region studied. Testing multiple lags
is admittedly exploratory, but necessary given that different
pathogens have different incubation periods and an investigator
typically does not have knowledge at the outset about the
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pathogens of concern within a particular water system. Many of
the studies found the most significant or prominent associations
with lag times of 6-10 d. Lag times from 6 to 10 d may be con-
sistent with latency periods for common waterborne AGI, such as
viruses, giardiasis, and cryptosporidiosis, but this depends on the
amount of time water spends in each of the distribution systems
studied. The study of the Milwaukee outbreak, with known con-
tamination by Cryptosporidium, found prominent lags between 6
and 10 d, as well as longer lags of 13-16 d, which the authors
speculated may reflect secondary transmission of the initial
waterborne outbreak (Morris et al. 1998; Naumova et al. 2003).
Differing lag times between studies may suggest different water-
borne pathogens or distribution system residence times among
the study regions; however, inference regarding specific patho-
gens will ultimately rely on identification of specific agents in
water samples.

In this type of analysis in which associations are explored
across multiple lags, the pattern of association may be more im-
portant than the statistical significance of individual associations.
The most satisfying presentations of multiple lags tested showed
the entire range of results for the association between turbidity
and AGI at all lag times examined, in tables or figures (Aramini
2002; Beaudeau et al. 2012; Egorov et al. 2003; Gilbert et al.
2006; Hsieh et al. 2015; Lim et al. 2002; Morris et al. 1998). This
comprehensive presentation allows the reader to assess whether
associations represent generalized patterns of increasing risk
across multiple lags or appear as single associations showing no
pattern with consecutive lags. A separate issue arises from sum-
marizing results over multiple lags examined, as from a distrib-
uted lag model, which may dilute any association limited to a
few consecutive days. Comparison of lag times between different
studies would be optimized by consistency in presentation of all
results, such as for single-day lags over a period of at least 2 wk
spanning lags from 6 to 10 d.

Modeling Strategies

With some exceptions (Beaudeau et al. 2014a; Hsieh et al. 2015;
Schwartz et al. 2000), plots of the raw data and its relationship to
the fitted model, or residual diagnostic plots or other diagnostic
information were not shown, making it difficult for the reader to
ascertain whether the model is a good fit. Authors rarely
described formal testing of the Poisson distributional assumption
that the sample variance equals its mean, which may be violated
when spikes occur in AGI counts, although multiple authors
employed alternate models equipped to handle overdispersed
count data. The linearity of the relationship between AGI and
lagged turbidity is another assumption that was not explicitly jus-
tified in most of the studies, and evidence for a nonlinear associa-
tion from several studies underscores the need for evaluation of
the suitability of a linear fit to the relationship within a particular
water supply. Additionally, in most studies, there was little infor-
mation reported on the model fit with respect to the covariates.
Imperfect model fit with respect to turbidity or the covariates
does not necessarily undermine basic conclusions about the exis-
tence of a relationship between AGI and lagged turbidity, but
may impact estimates of this relationship, for example by intro-
ducing some bias into parameter estimates or by invalidating esti-
mated standard errors and thus the stated level of significance,
which can lead to false conclusions either away from or toward
the null. Improved reporting of distributional assumptions and
model fit would allow greater confidence in interpretation of
results. Special attention should be paid in the studies to the fit of
models with respect to extreme values (spikes) of either turbidity
or AGI.
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Future Directions

Moving forward, it may be useful to conduct additional studies of
turbidity in relation to AGI to screen drinking-water supplies for
source-water quality and treatment effectiveness. Time-series
studies are recommended as a reasonable first-step for epidemio-
logical evaluation of a water supply; although the time-series
design has weaknesses that limit causal inference, such studies
are relatively inexpensive to conduct, given ongoing generation
of turbidity (and other water quality) measurements by water sys-
tems and increasing availability of electronic health records.
These studies may help identify regions, seasons, and source-
water conditions of potential concern, which could then guide
more targeted research and data collection to help explain those
high-risk conditions. Targeted data collection would be useful to
inform the evidence base for causal inference from time-series
studies of drinking-water turbidity and AGI incidence, such as
data to better understand water use or confounder distributions
over time, or through water sampling for pathogens. Sampling
efforts to describe the relationship between turbidity and patho-
gens across regions under various conditions (different source-
waters, climatic conditions, and treatment approaches) may add
valuable information about the specific contexts in which turbid-
ity is most useful as a proxy for microbiological contamination.
Ultimately, the collective results from a variety of preliminary
studies may help to effectively allocate funding for more exten-
sive studies (e.g., randomized trials) to regions most likely to
benefit from the information.

There are important gaps in the conditions that have been
studied. Cities with pristine source-waters that employ filtration
have not been well studied. This may reflect a tendency among
researchers to undertake, and among funding agencies to sponsor
studies in areas in which positive associations are likely to be
found. This approach is reasonable initially when the existence of
any sort of association would be unclear, but as a substantial
number of studies show positive associations, the scope of future
studies should be broadened so that the conditions under which
such associations exist can be better demarcated. Following this
line of reasoning, a priority for future study is the evaluation of
systems employing enhanced disinfection, such as UV. An asso-
ciation between turbidity and AGI has been found in chlorinated
and ozonated supplies; the association might not be present when
UV disinfection is used, given that this form of disinfection
is effective even against highly resistant pathogens such as
Cryptosporidium oocysts (Nasser 2016). Three of the treatment
plants studied in Atlanta (Tinker et al. 2010) employed UV disin-
fection, but the paper did not list the type of treatment specific to
each water plant. New York City and Boston are particularly
attractive locations for studies of UV disinfection, as the method
has been recently adopted in those regions, and previous studies
found an association between turbidity and AGI (Beaudeau et al.
2014a, Hsieh et al. 2015). Hence, a subsequent study could assess
whether the implementation of UV disinfection has removed the
observed association between turbidity and illness. Studies at
sites using other advanced disinfection methods might be simi-
larly valuable. Multi-region investigations using unified methods
would be an efficient approach to further our understanding of
the relationship, particularly given contrasts of interest between
study regions (such as in turbidity levels or treatment methods).

The studies we reviewed were generally designed to evaluate
AGI risks in relation to drinking-water turbidity as a proxy for
microbiological contamination of source-water that is not
fully eliminated by treatment. These studies (with the exception
of Hsieh et al. 2015) did not evaluate AGI risk caused by
microbiological contamination introduced within the distribution
system (such as through main breaks, intrusions, and biofilms).
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Distribution system contamination has been implicated in water-
borne disease outbreaks (Ford 2016), and furthermore may be a
cause of endemic (nonoutbreak) waterborne AGI, as suggested
by an epidemiological study linking longer water residence time
in the distribution system with increased AGI incidence in
Atlanta (Tinker et al. 2009). In future research, it may be useful
to partition out health risks between various inputs to the water
system (i.e., potential points of contamination), in order to under-
stand more fully where to target interventions. Hsieh et al. (2015)
addressed the question by simultaneously modeling both distribu-
tion system turbidity and source-water turbidity in relation to
AGI. The association with distribution turbidity was almost com-
pletely explained by source-water turbidity (Hsieh et al. 2015),
suggesting that the fraction of AGI associated with turbidity was
not caused by contamination introduced within the distribution
system. Likewise, Beaudeau et al. (2014b) found significantly
increased risk associated with turbidity of finished effluent, with
simultaneous adjustment for pipe break service interventions
(which itself had a small, but not statistically significant relation-
ship with AGI). Additional studies with multivariable evaluation
of source-water/effluent turbidity in addition to indicators of
potential contamination within the distribution system may shed
light on the relative importance of contamination inputs from var-
ious points in the water system.

Our understanding of the relationship between drinking-water
turbidity and AGI incidence would be improved through consis-
tency of analysis and reporting in future studies. Greater consis-
tency will more readily allow direct comparison of results across
regions, water systems, and time periods, as well as enable meta-
analyses to quantitatively summarize the effect and evaluate fac-
tors contributing to heterogeneity of effect. To enhance consis-
tency, we suggest evaluation of daily average turbidity (rather
than longer averaging periods or alternate turbidity metrics) and
evaluation of daily lags with presentation of results for all lag
times examined. Although authors may determine that longer ex-
posure or lag periods lead to the best-fitted model in their study,
presentation of the results for daily average turbidity and daily
lag times in a supplement or by request would allow comparison
of results, as stated. We also suggest fitting both linear and non-
linear associations between turbidity and AGI incidence, with
presentation of the linear association, where appropriate, even if
limited to certain levels of turbidity or one season. The nonlinear
association across multiple lags is effectively summarized using
TERS plots; however, providing risk estimates (and confidence
intervals) for the contrast between defined turbidity levels at key
lag times is needed to allow accurate comparison of the magni-
tude of effect across studies. Quantitative comparison (and sum-
marization) of results across studies may add to the weight of
evidence for a causal interpretation of waterborne AGI from
drinking water in the regions and time periods studied, and could
ultimately lead to more accurate estimation of the total risk (at-
tributable risk) through this exposure pathway.

Conclusions

In summary, multiple time-series studies have observed an associa-
tion between turbidity of drinking-water supplies and risk of AGI.
Associations have been observed in unfiltered and filtered water
systems and at levels of relatively high and low turbidity. The posi-
tive studies suggest an underlying risk of waterborne AGI during
the time periods at which the systems were studied. Nevertheless,
inconsistencies between the studies indicate that the utility of turbid-
ity as a proxy for microbiological contamination may be context
specific. The body of work demonstrates the efficacy of studies cor-
relating turbidity with AGI counts in time-series for preliminary
investigation of the safety of water supplies. The context-specific

086003-18



nature of the association between drinking-water turbidity and AGI
suggests that future research will be most effective if strategized
towards elucidating specific- rather than generalized associations;
for example, through exploration of effect modification by seasonal
variables, stream conditions, and water treatment. Time-series results
supplemented by targeted data collection to help determine whether
there is indeed a causal link may be useful as a means to assess the
effectiveness of utilities in managing various conditions posing
increased risk for exposure to microbiological agents of AGI.
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