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Abstract Recent emphasis on increasing structural complexity and species diversity

reflective of natural ecosystems through the use of retention harvesting approaches is

coinciding with increased demand for forest-derived bioenergy feedstocks, largely sourced

through the removal of harvest residues associated with whole-tree harvest. Uncertainties

about the consequences of such approaches prompted us to examine the combined impacts

of aggregated overstory retention and harvest residue retention on the composition and

density of regeneration following biomass harvests on four operational-scale (40 ha) study

areas dominated by Populus tremuloides Michx. in northern Minnesota. Whole-tree har-

vest had no statistically significant effects on initial (2-year) regeneration densities,

including root suckers, sprouts, and seedlings relative to conventional, stem-only harvest.

The density of shrub stems was also unaffected by harvest residue retention. Despite

having a lower mean leaf area index than intact forest controls, aggregates maintained

comparable densities of the four most common tree species, individually, as well as all tree

species combined. The composition of regeneration within aggregates differed from sur-

rounding harvested areas as expected, but this increase in complexity at the stand scale was

achieved without diminishing P. tremuloides densities in the edge area (0–5 m) sur-

rounding aggregates 2 years after harvest. These initial findings suggest even small

aggregates of overstory reserves may achieve basic objectives related to structural com-

plexity and sustaining shade-tolerant tree species in harvested units without compromising

regeneration objectives for less tolerant species.
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Introduction

In recent decades, a paradigm shift in forest management has led to greater emphasis on

practices that restore and sustain structural complexity and compositional diversity. This

serves to both maintain ecosystem services under current conditions, as well as to better

ensure ecosystem resilience given uncertainty about future disturbance regimes and cli-

mate (Franklin et al. 1997, 2007; Lindenmayer et al. 2012). Retention of mature trees

during harvest is one method for sustaining structural complexity in managed forests by

creating conditions that reflect, to varying degrees, the structural outcomes of natural

disturbance (Franklin et al. 2007). Such practices are particularly important in areas like

the Lake States region of the United States and Canada where traditional even-aged forest

management has simplified forest structure and altered forest species composition,

specifically increasing the abundance of Populus tremuloides-dominated forests across the

landscape (Mladenoff and Pastor 1993; Franklin et al. 2007; Guay-Picard et al. 2015).

Aggregated retention of mature trees has been promoted because of its potential value for

‘lifeboating’ interior forest species in areas managed with clearcutting systems (Franklin

et al. 1997), so that surrounding areas can be recolonized (Tabor et al. 2007; Baker et al.

2013). Aggregates also influence surrounding disturbed areas by altering the adjacent

microclimate, providing habitat for both flora and fauna, supplying seed, and enriching fine

and coarse woody debris pools, key components for maintaining forest structural com-

plexity and species diversity (Bradshaw 1992; Baker et al. 2013).

While ecological benefits of retention trees have been demonstrated for multiple

ecosystems (Aubrey et al. 2009; Baker et al. 2013; Fedrowitz et al. 2014; Palik et al. 2014),

important tradeoffs may exist in the growth of developing regeneration due to the influence

of retained trees on resource availability (Bradshaw 1992; Mitchell et al. 2007; Bose et al.

2014b). For example, application of retention forestry methods (c.f. Lindenmayer et al.

2012) can reduce the abundance of species reliant on early-successional, post-disturbance

conditions relative to clearcuts as has been observed across both boreal and temperate

ecosystems globally (Fedrowitz et al. 2014). Understanding potential trade-offs for

regeneration of early successional tree species may be particularly important in forests

dominated by clonal species, such as P. tremuloides, where retained mature trees create a

hormonal environment that may impede (above resource limitations alone) root suckering

(Frey et al. 2003; Brais et al. 2004; Gradowski et al. 2010).

The retention of woody debris following harvests is also recognized as an important

component of prescriptions aimed at achieving complexity-based objectives because of

influences on the microenvironment, stored nutrients, and habitat provision for a wide

variety of species (Harmon 2001). One source of woody debris, harvest residues, is

increasingly viewed as a source for bioenergy feedstocks (Duchesne and Wetzel 2003;

Berger et al. 2013; Börjesson et al. 2017). In ecosystems dominated by trees relying

primarily on vegetative reproduction where nutrients are not limiting, the removal of

residues may provide at least initial benefit to tree regeneration by improving microsite

conditions for root sucker growth (Bella 1986; Fraser et al. 2002; Palik and Kastendick

2009; Curzon et al. 2014). On the other hand, many studies indicate negative effects on
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nutrient availability and tree growth (Walmseley et al. 2009; Helmisaari et al. 2011; Wall

2012), and any initial reductions in stocking or growth caused by post-harvest declines in

nutrient availability may persist even if site productivity recovers over time (Egnell 2011).

Guidelines specific to ‘biomass harvests’ are being developed globally in response to

higher demand for bioenergy feedstocks with the potential for utilization of harvest resi-

dues to reduce post-harvest woody debris (Stupak et al. 2007; Evans et al. 2010). These

guidelines generally include recommendations for minimum levels of overstory tree and

harvest residue retention (e.g. MFRC 2007; Herrick et al. 2007; MI DNRE 2010) based on

the best scientific data available, but in many cases those data have been limited (Janowiak

and Webster 2010; Berger et al. 2013). How these legacies, or a lack thereof, influence

regeneration and other processes across forest ecosystems is not fully understood (Berger

et al. 2013).

We investigated how patches of aggregated retention of mature trees (‘‘aggregates’’) in

P. tremuloides-dominated forests, implemented following guidelines for the state of

Minnesota, USA, influenced species composition and stem densities in the understory of

aggregates, surrounding harvested areas (c.f. Bradshaw 1992; Baker et al. 2013), and intact

forest controls. Response to aggregated retention was examined in combination with dif-

ferent levels of harvest residue (slash) retention associated with the procurement of

bioenergy feedstocks. We hypothesized that aggregates would support similar tree species

in the understory as intact forest, but that changes to the light environment would increase

overall stem densities. We also expected P. tremuloides, a shade-intolerant species that

produces prolific root suckers after harvest (Frey et al. 2003; Guay-Picard et al. 2015), to

dominate regeneration in harvested areas, but with lower densities near aggregates (within

5 m) compared to open plots at least 20 m from aggregate edges because of shading and

maintenance of apical dominance by retained P. tremuloides stems (Frey et al. 2003).

Lastly, we expected reduced P. tremuloides densities with greater retention of harvest

residues due to potential for woody debris to lower soil temperatures and to physically

inhibit P. tremuloides suckering (Bella 1986; Fraser et al. 2002).

Methods

Study sites

This study included four sites in northern Minnesota, USA: Independence (IN; 47.01N,

92.59W), Melrude (MR; 47.25N, 92.32W), Pelican Lake (PL; 48.01N, 92.98W), and Lost

River (LR; 48.14N, 92.97W). Forests at each site were classified as northern wet-mesic

boreal hardwood-conifer forests (MHn44) using the Minnesota Department of Natural

Resources ecological classification system (MNDNR 2003). P. tremuloides dominated at

all locations, having regenerated following clearcut harvests in the 1940s and 1950s (stand

age at time of harvest in 2010 was 55–68 years; Kurth et al. 2014). Site index for P.

tremuloides ranged from 22 to 24 m at 50 years across the sites (Klockow et al. 2013).

Other important species included Fraxinus nigra Marsh. (black ash), Acer rubrum L. (red

maple), Abies balsamea L. (balsam fir), and Betula papyrifera Marshall (paper birch) with

minor components of Pinus strobus L. (eastern white pine), Picea glauca Moench. (white

spruce), A. saccharum Marsh. (sugar maple), and Tilia americana L. (American bass-

wood). Common understory shrub species included Corylus cornuta Marsh. (beaked

hazelnut) and A. spicatum Lam. (mountain maple). The four sites ranged in elevation
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between 395 and 428 m above sea level with slopes less than 8%. At IN soils were

predominantly Inceptisols, belonging to the Brimson soil series and with a fine sandy loam

texture. Otherwise, soils belonged to the Alfisol order, ranging in texture from loam-silty

clay (PL and LR, Ashlake, Effie, and Suomi soil series) to silt loam (MR, Dusler and

Ellsburg soil series; Slesak 2013). Mean annual precipitation of the study region encom-

passing the sites is approximately 66 cm. Each stand (nine harvested and one unharvested

control) was 4 ha in size. This meant each sale included at least 36 ha (90 acres) of forest,

an area greater than the average (13.7 ha) and within the range (1.2–61.9 ha) reported for

harvested sites monitored by the Minnesota Forest Resources Council in 2011 (Rossman

2012), ensuring the experiment was operational in scale. Each site was harvested in

February, 2010 on frozen soil conditions and over snowpack (Klockow et al. 2013) using a

tracked feller-buncher and grapple skidder. Harvest residues were redistributed across

stands following harvest except where treatments called for removal (‘‘Experimental

design’’ section, see below).

Experimental design

We examined the combined impacts of aggregated overstory retention and harvest residue

retention on stem densities (vegetative, seedling, and advance regeneration) in the

understory by examining the effects of three harvest treatments replicated at four sites:

unharvested controls, stem-only harvest (SOH), and whole-tree harvest (WTH). SOH

entailed removal of merchantable boles with all other woody materials retained on site,

whereas WTH removed entire trees with no intentional retention of residues. Within stands

(4 ha) receiving the SOH and WTH treatments, two patches (‘‘aggregates’’) of mature

overstory trees were retained per site-level guidelines for Minnesota that recommend 5%

of canopy trees (determined by area) be reserved in aggregates C0.1 ha in size (MFRC

2007). Aggregates in this study were approximately 0.1 ha in size, meeting the minimum

suggested by voluntary guidelines. Foresters marked the experimental treatments selecting

trees and aggregates for retention using the same criteria (i.e. containing desirable species

for regeneration such as P. strobus, located surrounding ephemeral ponds, etc.) that

characterize operational harvests.

Field sampling

Transects, used to locate vegetation sampling plots in each treatment unit, were oriented

north–south and centered on one randomly selected aggregate within each harvested stand

and in the center of control stands (Fig. 1). The north and south portions of each transect

were treated as replicates within each stand, thus 16 transects were analyzed. Paired t-tests

were used to confirm no differences in any of the response variables between the two

aspects (p[ 0.1 in all cases). Rectangular plots (1 9 3 m) were placed to capture interior

aggregate conditions (2 m from center), aggregate edge conditions (7 m from center),

harvest edge conditions (22 m from center), and open conditions approximately one tree

height in distance from aggregates (42 m from center, Fig. 1). None of the plots were

directly impacted by skid trails.

Within each plot, all shrub and tree stems\2.5 cm diameter at breast height (1.37 m)

were identified to species and counted during the 2011 and 2012 growing seasons,

respectively. A smaller diameter size threshold would have excluded some fast-growing P.

tremuloides suckers. Volume of downed coarse woody debris (CWD) and fine woody
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debris (FWD) was estimated using the line-intercept method (Brown 1974). Where CWD

intersected a transect dividing each rectangular plot, diameter at the point of intersection

(if[ 7.5 cm) was recorded. In a similar fashion, FWD (7.5 cm[ diameter[ 0.5 cm) was

tallied and measured in three randomly selected 0.4 m subsections of each woody debris

transect.

Soil moisture was measured at the corner of each plot closest to the aggregate center

using a TDR probe (ML2x ThetaProbe Soil Moisture Sensor; Dynamax, Houston, TX;

Fig. 1). Three moisture readings were collected around each point (within 30 cm) and

averaged. All soil moisture measurements were recorded at least 48 h after rainfall on

one of two consecutive days in mid-August, 2012 so only late season moisture is

represented. Leaf area index (LAI), a dimensionless index approximating the ratio of

foliage area to ground area, was estimated with FV2200 (Li-COR Biosciences, Inc.

2010) using light readings collected with a Licor LAI-2000 Plant Canopy Analyzer

(LiCor, Inc., Lincoln Nebraska) during late July and August, also at the point where

each plot intersected the transect (Fig. 1). If understory shrubs obscured readings taken

at 1.0 m above the ground, an additional reading was taken at a higher level to better

capture overstory conditions and prevent overestimation of LAI. Readings were col-

lected under consistent sky conditions. This was accomplished by sampling plots once

at dawn or dusk or by combining two readings collected for each plot on a clear day in

the morning and in the afternoon with the unit facing east or west, respectively, and

using a 180� view restrictor to block the sun (Comeau et al. 2006). Calculation of LAI

required ‘‘above-canopy’’ readings of light interceptance sampled at the same time as

understory readings. These were collected every 15 s using a second unit stationed in a

nearby clearing.

Fig. 1 Sampling design.
Transects like that pictured were
placed so that they extended
north and south from the center
of retained overstory aggregates
in harvested stands. Identical
transects were also established in
the center of control stands
(intact forest). Asterisks indicate
where LAI and soil moisture
were sampled for each plot
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Analysis of treatment effects

We estimated aggregate influence on tree and shrub densities and environmental variables

using the following equation adapted from methods for assessing magnitude of edge

influence (MEI; Harper et al. 2005):

MEI ¼ e�rð Þ= eþ rð Þ ð1Þ

where e represents the mean responses for plots located at some location relative to

aggregate center and r represents the mean of observations from a reference condition

located in interior forest (Fig. 1). This approach yields values that range between -1

and 1 with a value of 0 indicating no influence and allows for comparison of response

variables within this study as well as to other studies (Harper et al. 2005). Reference

values were quantified by averaging observations from intact forest controls located at

the same site (Fig. 1; Harper and Macdonald 2011). We then tested the null hypothesis

that aggregates had no influence (MEI = 0) using the randomized test of edge influence

(RTEI) approach (Harper and Macdonald 2011; i.e. Dodonov et al. 2013; Dupuch and

Fortin 2013), a method demonstrated to produce consistent estimates, even with vari-

ability in reference conditions (Harper and Macdonald 2011). This entailed comparing

observed MEI to 95% confidence intervals derived from a distribution of randomized

MEI values for each response variable at each distance, individually (i.e. Harper et al.

2015; Dupuch and Fortin 2013). The randomized distributions were generated using

blocking for each site with 5000 permutations as described by Harper and Macdonald

(2011).

We tested whether treatment effects on tree and shrub densities and environmental

variables differed from one another using mixed effects analysis of variance (ANOVA)

with the SAS MIXED procedure (SAS Institute, Inc. 2012). Treatment condition (aggre-

gate interior, aggregate edge, SOH edge, WTH edge, SOH open, WTH open) was treated

as a fixed effect, and a random effect allowing the intercept to vary by site was included to

account for between-site variability. Initially, LAI was included as a covariate to account

for variability and overstory loss in the aggregate canopy since harvest, but model fit as

evaluated using AICc (Burhnam and Anderson 2002, 2013) was not improved and no

difference was observed in results, so we used the simpler model. Some response variables

required a natural log- or power-transformation to meet ANOVA assumptions for

homoscedasticity.

Given the variability observed across sites and the likelihood of windthrow or other

damage to overstory trees retained in aggregates, we also used LAI and CWD volume,

measured continuously, to approximate the categorical treatment conditions associated

with overstory retention and harvest residue removal, respectively. The effect of these

conditions on tree and shrub regeneration densities was assessed using multilevel linear

models. Each model included non-nested random effects that allowed the intercept to vary

by site (to account for variability occurring naturally among sites) as well as by harvest

treatment (WTH, SOH, or unharvested aggregate). LAI and CWD were treated as fixed

effects and were centered (mean = 0, standard deviation = 1). The response variables,

tree and shrub stem densities, were natural log-transformed when necessary to meet

assumptions for linear regression.
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Results

Relationships between treatments and environmental variables

Environmental conditions (soil moisture, LAI, CWD, and FWD) varied widely across the

study (Figs. 2, 3). Soil moisture, CWD, and FWD were indistinguishable between

aggregates and intact forest controls (MEI not different from 0, Fig. 2), and no differences

in any environmental variables occurred between SOH and WTH (Fig. 3).

Fig. 2 Response of environmental characteristics and regeneration densities relative to nearby unharvested
areas as they differed between stem-only (SOH) and whole-tree (WTH) harvest. Hollow symbols indicate
distances where the magnitude of edge influence (MEI) for a given variable differed significantly from zero
(p\ 0.05), indicative of change from reference conditions. Only those species making up [1% of all
seedlings are shown. ABBA A. balsamea, FRNI F. nigra, ACRU A. rubrum, POTR P. tremuloides, FWD fine
woody debris volume, CWD coarse woody debris volume. Error bars indicate standard error
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Stem densities

The density of individual species and the combined densities of seedlings and sucker

sprouts were comparable between aggregates and intact forest controls (MEI not different

from 0, Fig. 2), but aggregates did positively influence the combined stem density of all

tree species near harvested edges for the WTH treatment where the highest densities

occurred (Fig. 2). Although comparison with controls suggests a positive influence of

WTH on total regeneration densities near aggregate edge, no direct effect of CWD levels

on total densities was observed (Table 1). As with all tree species combined, densities of F.

nigra were comparable to controls within and near aggregates, but the abundance of this

species was significantly different (lower) in the open, SOH plots located 42 m from

aggregate center (Fig. 2). The density of P. tremuloides suckers was also similar between

aggregates and controls (Fig. 2), but P. tremuloides abundance was not diminished by

Fig. 3 Mean leaf area index, soil moisture, coarse woody debris volume, and fine woody debris volume as
they differ among treatment conditions. Lower-case letters indicate significant differences between
conditions as determined using post hoc Tukey-adjusted pairwise comparisons (p\ 0.05). Error bars
indicate standard error. SOH stem-only harvest, WTH whole-tree harvest, CWD coarse woody debris, FWD
fine woody debris
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close proximity to the aggregates, contrary to expectations (Fig. 4). P. tremuloides den-

sities did not differ between SOH and WTH nor were any differences attributed directly to

CWD loads (Table 2). No differences in total shrub densities or C. cornuta, specifically

(means not shown), occurred between aggregates and controls (Fig. 2), between aggregates

and harvested areas (Fig. 4; Table 3), or between SOH and WTH (Fig. 4; Table 3). Based

on the interclass correlation coefficient, site accounted for only 2% of the variability in P.

tremuloides densities and 12% in all seedling and sapling stem densities, regardless of

species (Tables 2, 3). Site was a more important factor for shrub densities, explaining 61%

of the variability (Table 4).

Discussion

This study assessed the combined short-term effects of aggregated overstory retention and

the retention of harvest residues on regeneration densities at an operational scale. The

former was done to increase structural complexity in managed forests and the latter to

assess potential impacts of removing residues to meet rising demand for bioenergy feed-

stocks. While larger aggregates may be desirable, our results show that small aggregates

Fig. 4 The effect of aggregated overstory reserves (‘‘aggregates’’) on understory tree and shrub densities at
different locations relative to the boundary between aggregates and harvested areas. The wide, stacked bars
show total densities of trees on bottom (dark grey) and shrubs on top (light grey). Means for neither group
differed among conditions (p[ 0.05). The narrower bars indicate densities for individual tree species. Only
those species making up[1% of all tree seedlings are shown, individually. ABBA A. balsamea, FRNI F.
nigra, ACRU A. rubrum, POTR P. tremuloides, SOH stem-only harvest, WTH whole-tree harvest. Lower-
case letters indicate significant differences in densities within individual species between conditions based
on post hoc Tukey-adjusted pairwise comparisons (p\ 0.05). Error bars indicate standard error
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Table 2 Estimates from multilevel linear models predicting P. tremuloides stem densities (n = 64)

Model 1 Model 2 Model 3 Model 4

Fixed effects

Intercept 0.89 (0.14)* 1.08 (0.43) 1.17 (0.43) 1.24 (0.44)

LAI – – -0.04 (0.05) -0.03 (0.05)

CWD – – -0.00 (0.0004)

Error variance

Level-1 (plots) 0.87 (0.16)* 0.49 (0.09)* 0.49 (0.48)* 0.49 (0.48)*

Level-2 intercept (site) 0.02 (0.07) 0.05 (0.07) 0.05 (0.06) 0.07 (0.08)

Level-2 intercept (harvest treatment) – 0.49 (0.51) 0.45 (0.48) 0.46 (0.48)

Model fit

AICc 179.8 152.9 156.5 169.3

Standard error for each estimate is given in parentheses

LAI leaf area index, CWD coarse woody debris volume (m3/ha)

* p\ 0.05

Table 3 Summary of ANOVA results

Response variable Fixed effect df F P value

Abies balsamea density Condition 5 2.52 0.040

Acer rubrum density 0.62 0.687

Fraxinus nigra density 1.06 0.394

Populus tremuloides density 10.42 <0.0001

Corylus cornuta density 1.49 0.211

Density, all tree species, combined 0.88 0.500

Density, all shrub species, combined 1.1 0.372

Bold text indicates significance (p\ 0.05). Means shown in Fig. 4

Table 4 Estimates from multilevel linear models predicting shrub stem densities (n = 64)

Model 1 Model 2 Model 3 Model 4

Fixed effects

Intercept 1.62 (0.56) 1.60 (0.56) 1.62 (0.56) 1.63 (0.56)

LAI – – 0.15 (0.12) 0.12 (0.12)

CWD – – 0.12 (0.12)

Error variance

Level-1 (plots) 0.75 (0.15)* 0.73 (0.15)* 0.74 (0.15)* 0.74 (0.15)*

Level-2 intercept (site) 1.18 (1.00) 1.15 (0.98) 1.19 (1.02) 1.19 (1.02)

Level-2 intercept (harvest treatment) – 0.03 (0.09) – –

Model fit

AICc 157.6 159.6 158.4 159.8

Standard error for each estimate is given in parentheses

LAI leaf area index, CWD coarse woody debris volume (m3/ha)

* p\ 0.05
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(0.1 ha) create conditions intermediate between harvested areas and intact forest by pro-

tecting regeneration of shade tolerant species that might otherwise be less abundant at the

stand-scale without reducing initial regeneration densities of shade-intolerant species in

surrounding harvested areas. Effects of residue removal are less clear and reflect the

variability of harvest effects that might be expected at an operational scale, particularly

when harvest occurs during winter.

Relationships between treatments and environmental variables

Canopy cover varied widely across the study and within treatments as indicated by LAI.

Severe storms during the first and second growing season following harvested snapped and

uprooted many retained trees in the aggregates, contributing to lower LAI than expected

within those reserves. This mortality was not surprising given other reports of mortality in

retained P. tremuloides stems within 1–3 years of harvest (Bose et al. 2014a). Also,

whereas other studies have reported comparable understory light environments between the

interior of aggregates and intact forest based on LAI estimates, the radii of the aggregates

studied here (approximately 18 m) are well within the range of expected edge effects

reported elsewhere (Fraver 1994; Heithecker and Halpern 2007), and would likely have

lower LAI than interior forest. Trends in our one-time measure of soil moisture are con-

sistent with those collected continuously over the growing season in another study con-

ducted as part of the larger research project, with no differences observed between residue

retention treatments (Kurth et al. 2014). Our failure to detect any ameliorating effects from

retained woody debris that might be expected with SOH (Zabowski et al. 2000; Heithecker

and Halpern 2006) is likely due to the variability in woody debris associated with both

harvest treatments (Fig. 3). Significant breakage occurred during the winter harvest,

resulting in up to 50% of available residues persisting across sites even in those stands

treated with WTH (Klockow et al. 2013). Woody debris levels also likely varied spatially,

potentially leading to less distinction between residue removal treatments.

Regeneration

Although other studies have reported potential for reduced sucker growth and biomass

production in association with more abundant woody debris (Bella 1986; Curzon et al.

2014), stem densities did not differ between SOH and WTH in the present study. This may

partially be due to the variability in woody debris levels that occurred across the study

regardless of the residue retention treatment assigned to a given area (Fig. 3; Klockow

et al. 2013). We also suspect that FWD levels may influence the presence and abundance of

competitive species, including P. pratensis and P.aquilinum, and thus provide a potential

release effect for aspen regeneration in SOH-treated stands (Curzon 2014) as dense

herbaceous vegetation has been shown to negatively impact aspen sucker growth (Lieffers

1995; Landhausser and Lieffers 1998). Even where differences in initial P. tremuloides

densities have been observed in response to soil disturbance or harvest residue removal

(i.e. Bella 1986; Stone 2001), those densities and the differences among them may change

over extended periods (Bella 1986; Curzon et al. 2014). So, while no difference in 2-year

regeneration densities occurred between SOH and WTH in this study, repeated sampling in

the future will be necessary to determine long-term impacts.

Overstory retention may present a trade-off between achieving ecological objectives

related to structural complexity and biodiversity and maximizing regeneration in sur-

rounding harvested areas (Gradowski et al. 2010; Bose et al. 2014b; Palik et al. 2014). P.
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tremuloides is highly intolerant of shade (Burns and Honkala 1990), and root sucker

initiation (Maini and Horton 1966) and density are sensitive to soil surface temperatures

(Landhausser and Lieffers 1998; Frey et al. 2003), carbohydrate stores in the parent root

system, and hormonal control from nearby mature stems (Frey et al. 2003). Our initial,

short-term findings indicate that aggregated retention did not reduce P. tremuloides sucker

densities in the harvested areas adjacent to aggregates, contrary to expectations. Consid-

ering the distance of ‘‘open’’ condition plots from aggregates (about 20 m), these results

align with reported sucker densities in ‘‘large gaps’’ in northern British Columbia (Coates

2002). Moreover, the combined density of seedlings and suckers of all species did not

differ significantly between aggregates and harvested areas although species composition

and associated shade tolerances for plant cover varied as expected. This supports the notion

that aggregates provide some level of interior forest conditions for maintenance of tree

species diversity even if it is primarily edge habitat.

Conclusions

We examined the impacts of aggregated overstory retention, a method promoted to

enhance structural complexity in harvested forest, combined with WTH, a practice

expected to increase with demand for bioenergy feedstocks on initial regeneration in P.

tremuloides-dominated forests. Our results suggest that aggregated retention achieved

ecological objectives for this forest with no apparent trade-off in initial regeneration

densities in harvested areas adjacent to aggregates. These findings also demonstrated no

significant effect of SOH versus WTH on initial regeneration densities, regardless of

species, but this may be a reflection of the variability in levels of harvest residues that

occurs in practice, despite greater emphasis on complete removals with WTH. Removing

harvest residues for use as bioenergy feedstocks has potential to influence tree survival,

growth, and composition over time given its influence on microclimatic conditions,

nutrient dynamics, and the abundance of competing vegetation. Assessing the impact of

WTH and retention on biodiversity objectives will require repeated assessment of these

communities over time. In the meantime, these results inform silvicultural decisions in

terms of establishing initial composition and regeneration densities.
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