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ABSTRACT
The publicly accessible archive of Landsat imagery and increasing regional-scale LiDAR acquisitions
offer an opportunity to periodically estimate aboveground forest biomass (AGB) from 1990 to the
present to alignwith the reporting needs of National GreenhouseGas Inventories (NGHGIs). This study
integrated Landsat time-series data, a state-wide LiDAR dataset, and a recent cycle of the national for-
est inventory (NFI) records in Minnesota, USA, to obtain a spatially explicit inventory of AGB across
a large region of space and time back to the 1990 baseline used by the US NGHGI. Pixel-level poly-
nomial models were fit to 6 time-series metrics of Landsat data to obtain fitted predictors that were
ultimately coupled with the NFI data in a nonparametric modeling framework to map temporal AGB
baselines. Eighteen candidatemodels, formulated using different combinations of LiDAR and Landsat
metrics, revealed that themodel using both Landsat and LiDARmetrics consistently performed better
than the alternative models. The RMSE of the model using both Landsat and LiDAR was 27.2 Mg ha−1,
against 31.39 Mg ha−1 for the model using only LiDAR metrics. We conclude that the fitted Landsat-
based model (RMSE= 47.64 Mg ha−1) provides acceptable accuracy for the 1990-baseline mapping of
AGB.

RÉSUMÉ
Les archives accessibles au public d’images Landsat et l’augmentation des acquisitions LiDAR à
l’échelle régionale offrent l’opportunité d’évaluer périodiquement la biomasse forestière aérienne
«aboveground forest biomass (AGB)»de 1990 jusqu’à nos jours pour répondre aux besoins de rapports
des inventaires nationaux de gaz à effet de serre (NGHGIs). Cette étude a intégré des données de séries
temporelles Landsat, un ensemble de données LiDAR couvrant l’État et une série récente provenant
des archives de l’inventaire forestier national «national forest inventory (NFI)»duMinnesota, aux États-
Unis, pour obtenir un inventaire spatialement explicite de la AGB sur un grand domaine spatiotem-
porel, depuis le référentiel de 1990 utilisé par le NGHGI des États-Unis. Les modèles polynomiaux au
niveau dupixel ont été ajustés à 6mesures de séries temporelles de données Landsat pour obtenir des
prédicteurs ajustés qui ont finalement été couplés avec les données de le NFI dans un cadre de mod-
élisation non paramétrique pour cartographier les référentiels temporels de la AGB. Dix-huit modèles
candidats formulés en utilisant différentes combinaisons des mesures de LiDAR et Landsat ont révélé
que lemodèle utilisant à la fois desmesures de Landsat et LiDAR a toujours unemeilleure performance
que les autresmodèles. La REQM «rootmean square error (RMSE)» dumodèle utilisant à la fois Landsat
et LiDAR était de 27,2 Mg ha−1, contre 31,39 Mg ha−1 pour le modèle utilisant seulement des mesures
de LiDAR. Nous concluons que le modèle ajusté basé sur Landsat (RMSE= 47,64 Mg ha−1) fournit une
précision acceptable pour la cartographie du référentiel de 1990 de l’AGB.

Introduction

The net difference between carbon removals from the
atmosphere by forest growth and emissions due to dis-
turbances provides an estimate of net forest carbon flux.
Because forests efficiently store atmospheric carbon and
contain about 80% of all aboveground organic carbon
(Houghton et al. 2009; Pan et al. 2013), mapping and
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monitoring aboveground forest biomass (AGB) over
time has gained international recognition in policy and
operational decisions, especially in the context of climate
change mitigation (Nabuurs et al. 2007). The spatial and
temporal patterns of AGB at national and regional scales
are essential for strategic planning purposes such as the
National Greenhouse Gas Inventory (NGHGI) reporting
per the United Nations Framework Convention on
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Climate Change (UNFCCC). In addition, high-
resolution, spatially explicit periodic maps that include
a baseline of AGB could serve as a means to implement
operational forest management and evaluate carbon
dynamics attributed to forest management and dis-
turbances (Powell et al. 2010). Although conventional
approaches dependent only on field measurements can
provide robust estimates (Zhang and Ni-Meister 2014),
they are costly and difficult to implement over large
spatial and temporal scales. Further, estimates of uncer-
tainty are more likely exacerbated when inconsistent
field-sampling protocols are employed over a long time
period (e.g., since 1990, the UNFCCC baseline year for
NGHGI reporting).

Temporal quantification of AGB must follow a robust
and consistent approach in order to accurately portray
historic disturbance and recovery in the process of sus-
tainable forest management and monitoring programs
such as Reducing Emissions from Deforestation and For-
est Degradation Plus (REDD+). A number of REDD+
interventions and NGHGIs require large-area 1990 base-
lines of forest biomass as a means to quantify changes
in carbon stocks. However, large-scale spatial invento-
ries in the past that lacked sufficient field samples are
challenging without coupling temporal geoinformation
from satellite imagery with recent forest inventory data
collected consistently across the region in representative
samples. Landsat data, especially the imagery of The-
matic Mapper (TM) and successor sensors since 1984,
have been themost commonly usedmeans to extract spa-
tiotemporal details of forest structure from local to global
scales because of the freely accessible archive of data at a
30-m spatial resolution (Huang et al. 2010; Lu et al. 2012).
The historic archive, continuous observations, and digital
quality of Landsat data have resulted in advanced image
processing platforms and algorithms to obtain consistent
analysis-ready data and metrics free from noise such
as clouds and shadows (Banskota et al. 2014; Roy et al.
2014). For example, a pixel-level spectral-trend analysis
and model fit to annual time-series metrics of Landsat
data of a preset quality standard can be used to obtain
fitted metrics for any target year in the past when there
was persistent cloud cover (e.g., Kennedy et al. 2010).
Indeed, combining Landsat predictors with national
forest inventory (NFI) data has been common in different
parts of the world for strategic inventories (McRoberts
2012; Schroeder et al. 2008), but reliable estimation
also requires that the field data be collected based on a
consistent sampling protocol. For example, the NFI sys-
tem in the United States adopted a nationally consistent
field-sampling design in 1999, and results indicate that
population estimates were inconsistent with the estimates
based on the previous sampling design (Goeking 2015).

Remote sensing and geographic information systems
(GIS) have long been used to support forest inventories.
A wide range of modeling approaches employing single
or multisensor, passive or active remotely sensed data
such as Landsat and LiDAR, have been documented
for spatial inventories of AGB (Gleason and Im 2011;
Koch 2010). Although multispectral Landsat data are
frequently used in forest inventories and assessments
(Powell et al. 2014), the sensor suffers from signal sat-
uration in high biomass areas or forests with complex
stand structures (Huete et al. 2014; Schroeder et al. 2008).
Active sensors such as LiDAR offer improved sensitivity
to 3-dimensional forest structure, resulting in AGB esti-
mates with increased accuracies. Previous studies have
demonstrated that LiDAR-derived metrics are highly
sensitive to structural attributes and their application can
improve the cost efficiency of forest inventories compared
to traditional approaches (Hudak et al. 2009; Hummel
et al. 2011). At a time when regional-scale LiDAR acquisi-
tions have received much attention because of efficiencies
in characterizing terrestrial biophysical attributes such
as topography (e.g., MnTOPO 2014), the integration of
regional LiDAR datasets with Landsat time-series data
could improve the accuracy of large-area, spatiotemporal
mapping of AGB. Further, one-time LiDAR data could
support projection modeling based on annual time-
series Landsat data to inform forest biomass and carbon
baselines (Pflugmacher et al. 2014).

The standard approach in remote-sensing-based
assessments of AGB employs formulation of multivariate
relationships between the response measured in a limited
number of field sample plots and colocated spatial metrics
of remotely sensed data. The commonly used methods to
formulate the relationships include parametric regression
and nonparametric k-nearest neighbor (k-NN) imputa-
tion of different types. However, parametric regressions
suffer from limitations that arise from sensitivity of the
models to influential observations, multicolinearity of
predictors, and inherent assumptions about homoscedas-
ticity and linearity (Hayashi et al. 2015). The k-NN
imputation methods have been popular in strategic
inventories worldwide since the 1990s because multiple
responses can be predicted simultaneously (Tomppo
1991) and the algorithms are not bound to parametric
assumptions (Brosofske et al. 2014). In k-NN imputation,
a set of reference points with known values of response
and predictor variables is used to obtain responses at tar-
get points (i.e., with known predictors only) as weighted
averages of k-nearest neighbors (in the reference set)
selected via similarity of spatial covariates of the target
and reference points (McRoberts 2012; Franco-Lopez
et al. 2001). There are different variants of k-NN but the
random-forest (RF)-based k-NN (Crookston and Finley
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2008) is popular and widely used in geospatial inventory
models of forest attributes because the approach is robust
to collinearity of predictors, it ranks the importance
of predictors, it provides a measure of model accuracy
through internal cross-validation, and generally it gives
better predictions comparedwith other imputationmeth-
ods (Latifi et al. 2010; Moser et al. 2016). The RF-kNN
algorithm is guided by an ensemble of many classification
and regression trees in which each tree is built from a
bootstrap subsample of a reference dataset, and each node
in the tree is split via the best predictor chosen from a
random subset of all predictors (Liaw and Wiener 2002).
The RF-based nearness is estimated as the proportion
of all trees in the ensemble that associate a target point
with a particular subset of k points in the reference set.
The value of k is an important parameter in imputation
modeling because it can affect precision and accuracy.

The general objective of this study was to formulate
and evaluate AGB projectionmodels based on the consis-
tent NFI data from northern Minnesota, USA, combined
with fitted metrics obtained from pixel-level curve fitting
to a suite of annual time-series (1986–2011) metrics of
Landsat TM data. The RF-kNN based projection mod-
els trained using a recent cycle (2007–2011) of the NFI
data are intended to establishAGBbaseline estimates back
to 1990, per UNFCCC requirements. Because Minnesota
acquired statewide LiDAR in 2011, we first evaluated the
accuracy of only the Landsat-dependent projectionmodel
for 2011 against the model using both LiDAR and Land-
sat derived metrics for the same year. The Landsat-based
projectionmodelwas also tested in the year 2000, using an
extant map developed for the National Biomass and Car-
bon Dataset (NBCD) circa 2000 (Kellndorfer et al. 2013).
An additional objective was to analyze the effect of the
number of nearest neighbors (k) on the accuracy ofmodel
predictions.

Methods

Study area

The study area encompassed a single Landsat scene
(WRS-2 path 27/row 27; 47.4° N, 92.5°W) in northeast-
ern Minnesota, USA (Figure 1). The area (∼ 21,308 km2)
is primarily composed of aspen-birch (Populus-Betula)
and spruce-fir (Picea-Abies) forest types, with inter-
spersed wetlands and agricultural lands (McRoberts
2009). This site was chosen by considering the availabil-
ity of both Landsat time-series and LiDAR data and the
large extent of forest cover (approximately 75%) charac-
terized by mixtures of hardwood and conifer species in
uneven-aged and naturally regenerated stands. The past
30 years (1981–2010) of climatic records in the region

show that the mean annual precipitation and tempera-
ture in the area ranged from 68 cm–84 cm and 1°C–5°C,
respectively (MNDNR 2013). The terrain elevation in the
area varies between 170 m–635 m above sea level.

Landsat time-series data and derivedmetrics

We obtained a time-series (1986–2011) of near-
anniversary date Landsat-5 TM imagery for the study area
(Table 1) from the US Geological Survey (USGS) Climate
Data Record (CDR; USGS 2015a). The selected imagery
in the time series contained less than 5% cloud cover,
and each image was acquired between mid-July and mid-
September (i.e., peak growing season in the area) when
consistent landscape conditions and phenology persist
due to similar solar geometry. The time-series surface
reflectance imagery and other higher-level data products
in the CDR were acquired through bulk ordering via the
Earth resources observation and science (EROS) center
science processing architecture (ESPA) Interface (USGS
2015). We downloaded surface reflectance of individ-
ual bands (visible and infrared), some spectral indices
(USGS 2016), and cloud masks for each image. The data
were already terrain corrected (L1T) and radiometrically
and atmospherically preprocessed and available at 30-m
spatial resolution. Because some of the selected imagery
in the time series contained narrow cloud and shadow
patches (i.e., < 5% cloud cover), we removed that noise
by using cloud masks and substituting with clear imagery
acquired in adjacent years (Table 1). Note that there were
only 17 images in the 26 years (1986 to 2011) that met
the image selection criteria and that data gaps as long as
3 years were created.

We selected 6 spatial predictors from the Landsat data
for AGB modeling: Band 5 surface reflectance, Normal-
ized Difference Vegetation Index (NDVI), normalized
burn ratio (NBR), integrated forest z-score (IFZ), tasseled
cap angle (TCA), and disturbance index (DI). Among
these, Band 5, NDVI, and NBR were obtained directly
from the CDR, but we derived IFZ, TCA, and DI met-
rics as described in Huang et al. (2010), Pflugmacher et al.
(2014) and Healey et al. (2005), respectively (Table 2). We
used these predictors to optimize accuracy and parsimony
of the models because published works have reported
varying sensitivity of thesemetrics to different forest types
(Foody et al. 2003; Heiskanen 2006; Lu et al. 2012).

Shortwave infrared (SWIR) reflectance, spectral
indices and other disturbance metrics obtained from
Landsat data are widely used in biomass modeling
(Cohen and Goward 2004; Zhang and Ni-Meister 2014).
SWIR reflectance (particularly TM Band 5) normally
displays a strong negative relationship with biomass (Lu
2006; Steininger 2000). Because green leaves strongly
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Figure . Study area in north-eastern Minnesota, U.S.A. The small rectangular grey area in the top-left figure represents the foot print
of Landsat scene (WRS-, path / row ) in Minnesota. The top-right figure is a false color composite (FCC) of the Landsat TM image
captured on  September,  with the bands , , and  displayed as red, green and blue, respectively. The red polygon inside the FCC
represents the target area for which LiDAR dataset is also available. The pink-red and blue tones in the FCC represent open canopy areas
andwater bodies, respectively. The bottomfigure represents LiDARderived percentage canopy cover calculated based on all returns above
-m ground level. The black dots represent the locations of NFI plots measured in  and  and the white patches are water bodies.

reflect in near-infrared and green wavelengths and
absorb blue and red wavelengths from chlorophyll and
leaf moisture, NDVI (i.e., the ratio of the difference and
sum of reflectances in near-infrared and red bands)

enhances vegetation signal (Huete et al. 2002; Lillesand
et al. 2007). NDVI is preferred in global vegetation mon-
itoring because the index is considered to signify green
vegetation biomass. We included the NBR index because
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Table . Time-series images for the Landsat scene (WRS- path /row ) in northeastern Minnesota, USA.

Acquisition dates of target
images Julian day Sun elevation Cloud cover (%)

Dates of images (close to target) used to remove
clouds/shadows

//  . . //; //
//  .  //; //
//  . . //; //
//  .  —
//  .  //; //
//  . . //; //
//  . . //; //
//  . . //; //
//  .  —
//  . . //; //
//  .  //; //
//  . . //; //
//  .  —
//  . . //; //
//  . . //; //
//  .  //; //
//  . . //; //

it is reported to be correlated with field-measured burn
severity indices and may characterize fire disturbances
(Escuin et al. 2008). The IFZ metric, which is a measure
of the likelihood of a pixel being forested, was considered
because it provides a normalized predictor that can sub-
stantially reduce the spatial and temporal variability of
spectral signatures caused by atmospheric conditions and
sensor issues (Huang et al. 2010). It is reported that IFZ
values are similar and low (<3) for deciduous and conifer
forests in growing seasons and remain stable over time,
but nonforest areas have high values. This characteristic
of IFZ was thought to be useful to detect forest changes.

The TCA and DI metrics based on tasseled cap
brightness (TCB), greenness (TCG), and wetness (TCW)

indices (Crist and Cicone 1984) were used because a
combination of more bands possibly contains more
information than does an individual band. The tas-
seled cap indices, obtained as a linear combination
of the 6 reflectance bands of TM, emphasize overall
reflectance (brightness), contrast between near-infrared
and visible reflectance (greenness), and contrast between
visible/near-infrared and SWIR (wetness) (Crist and
Cicone 1984). These indices are sensitive to pheno-
logical changes and have potential for revealing key
forest attributes (Cohen and Goward 2004). Healey et al.
(2005) found that tasseled cap indices and DI performed
significantly better than TM bands reflectance in land
cover change analysis; they also found that DI alone

Table . Spectral indices used in the spatial aboveground biomass models.

Index Description

NDVI = Band 4 − Band 3
Band 4 + Band 3

Ratio of the difference and sum of near-infrared (TM Band ) and red (TM Band ) bands (USGS
)

NBR =Band 4 − Band 7
Band 4 + Band 7

Ratio of the difference and sum of near-infrared (TM Band ) and second SWIR (TM Band ) bands
(USGS, )

IFZ =
√√√√ 1

3

3∑
i=1

(FZi)
2

where

FZi =
vpi − v̄i

SDi

FZi is forest z-score of band i; vpi is a pixel value and v̄i and SDi are mean
and standard deviations of a sample of forested pixels. IFZ of a TM pixel is the integrated values
of FZi for the Bands , , and  (Huang et al. ).

TCB = 0.3037 × Band 1 + 0.2793 × Band 2+
0.4743 × Band 3 + 0.5585 × Band 4+
0.5082 × Band 5 + 0.1863 × Band 7

Tasseled cap brightness index for TM
(Crist et al. )

TCG = −0.2848 × Band 1 − 0.2435 × Band 2
−0.5436 × Band 3 + 0.7243 × Band 4+
0.0840 × Band 5 − 0.1800 × Band 7

Tasseled cap greenness index for TM
(Crist et al. )

TCW = 0.1509 × Band 1 + 0.1973 × Band 2+
0.3279 × Band 3 + 0.3406 × Band 4
−0.7112 × Band 5 − 0.4572 × Band 7

Tasseled cap wetness index for TM
(Crist et al. )

DI = Br − (Gr + Wr )
where
Br = (TCB − B

μ
)/B

σ
Gr = (TCG − G

μ
)/G

σ

Wr = (TCW − W
μ
)/W

σ

Br , Gr andWr are rescaled tasseled cap brightness, greenness, and wetness indices, respectively;
B

μ
,G

μ
andW

μ
are average values of brightness, greenness, and wetness of samples of forested

pixels; B
σ
, G

σ
andW

σ
are standard deviations of brightness, greenness, and wetness of

samples of forested pixels, respectively (Healey et al. ).
TCA = arctan(TCG/TCB) Tasseled cap angle (Pflugmacher et al. ).
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Table . Distribution of aboveground biomass (Mg ha−) across the national forest inventory plots in northeastern Minnesota, USA.

Inventory year No. of plots Min. First quantile Mean Third quantile Max. Standard deviation

   . . . . .
   . . . . .
   . . . . .
   . . . . .
   . . . . .
   . . . . .

outperformed a combination of the tasseled cap indices
or TM bands at some sites. DI is a linear combination
of rescaled TCB, TCG, and TCW bands (Table 2) and it
quantifies proximity of a pixel in tasseled cap space to the
areas in the scene having the highest TCB and lowest TCG
and TCW. TCW is found to be least affected by topo-
graphic variation in closed-canopy conifer stands and is
more powerful than TCB and TCG for predicting forest
structural attributes (Cohen and Goward 2004). As a sub-
stitute for TCW, Powell et al. (2010) and Pflugmacher et al.
(2012) used TCA (i.e., arctan transformation of the ratio
of TCG and TCB) that describes the gradient of percent
vegetation cover within the TCB–TCG spectral plane.

LiDAR data and derivedmetrics

A LiDAR dataset with nominal pulse spacing of 1 m–
1.5 m and vertical accuracy root mean square error
(RMSE) of 5 cm is publicly available from the Minnesota
Geospatial Information Office (MnGeo 2015a) for above
75% coverage of the target Landsat scene to the eastern
side of the study region (Figure 1). The LiDAR data with
multiple returns (up to 4) per pulse were acquired over a
24-day period in 55 flight missions in the spring of 2011
(May 3–26) primarily for the purpose of topographic
mapping. The vendor, Woolpert, Inc., collected data
using either a Leica ALS50 or Optec ALTM Gemini laser
scanner onboard an aircraft at an average altitude of
about 2,377 m above ground level, flying at an average
ground speed of about 278 km hr−1. The field of view
(full), pulse rate, scan rate, and side lap (minimum) spec-
ifications of the LiDAR system were 40 degrees, 99 kHz,
38 Hz, and 25%, respectively.We obtained the raw LiDAR
point-cloud data from the MnGeo web-portal (MnGeo
2015b) and processed them using FUSION software
(McGaughey 2014) to generate 30 grid metrics repre-
senting canopy cover, canopy density, and vegetation
height distribution at 30-m spatial resolution, following
Falkowski et al. (2010) andHudak et al. (2008). The target
area for spatiotemporal inventory of AGB was limited to
the aerial extent common to both the Landsat scene and
the region of the LiDAR acquisition (i.e., about 75% of
the Landsat scene, Figure 1).

National forest inventory data

The US Department of Agriculture (USDA) Forest Ser-
vice started the nationally consistent annual forest inven-
tory in Minnesota in 1999. The inventory design consists
of permanent plots distributed over 5 panels in the entire
state with an intensity of about 1 plot per 2,400 ha such
that 1 panel is measured in a year and all plots are revis-
ited on a 5-year cycle (Bechtold and Scott 2005). The plot
layout consists of a cluster of 4 subplots with 1 central
and 3 peripherals at 36.58-m (120-ft) horizontal distance
and 0°, 120°, and 240° azimuths from the central sub-
plot. Each subplot has a 7.32-m (24-ft) radius in which
all trees 12.7 cm and greater in diameter at breast height
(DBH) are measured for various dimensions, including
DBH and total height. The tree size measurements were
used in species-specific allometric models to obtain tree
AGB, which were then aggregated to obtain plot-level
estimates.

AGB data for the NFI plots measured in 2000 and
2007 to 2011 in the target area were obtained from the
Forest Inventory and Analysis program at the Northern
Research Station of the USDA Forest Service (Table 3).
The plot biomass estimates, scaled to megagrams per
hectare (Mg ha−1), were based on the nationally con-
sistent allometric models of Jenkins et al. (2003). These
models are no longer used directly in theNFI programbut
were used in an extant AGB map production, circa 2000,
for the National Biomass and Carbon Dataset (NBCD),
which was used to evaluate the accuracy of stand-level
AGB predictions in year 2000 based onmodels developed
in this study. NBCD provides a high-resolution (30 m)
spatially explicit map as a year-2000 baseline of AGB for
the conterminous United States. Woods Hole Research
Center1 produced the NBCDmap by integrating NFI plot
data with the high-resolution Interferometric Synthetic
Aperture Radar (InSAR) data acquired in the 2000 Shut-
tle Radar TopographicMission and spectral data of Land-
sat Enhanced Thematic Mapper Plus (ETM+) acquired
between 1999 and 2002 (Kellndorfer et al. 2013).

The NFI data from the recent inventory cycle (i.e.,
2007 to 2011) were used for model training and the year

 http://whrc.org/

http://whrc.org/
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Table . Fitted RF-kNNmodels for aboveground biomass in northeastern Minnesota, USA.

Models Predictors in the model† ‡Training data years No. of plots Values of k

TMfit  fitted Landsat metrics (Bandfit; DIfit; NBRfit; IFZfit; TCAfit;
NDVIfit)

 to   ; ; 

TMfit  fitted Landsat metrics (Bandfit; DIfit; NBRfit; IFZfit; TCAfit;
NDVIfit)

  ; ; 

TM.LiDARobs  observed LiDAR metrics (ElevMaxobs; CovAbmobs;
ElevAvobs) and Landsat Bandobs

  ; ; 

LiDARobs  observed LiDAR metrics (ElevMaxobs; ElevAvobs;
ElevAADobs; Stratumobs; Stratumobs)

  ; ; 

TMobs  observed Landsat metrics (Bandobs; DIobs; NBRobs;
IFZobs; TCAobs; NDVIobs)

 to , except   ; ; 

TMobs  observed Landsat metrics (Bandobs; DIobs; NBRobs;
IFZobs; TCAobs; NDVIobs)

  ; ; 

† ElevMax (elevationsmaximum), ElevAv (elevations average), CovAbm (canopy cover based on proportion of all returns above m), ElevAAD (elevations average
absolute deviation), Stratum  (proportion of aboveground returns below. m) and Stratum  (proportion of vegetation returns above  m and below  m) are
LiDAR-derived observed metrics.
‡ The plot-level predictors and AGB data in the model frame matched temporally.

2000 data were used for model validation. The distri-
bution of AGB per plot for the pooled dataset is given
in Table 3. Six different AGB models (Table 4) and cor-
responding maps were developed in 2011 because the
LiDAR data acquired in that year was expected to pro-
duce the strongest predictors for modeling. After evaluat-
ing the performance of only Landsat-dependent models
against LiDAR-dependent models in 2011, we extended
the most suitable Landsat-dependent model to produce
spatially explicit AGBmaps for the years 1990, 1995, 2000,
2005, 2010, and 2011 so that we would have a baseline
(1990) estimate and a product for comparison with the
reference NBCD (2000) map. We avoided production of
yearly maps to minimize the modeling time.

Modeling and evaluation approach

Because obtaining cloud-free Landsat imagery at nominal
intervals for the entire study area is unlikely, a pixel-level
polynomial (3rd-degree) curve fit tool (De Jager and
Fox 2013) was applied to each of the 6 time-series pre-
dictors obtained from the Landsat time-series data (i.e.,
17 images from 1986 to 2011, Table 1). The 3rd-degree
polynomial curve fitting was assumed to better represent
the temporal spectral trend than the 1st- and 2nd-degree
polynomials, following Lawrence and Ripple (1999). The
assumption was justified from a linear regression analysis
wherein we fit the 1st-, 2nd- and 3rd-order polynomials
to cluster means of each TCB band in the time series.
The time-series TCB bands were subject to unsupervised
clustering (via the Iso Cluster tool in ArcGIS) into 20
arbitrary classes, and polynomial models were fit to
each class with the cluster mean TCB as the response
and the cumulative number of growing seasons since
the first image date (1986) as the explanatory variables
(e.g., Lawrence and Ripple 1999). Of the 20 curve fits,
the majority (16) were found to favor the 3rd-degree

polynomial. This was determined via a stepwise (both
direction)model selection procedure based on theAkaike
information criterion (AIC), which we implemented in
the R statistical software (R Core Team 2015). We drew
a similar inference when average values of TCB in small
polygons (about 500 pixels) at 20 forested locations of
varying percent canopy cover were analyzed in the time
series via polynomial fit. Isoclustering of NDVI and Band
5 and its temporal fit also revealed superior performance
of the 3rd-degree polynomial. Because some studies have
also reported caveats to using a 2nd-degree polynomial,
we opted to apply the 3rd-degree. For example, De Gier
(2003) and Deo (2008) observed that in the scatter plot
of tree AGB against DBH, the 2nd-degree curve fits
extended below the x-axis at smaller tree diameters.

The rationale for this pixel-level curve fitting approach
was to obtain a wall-to-wall inventory for any target year
that did not have cloud-free satellite images. In addition,
the fitted curves have the potential to minimize noise
due to exogenous factors such as atmospheric influence.
The curve-fit tool produced pixel-level model coefficients
(as raster) that were used to obtain fitted predictors for
all years in the recent cycle of NFI measurements (i.e.,
2007–2011) and the other target years (i.e., 1990, 1995,
2000, and 2005). Thus, fitted predictors were obtained for
each of the 5 years in the period 2007–2011. However,
observed predictors were available for only 4 years in the
same period (2007–2011) because a cloud-free Landsat
image was not available in 2009. The fitted and observed
predictors from 2007 to 2011 were next intersected
with actual NFI plot locations of corresponding years to
associate plot AGB with the predictors (i.e., no temporal
mismatch). The spatial join was performed using ArcMap
10.2.2 We attached the mean spectral values from each 3
× 3 pixel window to the measured plot response because
the subplots in an NFI plot are distributed over nearly

 ESRI, Redlands, CA, USA, .
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a square block of nine 30-m by 30-m pixels. Hence, 2
training data frames, one with fitted and the other with
observed metrics as predictors, were developed to for-
mulate Landsat-dependent AGB models. Similarly, the
LiDAR metrics and both observed and fitted Landsat
predictors were attached to the AGB of NFI plots mea-
sured in 2011 to develop more training data frames for
building LiDAR-dependent AGB models. We analyzed 2
types of LiDAR-dependent models, 1 using only LiDAR
and the other using both LiDAR and Landsat variables
(Table 4). In the following analysis, efforts were focused
on identifying the most appropriate model for each of the
reference (training) frames (Table 4).

The initial step in the process of model building was
the identification and removal of multicollinear spatial
predictors, as conducted in Falkowski et al. (2009), using
a multivariate variable screening process based on QR-
matrix decomposition (Cížková andCížek 2012).Weused
a multicollinearity threshold value of 0.05 in this process,
following Evans and Murphy (2015). We further lever-
aged a Random Forest (RF)-basedmodel selection proce-
dure (Falkowski et al. 2010; Murphy et al. 2010) to select
an optimal RF model for predicting AGB for each refer-
ence frame (Figure 2). The RFmodel selection procedure3

uses a percentage increase in model mean square error
(MSE) to select a parsimonious RFmodel (fewest number
of variables that explain the highest amount of variation)
for predicting AGB.

The optimal models identified in the RF model selec-
tion procedure were then used in an RF-kNN imputa-
tion approach (Crookston and Finley 2008) to predict
AGB. The imputation focused on spatially explicit predic-
tion mapping of AGB based on the similarity of covari-
ates at target and reference plots (pixels) where covari-
ates were present at all target and reference points but the
response observations were made only at the reference
plots. Eighteen candidate models were evaluated; these
models depended on different combinations of Landsat-
and LiDAR-derived spatial predictors, number of obser-
vations used in the reference frame (i.e., plots within
years), and number of nearest neighbors (i.e., value of k)
considered for the imputation (Tables 4 and 5). We eval-
uated 3 values for k (k = 1, 3, and 5) in order to see
the effect on accuracy and precision of the models. The
models were first evaluated based on commonly used fit
statistics (Heiskanen 2006), including the amount of vari-
ance explained, bias, and RMSE. Then the 6 models cor-
responding to an optimal value of k were extended spa-
tially in 2011 (the only year for which LiDAR data were
available). The 6 maps produced in 2011 were examined
for accuracy, using the AGB data of 258 independent NFI

 Available in the rfUtilities R package (Evans and Murphy ).

plots measured in 2010. In addition, themap based on the
best LiDAR-dependent model was considered as a refer-
ence and the other 5 models were evaluated by compar-
ing the summaries of AGB predictions within 110 arbi-
trary polygons (∼10 ha to 133 ha); these polygons were
randomly shaped and sized and were obtained by digitiz-
ing forested areas on a false color composite of the Land-
sat image of 2011. The best-fit Landsat-based model was
next extended temporally to the years 1990, 1995, 2000,
2005, and 2010. Accuracy of the model prediction was
assessed in the year 2000 at the plot level by using the NFI
plot data of 2000, and at the stand-level by comparing the
aggregated pixel values of the 110 arbitrary polygons over
forested areas against the corresponding estimates based
on the NBCD map. The accuracy was assessed using the
statistical measures of bias (observed–predicted), relative
bias, RMSE, and relative RMSE as expressed byHeiskanen
(2006).

Results

Pixel-level curve fitting

Polynomial curve fitting to the time series of Landsat-
derived 6 observed metrics resulted in a better coeffi-
cient of determination (R2) (i.e., temporal consistency)
with band-5 that produced R2 values � 0.40 in almost
50% of the total pixels in the target area. The polynomial
fit to the observed time-series DI, IFZ, NBR, NDVI, and
TCAmetrics producedR2 values� 0.40 in 37.93%, 32.7%,
31.42%, 17.25% and 3.42% of the total pixels, respectively
(Table 6). The texture of fitted metrics visually matched
the corresponding observed metrics and false color com-
posites of the Landsat image from the same date. For
example, Figure 3 shows observed NDVI, fitted NDVI,
and a false color composite of the Landsat image acquired
on September 11, 2011.

Spatio-temporal inventorymodels

The multivariate variable screening for collinearity con-
siderations and the RF-based model selection procedures
revealed that all 6 Landsat-derived variables were impor-
tant in those models dependent only on Landsat vari-
ables (i.e., all 6 Landsat predictors were selected). Figure 2
reveals theRF-based importance ranking of the predictors
(Murphy et al. 2010) in themodels corresponding to the 6
training data frames based only on Landsat variables and
both LiDAR and Landsat variables combined (Table 4).
In the combined Landsat and LiDAR-dependent model
(TM.LiDARobs1), only 4 metrics, consisting of 3 LiDAR
variables and Landsat Band 5 surface reflectance, were
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Figure . Random forest-derived importance ranking of the predictors used in the individualmodels. The rankingdisplays themost impor-
tant variable at the top and the least important at the bottom for each model. Criterion for the ranking of variables was the percentage
increase in model’s mean square error when individual predictors are sequentially dropped and substituted with random numbers.

found to be useful for predicting AGB. The LiDAR met-
rics selected in the TM.LiDARobs1 model included aver-
age elevation (ElevAv) of pulse returns, maximum eleva-
tion (ElevMax), and cover estimate based on percentage
of all returns above 2m (CovAb2m). The LiDAR variables
were the most influential in improving the model accu-
racy, compared to the Band 5 surface reflectance or other
metrics derived from Landsat data. The model depen-
dent only on LiDAR metrics (i.e., LiDARobs1 model, with
no Landsat variables) selected 5 metrics, and the model
produced accuracies close to but lower than those of
the TM.LiDARobs1 model. Proportion of LiDAR returns
below 1.5-m vertical height (Stratum1) and in the height

interval from 10 m to 20 m (Stratum 5), average abso-
lute deviations of elevations of the returns (ElevAAD),
and the variables ElevMax and ElevAv were selected in
the LiDARobs1 model (Table 4; Figure 2). The impor-
tance rankings of predictors were found to remain sim-
ilar across the 3 k values (1, 3, and 5) in all the models. In
the models dependent only on Landsat variables, Band 5
surface reflectance and DI consistently performed better
than the other metrics of observed or fitted types.

The amount of variance explained and the other fit
statistics (bias, relative bias, RMSE, and relative RMSE)
for a model with a given training data frame were also
found to be relatively stablewith the 3 values of k (Table 5).
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Table . Aboveground biomass models and its fit statistics for the various reference frames.

Model† Value of k % variance explained Bias (Mg ha−) RMSE (Mg ha−) Relative bias % Relative RMSE %

TMfit  . . . . .
TMfit  . . . . .
TM.LiDARobs  . . . . .
LiDARobs  . . . . .
TMobs  . . . . .
TMobs  . − . . − . .
TMfit  . . . . .
TMfit  . . . . .
TM.LiDARobs  62.86 0.40 27.20 0.48 34.76
LiDARobs  . . . . .
TMobs  . . . . .
TMobs  . − . . − . .
TMfit  . . . . .
TMfit  . . . . .
TM.LiDARobs  . . . . .
LiDARobs  . . . . .
TMobs  . . . . .
TMobs  . − . . − . .

† The numbers , , and  in the subscripts inform that the models included NFI plot data and corresponding spatial predictors from , , and  inventory years,
respectively.

However, the TM.LiDARobs1 model explained the highest
amount of variance followed by the LiDARobs1model. The
models dependent only on Landsat variables explained
less than half of the total amount of variance explained
by the LiDAR-dependent models (Table 5). A compar-
ison of the imputed versus observed plot-level AGB by
these models at k = 1 is shown in Figure 4. All the
models produced positive bias (Table 5), except for the
observed Landsat predictor-basedmodel with fewer plots
(TMobs1), suggesting that the models led to under predic-
tion of AGB. An assumption that the LiDAR-based mod-
els would be the most accurate is supported by the closer
alignments of the 1:1 line with the linear fits between NFI
plot observations in 2010 and the model predictions for
the plots in 2011 (Figure 5, right). Pearson’s correlation
analysis of AGB observations at the NFI plots against pre-
dictions by the TM.LiDARobs1 and LiDARobs1 models at
the same locations produced coefficients (r) of 0.7267 and
0.7086, respectively (Table 7a).

Although there was minimal difference in the values
of model-fit statistics across the 3 levels of k, a value
of k = 3 appeared to be optimal because it explained a
larger amount of variance in 5 of the 6 models evalu-
ated. The TMfit5 model explained the largest amount of

variance after the 2 LiDAR-dependent models (Table 5);
thus, the TMfit5 model was used to produce spatially
explicit maps of AGB for the entire study area in the years
1990, 1995, 2000, 2005, 2010, and 2011. The 2 LiDAR-
based models provided similar predictions to each other,
and predictions by TM.LiDARobs1 model were closest to
the 1:1 line (Figure 5). The plot-level predictions of the
LiDAR-dependent models were closer to the predictions
of observed Landsat-based models (TMobs) than were
the predictions of fitted Landsat-based models (TMfit)
(Table 7a). Similar trends were visible in the polygon-
level total estimates of biomass by the models applied
in 2011 (Figure 6; Table 8a). In terms of relative bias
and RMSE of models dependent only on Landsat, the
observed Landsat-basedmodels performed better for plot
(pixel)-level predictions (Table 7a) and fitted Landsat-
based models performed better for the stand (polygon)-
level predictions (Table 8a).

Plot-level validation of AGB predictions by the NBCD
and TMfit5 models in 2000 using the NFI field observa-
tions for the same year revealed that the NBCD estimates
provided better correlation than the estimates provided
by the TMfit5 model (Figure 5; Table 7b). However, there
was a very high correlation (r = 0.9463) between the

Table . Total number of pixels in the target area grouped into  classes based on pixel-level R values of the polynomial curve fits to the
time-series of individual metrics.

Proportion of pixels (total: ,,) in the classes of percentage R

Metrics % – % % – % % – % % – % % – %

Band  . . . . .
DI . . . . .
IFZ . . . . .
NBR . . . . .
NDVI . . . . .
TCA . . . . .
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Figure . An image window (width , m; height , m) of Landsat TM data acquired on  September,  over St. Louis county
(Minnesota, U.S.A.) within the area of interest, displayed as a false color composite (TM bands ,  and  represented as red, green and blue
bands, respectively) to the left, observed NDVI in the middle and fitted NDVI (based on the polynomial fit) to the right. The red or pink
tones are open canopy areas, black spots in the left panel are water bodies, and green areas are vegetation.

polygon-level estimates provided by the NBCD and
TMfit5 models (Table 8b). An important result to notice
from the plot-level validations is that NBCD estimates
had a correlation coefficient of 0.6323 with the NFI
field measurements of 2000, whereas estimates from the
TM.LiDARobs1 model had a correlation coefficient of
0.7267 with the NFI field measurements of 2010. This
implies that the LiDAR-based model was better than the
NBCDmodel that used Radar-derived predictors. There-
fore, the TM.LiDARobs1 model was used as a reference to

evaluate polygon-level estimates of the other models in
2011 (Figure 6).

The spatially explicit mapping of AGB for the tar-
get years, based on the TMfit5 model, revealed biomass
dynamics in the study area at 5-year intervals since 1990
(Table 9). The TMfit5 model provided an estimate of
137.85 ± 0.04 Tg in 2000 compared to 143.83 ± 0.03 Tg
obtained from the NBCD 2000map of the area. The same
model produced 136.51 ± 0.04 Tg in 2011 compared to
the 138.17 ± 0.04 Tg obtained from the TM.LiDARobs1

Table a Accuracy of the plot (pixel)-level aboveground biomass prediction estimates in  for the  fitted models (at k = ) validated
with national forest inventory plot data measured in .

Plot-level validation with NFI data in  (n=  plots)

Model r † Bias (Mg ha−) RMSE (Mg ha−) Relative bias % Relative RMSE %

TMfit . . . . .
TMfit . . . . .
TM.LiDARobs . . . . .
LiDARobs . . . . .
TMobs . − . . − . .
TMobs . − . . − . .

† Pearson’s product-moment correlation.
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Figure . Plot-level imputed versus observed aboveground biomass (Mg ha−) by the six RF-kNNmodels (at k= ) dependent either only
on Landsat or both LiDAR and Landsat predictors in observed and fitted versions. These models predict aboveground biomass at a target
plot from a nearest neighbor in the reference data frame and provide accuracy measures through internal cross-validation. The training
sample size (n) of themodels TM. LiDARobs, LiDARobs, TMobs, and TMfit are small compared to TMfit and TMobs because the formers used
inventory data of a single NFI panel (measurement year ) while TMfit and TMobs used data from five (-) and four (, ,
 and ) NFI panels, respectively. The inclined black lines are : lines.

model. The 1990 baseline estimate was found to be 142.79
± 0.04 Tg for the area. A difference map of AGB predic-
tions in 1990 and 2010 displayed a logical pattern with
biomass losses in southwestern and some northern parts
of the study area where there were higher human influ-
ences (Figure 7). Approximately 30% of the target area
incurred � 10 Mg ha−1 AGB loss and 34% area had � 10
Mg ha−1 AGB gain, whereas in about 35% of the area the
change remained within ± 10 Mg ha−1 over the 20-year
period from 1990 to 2010.

Discussion

Although the historic use of remote sensing tools within
the US NGHGI have mostly emphasized designation of
forest/nonforest areas and poststratification for popula-
tion estimates, the research presented herein highlights
the efficacy of using Landsat time-series and LiDAR to
inform and refine forest biomass baselines. Pixel-level
model (polynomial) fitting to the dense temporal Land-
sat data can enhance AGB prediction accuracy to baseline
years because the noise (due to factors such as sun angle,
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Figure . The cross validation of observed versus predicted NFI plot-level aboveground biomass in  (left) and  (right). The valida-
tion in the right is based on the field measurements of  and predictions obtained for . The dark inclined lines are the : lines and
the color bands are the % confidence intervals for the linear fits. The models were based on k= .

Figure . The cross validation of observed versus predictedpolygon (stand)-level total abovegroundbiomass in  (left) and  (right).
The validation in the left is based on the comparison of TMfit model against the NBCD map of , while validation in the right is based
on the comparison of TM.LiDARobs model (i.e., using observed metrics of both Landsat and LiDAR) against all other models developed in
. The dark inclined lines are the : lines and the color bands are the % confidence intervals for the linear fits. Themodels were based
on k= .

Table b. Accuracy of the plot (pixel)-level aboveground biomass predictions in  by the TMfit model (at k= ) validatedwith national
forest inventory plot data of the same year.

Plot-level validation with NFI data in  (n= )

Model r Bias (Mg ha−) RMSE (Mg ha−) Relative bias % Relative RMSE %

TMfit . . . . .
NBCD . − . . − . .
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Figure . Projected aboveground biomass maps based on the TMfit model for the study area (north-eastern Minnesota, U.S.A.) in 
(top-left),  (top-right) and  (bottom-left), and the difference of AGB predictions in  and  (bottom-right).
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Table a. Accuracy of polygon (stand)-level aboveground biomass prediction estimates in  by the  fitted models (at k= ) validated
with the combined Landsat and LiDAR-based model (TM.LiDARobs) estimates in the same year.

Polygon-level validation with the TM.LiDARobs model based estimates in  (n=  polygons)

Model r Bias (Mg ha−) RMSE (Mg ha−) Relative bias % Relative RMSE %

TMfit . . . . .
TMfit . . . . .
LiDARobs . . . . .
TMobs . − . . − . .
TMobs . − . . − . .

Table b. Accuracy of the polygon (stand)-level prediction estimates in  by the TMfit model (at k= ) validatedwith the NBCDmodel
estimates in the same year.

Polygon-level validation with NBCDmodel estimate in  (n=  polygons)

Model r Bias (Mg ha−) RMSE (Mg ha−) Relative bias % Relative RMSE %

TMfit . . . . .

Table  Total aboveground biomass in the study area (northeastern Minnesota, USA) for the baseline and other target years.

Year Total †AGB (Tg)
Confidence interval of total

AGB (Tg)
Standard deviation of pixel-level distribution in

the maps (Mg ha−)
Mean of pixel-level distribution in the maps (Mg

ha−)

 . ± . . .
 . ± . . .
 . ± . . .
 . ± . . .
 . ± . . .
 . ± . . .

†  Teragram (Tg)=  metric tons.

phenology, atmosphere, and sensor degradation) of pre-
dictor metrics are rectified in the process. In contrast to
a single-date image snapshot, the temporal model fitting
captures abrupt spectral changes in forested pixels (e.g.,
due to harvesting or fire) as well as slow regrowth pro-
cesses following disturbance. This approach allows amore
consistent trend analysis of forest biomass stocks after
accounting for disturbances and regrowth while rectify-
ing the inconsistencies in biomass and carbon accounting
that result from changes in forest inventory protocols over
time. In future NGHGIs, the approaches outlined here
may inform forest biomass predictions in areas with few
field observations from NFIs (e.g., interior Alaska in the
U.S.A.).

The top-down approach of integrating remote sensing
data with a sparse network of field-sample-plot data for
large scale biomass mapping has shown varying degrees
of success in published studies (Hall et al. 2006; Zheng
et al. 2004). The accuracy in previous studies is found
to be dependent on the quality of remote sensing (e.g.,
resolution and sensitivity to forest structure) and field
data, as well as the choice of models and statistical indi-
cators (Hayashi et al. 2015; Powell et al. 2010). Although
Landsat-based models are traditionally formulated by
using band reflectance and derived vegetation indices
(Cohen and Goward 2004), selection of model type and

predictors vary among studies and there is no general-
ized approach equally applicable across a range of forest
conditions (Lu 2006). For example, Hall et al. (2006)
used Landsat ETM+ visible and SWIR bands to model
AGB. Jakubauskas (1996) and Lymburner et al. (2000)
found that Landsat SWIR bands explained the most vari-
ation in forest structure. Jakubauskas and Prince (1997)
observed statistically significant relationships for biomass
dependent on Landsat Band 7 (i.e., midinfrared, R2 =
0.58) and NDVI (R2 = 0.59) for lodgepole pine forests in
Yellowstone Park. Steininger (2000) found that Landsat
Band 5 (i.e., SWIR) was the most important for modeling
stand basal area and biomass in Brazil. Labrecque et al.
(2006) found that Landsat Band 5 and tasseled cap indices
resulted in maximum correlation to AGB compared to
others indices such as NDVI, NBR, and band ratios.
Foody et al. (2003) found that models with individual
Landsat bands generally explained more variation in
tropical forest biomass compared to derived vegetation
indices. However, using derived spectral indices and bio-
physical variables in addition to untransformed Landsat
band reflectances have improved biomass predictions in
some studies (Powell et al. 2010; Hall et al. 2006). Our
finding that Band 5 was the most influential predictor
(Figure 2) in the Landsat-based models confirms this.
This is not surprising, because empirical relationships
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of remote sensing and forest biomass rely on the choice
of model type, the forest type under study, and available
variables for parameterization in addition to the effects
of exogenous factors not related to any inherent rela-
tionship between spectral response and AGB. Some of
the reported indices can also be obtained from Landsat
MSS data, which has been available since 1972, and it is
worth considering those metrics in future analyses when
projecting AGB baselines beyond 1990 and after 1972.

In RF-kNN modeling, different values of k have been
applied in different studies and are assumed to vary with
sample size (Finley and McRoberts 2008; Franco-Lopez
et al. 2001). For example, Falkowski et al. (2010) and Lat-
ifi et al. (2010) used k = 1 to predict different inventory
attributes. Labrecque et al. (2006) used 5 neighbors (k
= 5) in a k-NN imputation of biomass at pixel-level and
found accuracies similar to a multiple linear regression
approach. Powell et al. (2010) used a single neighbor
in an imputation model (i.e., RF-based) for biomass
and observed better performance with respect to other
methods (e.g., reduced major axis regression). Tuominen
and Pekkarinen (2005) tested 3 to 5 neighbors in the
imputation of standing volume and found that k = 5
yielded the best estimation accuracy. Vauhkonen et al.
(2010) proposed 2 to 4 neighbors, based on their results.
Although some published works show that the estimation
accuracy improves with increasing value of k (Tokola
et al. 1996), higher values of k result in more smoothing
of predictions. That said, a lower value of k is preferable in
order to retain the variance structure of predictions closer
to observations. The least amount of model bias and error
in our analysis with k = 3 is in line with previous studies
and supports a general guideline that a k value of 3 to 5
can be applied in the geospatial modeling of biomass.

The Landsat-based prediction estimates of plot-level
AGB are satisfactory compared to published studies. We
found RMSE in the range of 51.52 to 56.23 Mg ha−1 for
the TMfit5 model (at k = 3) when validated with the NFI
plot observations in the years 2000 and 2010 (Tables 7a
and 7b). Powell et al. (2010) obtained an RMSE of 39.23
Mg ha−1 for the same area in Minnesota, however, there
was no temporal difference in the training and valida-
tion datasets and also no fitting of predictors. Hall et al.
(2006) reported RMSE of 33.7 Mg ha−1–52.7 Mg ha−1

in Alberta, Canada, for different model forms depen-
dent on Landsat ETM+ bands (3, 4, 5, and 7). Similarly,
using raw Landsat bands and derived vegetation indices,
Labrecque et al. (2006) obtained RMSE of 37 Mg ha−1–
85 Mg ha−1 with different model types in Newfound-
land, Canada. In Wisconsin, using spectral bands (near-
infrared and midinfrared) and vegetation indices, Zheng
et al. (2004) found an RMSE of 54 Mg ha−1. Huang et al.

(2015) reported anRMSE of 58.2Mg ha−1 when they vali-
dated their regional scalemodel inMaryland (also using a
RF algorithm) based on LiDAR and high-resolution opti-
cal imagery. When they evaluated the NBCD product (at
30-m resolution) with NFI plot data in Maryland, they
obtained an RMSE of 125.1 Mg ha−1.

If we compare the plot-level bias and RMSE of the pre-
dictions by the TMfit5 model against the TMobs4 model,
the latter have slightly lower error (Table 7a). But polygon-
level predictions with the same models show similar bias
and lower RMSE from the TMfit5 model (Table 8a). The
marginally higher bias in plot (pixel)-level predictions
with the TMfit5 model may be attributed to projection
effects (i.e., alternations of observed Landsat signals in the
metrics due to the polynomial fitting). It is important to
note that all regional or national studies based only on
Landsat data have reported issues with data saturation at
high biomass levels. The positive biases in all model fits,
except for the observed Landsat-based (TMobs1) model,
and in their pixel and polygon-level predictions indicate
that the models produce underestimation particularly in
high biomass areas, which is in concert with other find-
ings such as Huang et al. (2015), Latifi et al. (2010), and
Powell et al. (2014). The strength of our back-projection
model (i.e., TMfit5) is defensible because polygon-level
predictions in 2000 have a high correlation with the
NBCD estimates in the same year. Similarly, the predic-
tions in 2011 have high correlations with TM.LiDARobs1
model-based estimates. Because the plot-level validations
of NBCD and TM.LiDARobs1 models favor the latter (for-
mer has r = 0.6323, and the latter has r = 0.7267) and
all the models in this study were developed using the RF
algorithms, it is reasonable to conclude that the back-
projection model is robust.

Although the model using both LiDAR and Landsat
predictors explainedmore than 62% of the variance in the
year of LiDAR acquisition, the model’s strength may have
degraded due to the extended period of LiDAR acquisi-
tion over 3 to 4 weeks in May with both leaf-off and leaf-
on conditions. Although LiDAR underestimates canopy
height in leaf-off conditions (due to fewer interceptions of
pulses by canopy elements), and Landsat bands are subject
to different reflectance properties (e.g.,midinfrared bands
are absorbed by leaf-water) in leaf-on and leaf-off seasons,
the 2 types of remotely sensed data are likely to provide
different structural information on forest attributes in the
2 different conditions. One fundamental reason is that the
Landsat sensor can see only the extent of tree canopy (e.g.,
not DBH) and the cover estimate in leaf-off periods would
bemuch less, compared to leaf-on periods.We can expect
improvedmodel accuracy when LiDAR data acquired at a
time with uniform canopy conditions are integrated with
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temporally matching Landsat data. The higher accuracy
of the TM.LiDARobs1 model can be explained by the fact
that Landsat data provide better estimates of canopy cover
and LiDAR data provide accurate information on canopy
height.

Forest canopy cover is one of the commonly used pre-
dictors in biomass modeling (Koch 2010). Pflugmacher
et al. (2014) found LiDAR-derived mean canopy height
and cover to be influential predictors that explained a
large amount of variance (about 87%) in measured live
tree biomass. Deo et al. (2016) and Takagi et al. (2015)
also observed that LiDAR-derived mean canopy height
explained a large amount of variance in plotAGB (>70%).
The LiDAR metrics selected in our study were similar
to these and other published works. However, it is com-
monly agreed that the predictive power of LiDARmetrics
is affected by a number of factors such as sensor charac-
teristics, season of acquisition, terrain form, forest types,
crown composition, and data postprocessing steps.Model
selection for a large area that includes different ecologi-
cal sites is also challenging when training datasets do not
sufficiently capture the variability in forest structures. The
predictor variables found suitable in this study may or
may not be appropriate in other areas.

Conclusions

The time-series Landsat data and the regional LiDAR
dataset for the study area provided an excellent oppor-
tunity to evaluate the utility of optical remote sensing in
characterizing aboveground forest biomass dynamics to
inform spatially explicit baselines in the past when NFI
data are limited. This work presents a realistic and con-
sistent approach to support the US NGHGI and inform
the 1990-baseline of AGB (or carbon stocks) and peri-
odic stock changes thereafter per UNFCCC reporting
requirements. The Landsat-based spatiotemporal model
provided large-area AGB prediction accuracies compara-
ble to an extantmodel (i.e., NBCD). Themodel using both
LiDAR and Landsat-derived metrics was better for pre-
dicting AGB in the year of LiDAR acquisition than the
model dependent only on LiDAR metrics. The number
of explained variances and RMSEs of the TM.LIDARobs1,
LiDARobs1, and TMfit5 models were 62.86%, 60.66%, and
26.03%, and 27.20Mg ha−1, 31.39Mg ha−1, and 47.64Mg
ha−1, respectively (at k = 3). For polygon or stand-level
estimation, the model dependent on fitted Landsat met-
rics performed better than the model based on observed
metrics of the Landsat data. Hence, fitted Landsat metrics
can be used in AGB modeling and mapping because the
model improved accuracy for large-area estimation and
further overcomes the challenge of obtaining cloud-free
satellite images for a past target year. Because the observed

LiDARmetrics compared to Landsat metrics significantly
improved model accuracy in the year of LiDAR acquisi-
tion, further research is warranted to explore the poten-
tial of integrating high-quality LiDAR datasets (e.g., high
point density) in back-projection modeling of AGB.
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