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A B S T R A C T

Trees provide important health, ecosystem, and aesthetic services in urban areas, but they are unevenly dis-
tributed. Some neighborhoods have abundant tree canopy and others nearly none. We analyzed how neigh-
borhood characteristics and changes in income over time related to the distribution of urban tree canopy in
Washington, D.C. and Baltimore, MD. We used stepwise multiple regression analysis to identify strong predictors
of UTC, from variables found in neighborhoods with different patterns of wealth-stability over time. We then
built spatial lag models to predict variation in UTC cover, using the results of a Principal Component Analysis of
the socioeconomic, demographic, and housing characteristics of the two cities. We found that: (1) stable-wealthy
neighborhoods were more likely to have more, and more consistent, tree canopy cover than other neighborhood
types; (2) decreases and increases in income were negatively associated with UTC in Washington, D.C. but not
Baltimore, where income stability in both wealthy and impoverished neighborhoods was a significant predictor
of UTC; and (3) the association of high socioeconomic status with UTC coverage varied between the two cities.

1. Introduction

Trees provide a variety of ecosystem services and environmental
benefits for urban residents. The environmental benefits of urban for-
ests include heat-stress mitigation, carbon sequestration, noise reduc-
tion, air and water quality improvement, and stormwater reduction.
Tree management is an important sustainability priority for munici-
palities because trees are an essential component of a well-functioning
urban ecosystem and can be important for mitigating natural hazards
such as flooding and excessive heat. Many cities have set ambitious
goals for increasing tree canopy cover. Our study cities, Washington,
D.C. and Baltimore, MD plan to increase tree canopy cover from a
current 35% to 40% by 2032 (O’Neil-Dunne, 2009b; District of
Columbia Urban Tree Plan, 2013) and from 27% to 40% by 2037, re-
spectively (Baltimore Sustainability Plan, 2009). If the cities are to meet
these goals, the majority of tree growth will have to occur on residential
property (O’Neil-Dunne, 2009a,b). But tree planting alone does not

constitute an effective urban tree canopy (UTC) plan. Such plans also
need to take into account how the interactions in social-ecological
systems influence current tree distribution and conservation. Trees can
survive for decades in cities when they are properly maintained.
Therefore, investments to increase tree canopy coverage are long-term
investments that are subject to the long-term dynamics of urban en-
vironments, which are heterogeneous socio-ecological systems (Grove
et al., 2015). To contribute to the understanding of these long-term
dynamics as they relate to UTC, we analyzed how changes in neigh-
borhood characteristics (income over time, educational attainment,
racial and ethnic composition, age distribution, and residential real-
estate development) correlated to tree canopy coverage across census
tracts in Washington, D.C. and Baltimore, MD.

Theories about human population density, social stratification, and
reference-group behavior have been used to explain tree canopy dis-
tribution (Locke and Grove, 2016). One theory holds that human po-
pulation density drives vegetation change through development, which
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alters land (Smith et al., 2005; Marco et al., 2008; Cook et al., 2012).
But variables other than population density influence vegetation cover
in an area, and social stratification theory suggests three: 1) wealthier
people have more social and spatial mobility than those with lower
incomes, and are therefore able to live in neighborhoods that provide
attractive amenities, including green spaces (Logan and Molotch, 2007;
Roy Chowdhury et al., 2011); 2) the level of public investment in green
infrastructure is positively correlated with the socioeconomic status and
political power of residents (Grove et al., 2006); and 3) wealthier re-
sidents have more disposable income to invest in landscaping and can
afford to maintain trees in their yards and neighborhoods (Hope et al.,
2002, 2006; Martin et al., 2004). A study of urban trees in six U.S. cities
concluded that the more affluent the neighborhood, the more extensive
the tree canopy (Schwarz et al., 2015). But wealth differences are not
the sole determinant of the uneven distribution of urban trees. In some
places, the higher the percentage of racial- and ethnic-minority re-
sidents, the lower the tree canopy cover; however, the strength of as-
sociation varies geographically (Schwarz et al., 2015). Reference-group
behavior theory recognizes the influences of population density, mo-
bility, differentiated political power and income, and economic power
on land management, but it puts more emphasis on the role of group
identity in shaping neighborhood landscapes and maintaining the so-
called “ecology of prestige” (Troy et al., 2007; Zhou et al., 2009; Grove
et al., 2014). The ecology of prestige theory holds that household ve-
getation symbolizes membership in a desirable social group. Of course,
present-day tree canopy coverage may also reflect inherited landscapes
(Luck et al., 2009; Clarke et al., 2013; Locke and Baine, 2015). For
example, Boone et al. (2010) found that past, rather than present,
neighborhood lifestyles and socioeconomic characteristics were better
predictors of urban tree canopy cover in Baltimore.

Most studies of UTC have used a single point in time or “snapshots”
to compare social and built-environment characteristics with vegetation
cover (Landry and Pu, 2010; Pham et al., 2012; Romolini et al., 2013).
But tree distribution is determined by complex social-ecological dy-
namics over time. Therefore, we incorporated changing conditions at
the neighborhood scale to evaluate how neighborhood stability influ-
ences the extent of canopy cover. Further, we compared two cities in
the same geographic area, rather than focusing on just one city or
metropolitan area, as most UTC studies have done. While there is clear
value in understanding the idiosyncratic role of places and their in-
dividual histories, we argue that more comparative analyses are ne-
cessary to advance theory in urban ecology (Roy Chowdhury et al.,
2011; Cook et al., 2012).

We used time-series social and biophysical data to examine the
dynamics of social characteristics and UTC in two cities that occupy a
similar biome and have relatively common biophysical constraints and
opportunities for vegetation growth: Washington, D.C. and Baltimore,
MD. Our study has two parts. First, we quantified the spatial distribu-
tion of UTC in the two cities and examined the relationship between
changes in income and built-environment characteristics with the
amount of tree canopy at a fine scale (defined by an area with 100-m
radius). This allowed us to consider whether positive or negative
changes in income are related to the distribution of UTC, conditioned
by whether a city is growing in terms of population (D.C.) or declining
(Baltimore). Second, we compared predictors of urban tree canopy
distribution at the census-tract scale for both cities. The methods for
this analysis employed a set of socioeconomic and biophysical vari-
ables, principal component analysis (PCA) for data reduction, and
spatial regression models of the PCA components for each city.

2. Materials and methods

We first tested six hypotheses to identify the relationships among
income change, and percentage of UTC at the neighborhood level in
both cities. We sorted neighborhoods into five classes by their income
change status, and observed UTC in these neighborhoods. Second, we

used stepwise regression models to identify significant predictors of
UTC. In this second part, we built spatial lag models, using the results of
PCA of a set of variables, to predict UTC at the census-tract level for
both cities.

2.1. Study areas

Washington, D.C. and Baltimore, MD are located in the mid-Atlantic
region of the eastern United States, adjacent to the Chesapeake Bay.
Baltimore is about 60 kilometers northeast of Washington, D.C. Both
cities are majority African-American and highly segregated (Logan
et al., 2014). Baltimore was established in 1729 and Washington, D.C.
in 1790, but the majority of urban expansion in both cities occurred in
the 20th century, under similar technological regimes dominated by the
automobile. Population peaked in both cities in 1950, followed by
decades of population decline as surrounding suburbs boomed. The
paths of these two cities have diverged more recently. Between 2000
and 2014, the population of Baltimore declined by ∼30,000 residents,
while Washington grew by nearly 10% (current populations are
622,000 and 660,000, respectively). Median household income is rising
faster in Washington, D.C. Gentrification is occurring in some parts of
both cities, but the magnitude is greater in Washington and corre-
sponding rents are also higher (US Census ACS 2013; US Census 2000).
Washington can be characterized as a “pull” city, drawing people and
investment into the city, while Baltimore remains largely a “push” city,
with people leaving for the suburbs and other locations (Gottdiener and
Hutchison, 2006). Both cities are undergoing change at both the city-
wide and neighborhood levels. With their geographic and historical
similarities and contrasting recent growth patterns, Baltimore and
Washington offer an opportunity to compare how population and so-
cioeconomic change relate to urban tree canopy.

2.2. Data

We analyzed high-resolution tree canopy data for Washington and
Baltimore with data from the University of Vermont Spatial Analysis
Laboratory. The Washington dataset quantified tree canopy change,
including loss, gain, and persistence, from 2006 to 2011. The only
available high-resolution information for Baltimore was from a 2007
land-cover raster map. The two datasets were derived from Quickbird,
LiDAR, and National Agricultural Imagery Program data. Resolution for
the raster data was set at 0.6 m2. The shapefile for UTC change (loss,
gain, no change) had a minimum mapping unit of 8 square meters. The
canopy-change shapefile for Washington (Tree Canopy Change,
Washington D.C., 2006–2011) and the Baltimore land-cover raster
(Land Cover Baltimore 2007) are freely available and distributed under
the Creative Commons Share Alike 3.0 license. Our comparative ana-
lyses are based on the static state of the tree canopy coverage in relation
to income change in the two cities (UTC for Washington, D.C. for 2006
and Baltimore for 2007). In addition, we examined UTC change over
time for Washington D.C.

Consistent spatial units are necessary to study socioeconomic, de-
mographic, and building-characteristic change at the neighborhood
level. However, geographic boundaries for the U.S Census Bureau can
change over time. To make the Census data comparable over time, we
aligned historical census information to year 2010 Census boundaries,
using the Longitudinal Tract Data Base program. The program uses
proportional area weighting to assign census-variable values to the
appropriate space (Logan et al., 2014). As of 2013, Washington had 179
Census tracts (including the National Mall and Capitol Hill) and Balti-
more had 200. Median household income data in inflation-adjusted
dollars were acquired from the year 2000 Census and 2013 American
Community Survey (ACS) from the U.S. Census Bureau.
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2.3. Study 1: identifying the relationship between income change, the built
environment and small area UTC (small area is defined by an area with
100-m radius)

In the first part of the study, we aimed to examine the relationship
between income change and extent of tree canopy cover. According to
the nature of two different UTC datasets, the hypotheses were cate-
gorized into two groups:

I. Existing tree canopy (Washington, D.C. and Baltimore MD):

H1. Neighborhoods that remain relatively wealthy will have more tree
canopy.

H2. Neighborhoods with decreasing wealth will have less existing tree
canopy.

H3. Neighborhoods that remain relatively impoverished will have less
existing tree canopy.

II. Tree canopy change (Washington D.C. only):

H4. Neighborhoods with increasing wealth will have increasing tree
canopy (gain).

H5. Neighborhoods with decreasing wealth will have canopy loss and/or
low canopy gain.

H6. Neighborhoods that remain relatively impoverished will have little to
no tree canopy and/or low canopy gain.

The hypotheses are based on social stratification theory, which
states that wealthier households: (1) may choose to live in greener
neighborhoods, (2) may be more effective in garnering public invest-
ment in green infrastructure in their neighborhoods, and (3) may spend
more disposable income on landscaping in their yards. We also ex-
amined UTC in neighborhoods with increasing and decreasing incomes.
Assuming that wealth is a key influence on tree canopy abundance, we
expected that increase or decrease in wealth in a given neighborhood
would have corresponding changes in tree canopy.

We used stepwise multiple regression models to test hypothesis
H1–H3 for both cities. To increase the predictability of the model, we
included built-environment variables: land area, number of housing
units, and percentage of structures built in each decade from 1930 to
2010. Housing built before 1930 was included in the 1930 decade. The
number of houses per unit of land area is a proxy for density of de-
velopment and physical constraints on tree growth. The percentage
(proportion) of structures built in each decade represents characteristics
of the built environment that affect tree planting and growth. The ex-
amination of H4–H6 were based on the descriptive analysis of the UTC
change for only Washington D.C.

2.3.1. Defining neighborhood wealth type
Because Washington and Baltimore have different growth trajec-

tories, we used a relative measure of wealth within each city to assign
wealth status to neighborhoods. Median household income was stan-
dardized to identify a neighborhood’s income status in relation to other
neighborhoods within each city. We used the standard score, z, a sta-
tistical measurement of a variable’s relationship to the mean, to char-
acterize the wealth status of neighborhoods. A positive standardized
value meant the observation was above the mean (of 0) and a negative
value meant the observation was below the mean. Our data yielded five
wealth categories (see Fig. 1):

1. Remained relatively impoverished (NB1): neighborhoods with a stan-
dardized value below−1 between 2000 and 2013. We refer to these
neighborhoods as “stable-impoverished.”

2. Decreasing wealth (NB2): neighborhoods with a standardized value
above 0 in 2000 and below 0 in 2013.

3. Remained above poverty (NB3): neighborhoods’ with standard values
that remained below average (0) but above impoverished (-1)

between 2000 and 2013.
4. Increasing wealth (NB4): Neighborhoods with a standardized value

below 0 in 2000 and above 0 in 2013.
5. Remained relatively wealthy (NB5): neighborhoods that had stan-

dardized values above 0 between 2000 and 2013. We refer to these
neighborhoods as “stable-wealthy.”

About 44% of the neighborhoods in both cities were in the NB3
category (remained above poverty). NB5 (remained relatively wealthy)
was the second most common neighborhood type, making up 30% of
Washington’s and 33% of Baltimore’s neighborhoods. NB5 neighbor-
hoods were distributed on the periphery in both cities (Fig. 2). Neigh-
borhoods with increasing wealth (NB4) were found in Washington’s
center; in Baltimore, many of the neighborhoods that remained rela-
tively impoverished (NB1) were found in the urban core.

2.3.2. Selecting samples for modeling UTC
We used statistical analysis to examine how well the five neigh-

borhood types predicted existing UTC (static state) in small areas ran-
domly distributed across the two cities. For each city, we generated
twice as many random points as the total number of census tracts in the
city; each point had a buffer zone of 100 m (i.e., was at least 100 m
from any other point). When a buffer zone fell within the borders of two
or more census tracts, we treated each portion on a tract as an in-
dividual object. Following this procedure, we selected 570 sample areas
in Washington and 755 in Baltimore. Theoretically, the spatially
random plots would capture the variation in land use proportional to
the coverage of those land uses. This method allowed us to examine
UTC in a smaller spatial unit than the census tract, to complement the
tract-level analysis we conducted in the second part of the study. The
sample-selection process maximized the use of the very-high resolution
UTC data, and was intended to make our assessment more accurate
than it would have been if we had used only aggregate data.

To understand how neighborhood-wealth type correlated with tree
canopy, we used IBM SPSS 22 to conduct a stepwise multiple regression
with the percent tree canopy cover in each sample area as the depen-
dent variable. This method allowed us to use different combinations of
input variables to identify strong predictors of UTC at a very fine scale.
While stepwise regression may not be a perfect method for identifying
the strongest combination of UTC predictors, it does enable researchers
to find models that are explanatory yet parsimonious.

Since our input variables are not normally distributed, according to
the Shapiro-Wilk test, we calculated Spearman correlation coefficient to
assess relationships among variables. Some building characteristics are
associated with each other (the smallest and largest correlation coeffi-
cient are between −0.63 and 0.57, p ≤ 0.05). We further checked for
collinearity by calculating the variance inflation factor (VIF) for each
independent variable to ensure that there were no issues with multi-
collinearity in the models. The VIF values from both models were be-
tween 1.09 and 1.70, which does not raise concern (“Introduction to
SAS”, 2016). Moreover, we used F test to examine model fit. The F test
of our multiple regression models indicated that including the in-
dependent variables significantly improved model fit. In addition, the
model residual plots were examined to ensure homoscedasticity and
normality of the residuals.

2.4. Study 2: predicting variations in UTC at the census-tract level using
spatial lag models

Urban tree distribution is often affected by a combination of current
conditions and historical processes. In the second part of the study,
principal component analysis (PCA) was used to reduce data from 27
socioeconomic, demographic, and built-environment variables at the
census-tract level from year 2013. PCA converts large numbers of
variables that might be correlated into a smaller number of “principal”
components. We then used the components to first build Ordinary Least
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Square (OLS) models and later spatial autoregressive models that ac-
counted for spatial autocorrelation to estimate the association between
the principal components and UTC cover.

The 27 variables (Table 1) reflect the complex interactions between
biophysical and social systems, and represent four aspects of a neigh-
borhood:

(1) Socioeconomic status: The proxy variables were median household
income and education level. These variables can reflect residents’
political power and resources, as well as the disposable income
available to invest in landscaping (Grove et al., 2006). It has been

suggested that low-income residents might resist tree-planting to
avoid gentrification and rising rents (Schwarz et al., 2015).

(2) Race and ethnicity: Research has shown that minorities in urban
areas are likely to have fewer environmental amenities than non-
Hispanic white populations (e.g., Schwarz et al., 2015). Cultural
background has been found to influence the preference for open
space; for instance, in Toronto, Canada, Chinese residents did not
encourage tree planting in their neighborhoods (Fraser and Kenney,
2000). In some African-American neighborhoods, residents pre-
ferred few trees in public areas because of concerns about safety
and crime (Lohr et al., 2004).

Fig. 1. Distribution of Z scores of income data and
neighborhood type in Washington, D.C. between
2000 and 2013. (NB1) Remained relatively im-
poverished; (NB2) Decreasing wealth; (NB3)
Remained above impoverished; (NB4) Increasing
wealth; (NB5) Remained relatively wealthy.

Fig. 2. Spatial distribution of Census tracts in five types of neighborhoods in Washington, D.C. (left) and Baltimore, MD (right).
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(3) Age: Different age groups may have different attitudes toward tree-
planting. For example, Zhang (2007) found that young adults were
more willing to contribute money and volunteer time to urban
forestry activities than middle-aged and elderly people.

(4) Housing and development characteristics: This category included
the variables of housing ownership, vacancy rate, median housing
value and rent, population density, median age of built structures,
and percent of structures built by decade in each census tract.
Housing values, ownership, and built environment can affect UTC
coverage. Trees can add value to a home (Battaglia et al., 2014).
Population density and building characteristics can reveal the
physical constraints on tree planting and growth. Median age of
housing was used to account for the fact that trees take time to grow
and that current canopy cover reflects previous behaviors and
preferences (Troy et al., 2007; Boone et al., 2010; Lowry et al.,
2011). Median age of housing also represents the proportion of new
development in a place. We viewed this variable as a general in-
dicator of building age in a given neighborhood.

We used the scores of the principal components we derived from
PCA as independent variables in spatial models. We applied a Varimax

rotation to minimize the number of the original variables that loaded
highly on any one component and to increase the variation among
them. Six components were retained for Washington D.C. and seven for
Baltimore, MD, based on scree plots and examination of eigenvalues.
Eigenvalues are the variances of components. In PCA, each variable is
standardized and therefore has a variance of 1. Components that have
eigenvalues greater than 1 are considered to be principal components
worth retaining because their variance is higher than that of the ori-
ginal variables (“Introduction to SPSS: Principal Component Analysis,”
2016).

The dependent variable in study 2 was the percentage of UTC in
each census tract. Rather than assuming that it was spatially in-
dependent, we tested for spatial autocorrelation of UTC. High-resolu-
tion tree canopy data were imported into ArcGIS 10.3 and zonal sta-
tistics were applied to calculate percentage of tree canopy. The spatial
regression models and spatial statistics (Moran’s I) that measure spatial
autocorrelation were estimated in Geoda version 1.6.7 (Anselin et al.,
2006). Moran’s I is a weighted correlation coefficient that measures
global spatial autocorrelation. The index falls between −1 (dispersed
pattern), 0 (complete spatial randomness), and +1 (spatially auto-
correlated pattern). We used first-order queen contiguity-based spatial
weight matrices, which assign a spatial structure in units of observation
according to an area’s spatial relation to its neighboring tracts, so that
tracts sharing an edge, a corner, or both were defined as neighbors.

3. Results

3.1. Distribution of UTC in different types of neighborhoods

We first examined extent of canopy cover (total coverage) for the
two cities. UTC was low in the core of both cities. Washington’s average
UTC by census tract was 28.63%, about six percentage points higher
than Baltimore’s (Tables 2 and 3). The difference was statistically sig-
nificant (Kruskal-Walis test with alpha = 0.05). As was expected, tree
canopy was not evenly distributed in either city. The distribution of
UTC for both cities was highly spatially autocorrelated, with a Moran’s I
of 0.52 (p-value < 0.01) for Baltimore and 0.67 (p-value < 0.01) for
Washington, D.C. The majority of UTC in both cities was concentrated
on the periphery (Fig. 3). In Baltimore, tracts with high UTC cover were
located in the western and northern districts; in Washington, D.C. they
were located in the western and northwestern parts of the city.

In both cities, census tracts classified as stable-wealthy neighbor-
hoods (NB5) had the highest average UTC, while the stable im-
poverished tracts (NB1) had the lowest. But there was a statistically
significant difference between the cities’ stable-impoverished tracts:
those in Washington had an average UTC 1.6 times higher than those in
Baltimore (21.90% vs. 13.17%). Overall, both poor and wealthy
neighborhoods in Washington, D.C. (Fig. 4) had more tree canopy than
the corresponding neighborhoods in Baltimore.

We had canopy change data for only Washington, D.C. (Table 2). On
average, that city’s stable-wealthy neighborhoods (NB5) had the
highest percentage of UTC and the least amount of tree canopy gain. A
possible explanation is that these stable-wealthy neighborhoods already
have a high percentage of tree canopy cover and the space for growth is

Table 1
Variables from US Census and their Morna’s I for the both cities (Spatial unit: Census
tract).

Variable Description D.C. Moran’s I Baltimore
Moran’s I

Wealth
Median household income (in inflation-

adjusted dollars)
0.59 0.57

Education level
% of population with less than high school

education
0.41 0.47

% of population with high school degree 0.75 0.54
% of population with college degree or above 0.71 0.62

Race and ethnicity
% of non-Hispanic white population 0.83 0.61
% of African American population 0.86 0.64
% of Hispanic White population 0.58 0.50
% of Asian 0.64 0.32

Age
% of population under 18 years old 0.61 0.29
% of population between 19 and 65 years old 0.60 0.31
% of population 65 years old or above 0.31 0.27

Housing characteristics
% of owner-occupied housing 0.25 0.45
% of renter-occupied housing 0.33 0.37
% of vacant housing unit 0.31 0.56
Median rent 0.50 0.34
Median home value 0.71 0.55
Age of the building/housing structure −0.01 0.00
% housing structure built in that decennial 0.00–0.56 0.01–0.56
Population density (people/square mile) 0.57 0.33
% of tree canopy coverage 0.67 0.52

Note: all p-values ≤0.05 except for bolded numbers.

Table 2
The change (2006–2011) of tree canopy in five types of neighborhoods in Washington, D.C.

Neighborhood Typea NB1 (n = 8) NB2 (n = 11) NB3 (n = 78) NB4 (n = 26) NB5 (n = 54)

Average tree canopy remains the same (%) 21.90 24.91 26.90 14.76 38.14
Average gain (%) 0.54 0.69 0.44 0.60 0.34
Average loss (%) 3.88 3.07 3.16 2.31 2.99
Average tree canopy in 2011 (gain + same, %) 22.44 25.60 27.34 15.36 38.48
Net loss/gain (gain-loss %) −3.34 −2.38 −2.72 −1.71 −2.65

a Neighborhood Type: NB1-Stable impoverished; NB2-Decreasing wealth; NB3-Remained above impoverished; NB4-Increasing wealth; NB5-Stable wealthy. The average percentage of
tree canopy at census-tract level was 28.63% in 2011.
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limited. Neighborhoods that remained impoverished (NB1) had the
greatest tree canopy loss (3.88%) and an average net loss of −3.34%.

3.2. Study 1: relationship among income change, built characteristics, and
small-area UTC

Tables 4 and 5 show the results of the stepwise regression models.
The Washington model (R2 = 0.31) explained more variance in the
dependent variable than that of the Baltimore model (R2 = 0.23).
Stable wealth (NB5) was positively associated with existing UTC in both
cities but, interestingly, changes in income were negatively associated
with UTC in Washington, D.C., but were not significant UTC predictors
in Baltimore. Model results also indicated that stable-impoverished
status does not always have a negative relationship with UTC.

3.3. Study 2: predictions of tract-level UTC from spatial lag models

The first six principal components explained 75.31% of the variance
in the data from Washington, D.C. (Table 6). The features (the variables
with heavy loading) of each component are listed below:

Component 1 was weighted heavily toward median household in-
come, % people with college degree, % of white population, % of Asian,
% people aged from 18 to 65, median rent, and median home value. It
also has negative and heavy loadings on % people with high school
degree and lower, % African American and % population under 18
years old.

Component 2 was weighted heavily on % of renters, % of housing
structure built in the 1970s and the 60′s, and median structure age. It
also has negative and heavy loadings on median household income, %
of owner-occupied structure, and % housing structure built in the 1930s
and before.

Component 3 was weighted heavily on % population above 65 years
old, and % of housing structure built in the 1950s, 1940s, and 1930s
and before.

Component 4 was weighted heavily on % housing structure built
between year 2000 and 2010, and median age of housing structure.

Component 5 was weight heavily on % Hispanic population and
population density. It also has a heavy and negative loading on vacancy
rate.

Component 6 was weighted heavily on % of housing structure built
in the 1980s.

For Baltimore, the PCA explained 75.06% of variance and extracted

Table 3
2007 Tree canopy coverage in five types of neighborhoods in Baltimore, MD.

Neighborhood
Typea

NB1
(n = 12)

NB2
(n = 22)

NB3
(n = 87)

NB4
(n = 11)

NB5
(n = 66)

2007 average tree
canopy

13.17% 27.90% 19.55% 14.69% 29.60%

a Neighborhood Type: NB1-Stable impoverished; NB2-Decreasing wealth; NB3-
Remained above impoverished; NB4-Increasing wealth; NB5-Stable wealthy. The average
percentage of tree canopy at census-tract level: 23.00%.

Fig. 3. Distribution of UTC in the two cities (presented by standard deviation) at the census-tract scale.
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seven components (Table 7):
Component 1 has high loading on median household income, % of

population with college degree, % of while population, % of Asian
population, median house value. It also has heavy and negative load-
ings on % of population with less than or high school degree only and %
of housing structure built in the 1940s.

Component 2 has high loading on % of renters; and negative loading
on % structure occupied by owner, and % housing structure built in the
1950s.

Component 3 has heavy loading on % of housing structure built in
the 1970s, 1960s, and 1950s, and median structure age; and negative
loading on vacancy rate, and % housing structure built in the 30 s and
before.

Component 4 has heavy loading on % of housing structure built

between year 1990 and 2009, and median structure age.
Component 5 has heavy loading on % of Asian population, popu-

lation age between 18 and 64 years old; and negative loading on %
population below age 18.

Component 6 has heavy loading on % of Hispanic population; and

Fig. 4. Tree canopy coverage in five types of neigh-
borhoods in Washington, D.C. (left) and Baltimore
(right). Neighborhood Type: NB1-Stable im-
poverished; NB2-Decreasing wealth; NB3-Remained
above impoverished; NB4-Increasing wealth; NB5-
Stable wealthy.

Table 4
Stepwise multiple regression analysis: Washington, D.C. (R2 = 0.31, p = 0.00).

Variables Unstandardized Coefficients Standardized
Coefficients

p-value VIF

Estimate Std. Error

(Constant) 17.27 3.32 0.00 –
NB5 12.51 2.16 0.25 0.00 1.52
B1950 0.53 0.11 0.21 0.00 1.54
B1990 −1.05 0.21 −0.20 0.00 1.26
Aland 0.00 0.00 0.17 0.00 1.23
HU 0.00 0.00 0.12 0.00 1.18
NB2 −9.48 3.24 −0.11 0.00 1.19
NB4 −8.73 3.12 −0.12 0.01 1.40
B1940 −0.26 0.12 −0.10 0.04 1.70

Variables: B(YEAR): % housing structure built in the decennial; Aland: Area of land; HU:
Housing units. NB2: Decreasing wealth; NB4: Increasing wealth; NB5: Remained rela-
tively wealthy.
Note: VIF: variance inflation factor.

Table 5
Stepwise multiple regression analysis: Baltimore, MD (R2 = 0.23, p = 0.00).

Variables Unstandardized Coefficients Standardized
Coefficients

p-value VIF

Estimate Std. Error

(Constant) 2.27 1.90 0.23 –
B1950 0.28 0.05 0.20 0.00 1.38
B1970 0.56 0.11 0.20 0.00 1.45
NB5 7.84 1.34 0.21 0.00 1.20
B1940 0.38 0.08 0.19 0.00 1.34
HU 0.00 0.00 0.08 0.02 1.10
NB1 −5.56 2.27 −0.08 0.02 1.10
B1960 0.22 0.09 0.09 0.02 1.54

Variables: B(YEAR): % housing structure built in the decennial; Aland: Area of land; HU:
Housing units. NB1: Stable impoverished; NB5: Stable wealthy.
Note: VIF: variance inflation factor.

Table 6
Loadings of components and variance from Principal Component Analysis, and spatial
autocorrelation of component scores for Washington D.C.

Component (Washington, D.C.) 2013

1 2 3 4 5 6

Median household income 0.72 −0.55 −0.04 −0.05 −0.03 0.22
% below high school

degree
−0.79 0.27 −0.11 0.09 0.22 −0.08

% with high school degree −0.88 0.29 0.05 0.04 −0.21 −0.01
% college degree 0.92 −0.31 0.00 −0.06 0.07 0.04
% white population 0.90 −0.16 −0.18 −0.07 0.05 0.16
% Black population −0.90 0.13 0.17 0.07 −0.26 −0.10
% Asian 0.74 0.19 −0.05 0.23 0.16 0.01
% Hispanic white 0.09 −0.04 −0.04 −0.10 0.82 −0.15
% under age 18 −0.86 −0.04 −0.01 0.06 −0.07 0.32
% between age 18 and 65 0.72 0.24 −0.40 0.00 0.18 −0.36
% age above 65 0.10 −0.35 0.73 −0.10 −0.21 0.13
% owner-occupied

housing
0.21 −0.84 0.29 −0.19 −0.12 −0.04

% renter-occupied
housing

−0.21 0.84 −0.29 0.19 0.12 0.04

Vacancy rate −0.27 0.39 −0.08 0.00 −0.57 −0.23
Median rent 0.83 −0.23 −0.10 0.07 0.00 0.09
Median house value 0.67 −0.44 −0.14 −0.15 0.13 0.33
% structure built

2010 & later
−0.16 −0.07 −0.24 0.44 0.06 −0.10

% built between
2000 & 2010

0.12 0.07 −0.10 0.91 0.00 −0.05

% built between
1990 & 1999

0.03 0.22 −0.11 0.48 −0.21 0.25

% built between
1980 & 1999

0.12 0.30 0.01 0.03 −0.10 0.71

% built between
1970 & 1979

−0.14 0.64 0.03 0.15 −0.04 0.34

% built between
1960 & 1969

−0.17 0.69 0.14 −0.05 −0.26 0.11

% built between
1950 & 1959

−0.27 0.12 0.74 −0.16 0.00 −0.07

% built between
1940 & 1949

−0.42 −0.08 0.55 −0.21 0.13 −0.35

% built before 1940 0.31 −0.61 −0.51 −0.45 0.11 −0.11
Population density 0.18 0.27 −0.41 −0.06 0.60 −0.14
Structure age −0.04 0.50 0.13 0.78 −0.16 0.15
% of Variance 29.50 16.07 8.79 8.79 6.91 5.26
Cumulative % 29.50 45.57 54.35 63.14 70.05 75.31
Moran’s I of 0.76 0.37 0.54 0.35 0.48 0.28
Component scores

Note 1: Values with a relatively heavy loading are in bold (≥0.4 or< -0.4).
Note 2: All Moran’s I p-values are ≤0.01.
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negative loading on % population 65 years old and above.
Component 7 has heavy loading on % population age above 65

years old, and housing structure built between 2010 and 2013.
The Lagrange multiplier tests were applied to the ordinary least

squares (OLS) regression models, and indicated that the spatial lag
specification was more appropriate than the spatial error specification
for our study sites (Anselin, 2005). Our spatial autoregressive models,
which accounted for spatial autocorrelation and used principal com-
ponents as independent variables, provided high R2 values (above 0.7).
The Moran’s I of the residuals from our spatial lag models indicate that
spatial lag specification accounted for the spatial autocorrelation pre-
sent in the data. Our results also suggest that a principal components
approach is effective at capturing the blended nature of socio-ecological
variables that may be driving the spatial distribution of tree canopy in
our two cities.

In Washington, D.C., the spatial lag model results show three input
variables are negatively associated with UTC. The observations of these
variables are: (1) neighborhoods with a high percentage of renters with
low to middle incomes and housing built in the 1960s and 1970s
(Component 2), (2) neighborhoods with a high percentage of housing
built after 1990 (Component 4), and (3) high-density, Hispanic com-
munities (Component 5). In contrast, two variables were positively
correlated with UTC: (1) neighborhoods with a high percentage of el-
derly population and housing structures built in the 1950s (Component
3), and (2) neighborhoods with housing built in the 1980s (Component
6).

The spatial lag model for Baltimore found two components to be
negatively associated with UTC. First, Component 5, weighted toward
population with age between 18 and 65 years old (economically pro-
ductive group) and Asian, and secondly Component 6, which was
weighted toward Hispanics and the population with less than a high
school degree. Significant components that were positively associated

with UTC in Baltimore were neighborhoods weighted toward income,
education, economically active groups, and non-Hispanic white popu-
lation (Component 1); and Component 3 which was weighted toward
housing built between 1950 and 1970 and structure age.

Tables 8 and 9 show the coefficient and p-value of each independent
variable in the spatial lag models. The effects of components on pre-
dicting UTC cover varied between the two cities. For instance, we ex-
pected that Component 1, which has weights toward education, eco-
nomically productive populations, would be a significant predictor of
UTC, but the model results showed that to be true only in Baltimore.
Components with heavy loading toward ethnic minority, such as Bal-
timore’s Component 5 (middle-income, economically active, and Asian
communities) and Component 6 (Hispanic working class), and Wa-
shington’s Component 5 (high-density Hispanic communities) were all
negatively associated with UTC. The cities differed in the way housing
characteristics were related to UTC. In Baltimore, Component 3 (with

Table 7
Loadings of components and variance from Principal Component Analysis, and spatial autocorrelation of component scores for Baltimore, MD.

Component (Baltimore 2013)

1 2 3 4 5 6 7

Median household income 0.78 −0.52 −0.08 0.02 0.03 0.03 −0.09
% below high school degree −0.62 0.34 −0.21 −0.04 −0.28 0.41 0.11
% with high school degree −0.89 −0.03 0.01 0.02 −0.11 −0.05 −0.05
% college degree 0.90 −0.16 0.11 0.01 0.22 −0.18 −0.02
% white population 0.82 −0.15 −0.05 0.06 0.15 0.27 0.25
% Black population −0.80 0.09 0.03 −0.05 −0.18 −0.40 −0.24
% Asian 0.52 0.31 0.16 0.05 0.52 −0.03 0.05
% Hispanic white 0.15 0.05 −0.06 −0.03 −0.04 0.85 0.07
% under age 18 −0.48 0.10 0.18 −0.02 −0.65 0.19 −0.31
% between age 18 and 65 0.45 −0.01 −0.25 −0.03 0.76 0.15 −0.10
% age above 65 −0.01 −0.14 0.13 0.08 −0.24 −0.52 0.62
% owner-occupied housing 0.24 −0.91 −0.01 −0.16 −0.05 −0.08 0.06
% renter-occupied housing −0.24 0.91 0.01 0.16 0.05 0.08 −0.06
Vacancy rate −0.50 0.23 −0.61 −0.08 0.01 −0.12 0.01
Median rent 0.49 −0.44 −0.26 0.05 0.27 0.04 −0.23
Median house value 0.87 −0.03 −0.04 0.03 0.03 −0.01 −0.02
% structure built 2010 & later 0.05 0.09 −0.07 −0.10 0.09 0.18 0.61
% built between 2000 & 2010 0.12 0.04 −0.12 0.88 0.10 0.03 −0.03
% built between 1990 & 1999 0.05 0.35 0.16 0.60 −0.09 −0.06 −0.02
% built between 1980 & 1999 0.18 0.36 0.22 0.21 −0.32 −0.29 0.21
% built between 1970 & 1979 0.23 0.37 0.59 0.12 −0.15 −0.28 0.10
% built between 1960 & 1969 −0.01 0.17 0.79 −0.15 −0.09 −0.03 −0.08
% built between 1950 & 1959 −0.28 −0.53 0.62 −0.14 0.08 0.04 −0.03
% built between 1940 & 1949 −0.62 −0.31 0.09 −0.14 −0.03 0.06 0.23
% built before 1940 0.25 0.09 −0.86 −0.31 0.10 0.11 −0.13
Population density 0.10 0.34 −0.31 −0.27 −0.04 0.14 −0.45
Structure age 0.01 0.13 0.62 0.66 −0.13 −0.11 0.06
% of Variance 24.61 12.56 12.31 7.25 6.60 6.50 5.21
Cumulative % 24.61 37.16 49.49 56.74 63.34 69.85 75.06
Moran’s I of Component scores 0.70 0.45 0.55 0.17 0.22 0.51 0.15

Note1: Values with a relatively heavy loading are in bold (≥0.4 or< -0.4).
Note 2: All Moran’s I p-values are ≤0.01.

Table 8
Results of spatial lag model for Washington, D.C. (R2 = 0.70).

Variables Coefficient

Constant 8.70*

Component 1 0.76
Component 2 −1.66*

Component 3 2.70*

Component 4 −2.44*

Component 5 −1.51*

Component 6 2.78*

Lag Coefficient (Rho) = 0.68*

Moran's I of residuals = −0.01

Note: The R2 and Moran’s I of residual of OLS model are 0.43 and 0.38*,
respectively.

* p ≤ 0.01.
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heavy weights on housing built between 1950 and 1970 and structure
age) was positively associated with UTC. In Washington, a high per-
centage of housing built in the1980s was positively correlated with
UTC, while a high percentage of housing built after 1990 was nega-
tively correlated.

4. Discussion

Our findings supported Hypothesis 1 (H1), which stated that
neighborhoods that remained relatively wealthy would have more tree
canopy. The results of our stepwise regression models confirmed that
“stable wealthy” (NB5) was significantly and positively associated with
UTC. However, income instability had different associations with UTC
in the two cities, which have different growth trajectories. We were
surprised to find that in Washington D.C., which is in a revival phase,
both positive and negative income changes were negatively correlated
with the extent of UTC. One could argue that new development and
construction in rapidly gentrifying Washington D.C. leads to tree loss,
but further investigation is required to substantiate or disprove that
argument. Model results also indicated that stable-impoverished status
does not always have a negative relationship with UTC. In Washington,
a city that has undergone rapid changes in the past decade, stable-im-
poverished status was not a significant variable at all. But in Baltimore,
which has been shrinking in recent decades, income stability, whether
remained-wealthy or remained-impoverished, was a significant pre-
dictor of the extent of canopy cover. Thus, H2 and H3 were not fully
supported.

Hypothesis 4 which stated that increasing wealth occurs with in-
creasing tree canopy, was supported. We did find UTC gains in in-
creasing-wealthy neighborhoods (NB4) in Washington, DC.
Surprisingly, we also found that Washington neighborhoods with de-
creasing wealth (NB2) had the highest UTC gain, the opposite of
Hypothesis 5. This may due to previous planting and care when the
neighborhoods were relatively wealthy. However, without proper care,
trees can die in over time, which may be part of the reason that the NB2
group had the second highest rate of tree canopy loss of all neighbor-
hood types. A report (O’Neil-Dunne 2009b) on the relationship between
UTC and land use reveals that residential areas offer more potential for
planting trees than any other type of land use in Washington D.C. As-
suming that most of Washington’s UTC gain occurred in residential
areas, one possible explanation for the correlation between decreasing
wealth and UTC is that planting and maintenance efforts in the past
have affected present-day UTC. It takes time for trees to grow, and the
past investment in growing and maintaining trees may have resulted in
high canopy gains in economically declining neighborhoods. This ex-
planation is consistent with the findings of Boone et al. (2010) that past
social and built-environmental conditions were better predictors of UTC
than current conditions.

Hypothesis 5 also unsupported, stated that neighborhoods with

decreasing wealth (NB2) would show canopy loss and/or little canopy
gain. Indeed, there were relatively large canopy losses in economically
declining neighborhoods in Washington D.C. in comparison to the
losses in NB4 and NB5. Nevertheless, tree canopy gain was highest in
neighborhoods with declining wealth. Hypothesis 6 was not supported
either. In Washington, stable-impoverished neighborhoods (NB1) had
the largest loss of preexisting UTC, but also higher-than-average UTC
gain (new planting and growth).

In both cities, a high percentage of structures built in the 1950s was
positively associated with UTC. Areas with housing built predominantly
in the 1950s may have inherited trees from past residents. During the
1950s, both cities had robust tree-management programs (Merse et al.,
2009; Buckley, 2010; Rodier, 2011). Future studies might productively
examine past tree-management programs and their relationship to
present-day UTC. In Baltimore, UTC was positively associated with high
percentages of structures built in the 1950s, 60s, and 70s. It may be that
tree canopy is more extensive in older areas simply because the trees in
these places have had longer to grow than they have in newer areas.

Our spatial regression models indicated that the combination of
ethnic minority and middle or low socioeconomic status was negatively
associated with UTC cover. That association bears further study. While
much research has explored environmental injustice between white and
African American populations, and the history of segregation that
limited African Americans’ access to environmental goods (e.g., Boone
et al., 2009), little attention has been paid to how those issues affect
Hispanics and Asians in Baltimore and Washington.

There are several possible explanations for our finding that a high-
socioeconomic-status population was not a significant predictor of
UTC in Washington D.C. Rapid population growth could be a driver
that has led to rapid change and new development that has had ad-
verse effects on tree conservation and new planting. It would be useful
to examine whether new urban lifestyles (i.e., compact growth with
housing options near jobs, shops, and schools, and reduced de-
pendency on the automobile) will hinder or support UTC plans. A
second explanation is that neighborhood change occurs at a faster rate
than changes in UTC. Thus, increasing affluence may not manifest in
UTC for several decades. More long-term UTC-change data are needed
to test this explanation. Future studies to examine the relationship
between UTC and variables related to planning, such as land-use
change and zoning, could contribute to assessing and developing UTC
and municipal UTC plans.

Tree conservation is as important as tree planting. Although we
found new planting in some impoverished neighborhoods in D.C., the
loss rate of preexisting trees was much faster than the rate of UTC gain
(new planting and growth). Low-income neighborhoods may lack re-
sources, knowledge, or incentives to maintain healthy trees. And re-
sidents of low-income areas might avoid tree planting to prevent rising
rents and gentrification (Schwarz et al., 2015). Research that improves
our understanding of the drivers of tree loss can help municipalities in
their efforts to develop conservation plans that consider specific
neighborhood characteristics and needs.

5. Conclusion

Many urban ecological studies focus on how urban growth impacts
ecosystem services. We were specifically interested in how changes in
population and economic activity affect the distribution of tree cover.
This study is among the first to investigate the relationship between
income dynamics, an indicator of social change, and the distribution of
UTC. Although a recent cross-city study (Schwarz et al., 2015) found
that high-income neighborhoods are more likely than low-income
neighborhoods to have higher tree canopy cover, our analyses, using a
more complex set of time-series data, suggest that income is not the
only determinant of tree canopy cover, and that the impacts of income
change on tree canopy cover vary between cities. Our study shows that
high socioeconomic status is not necessarily a significant predictor of

Table 9
Results of spatial lag model for Baltimore, MD (R2 = 0.75).

Variables Coefficient

Constant 5.05*

Component 1 1.49*

Component 2 −1.07
Component 3 1.50*

Component 4 −0.01
Component 5 −1.36*

Component 6 −1.30*

Component 7 0.90
Lag Coefficient (Rho) = 0.77*

Moran's I of residuals =−0.03

Note: The R2 and Moran’s I of residual of OLS model are 0.46 and 0.33*,
respectively.

* p≤ 0.01.
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high tree canopy cover in a fast-growing city. Trees take years to grow.
Social conditions and structure can change more rapidly than trees can
reach maturity.

Our analysis compared two cities with comparable regional cli-
mates, population sizes, diversity, and racial history, but different
growth patterns over the past 20 years. We found some evidence for
associations between neighborhood change and changes in UTC in
Washington D.C. over a 5-year period. With longer time frames and
more data from Baltimore, we may be able to learn more about the
relationships among neighborhood transitions, urban land-cover
change, and temporal lags and legacies. Our study can help inform ef-
forts to understand the mechanistic relationships between neighbor-
hood characteristics and UTC change (Grove et al., 2015).

Lack of UTC is an inner-city problem that needs to be considered in
municipal sustainability and UTC plans. Spatial and temporal distribution
of UTC result from complex interactions in heterogeneous social-ecological
systems. The distribution of UTC in the two cities suggests that low-income
neighborhoods may lack the resources, capacity, authority, or desire to
overcome a scarcity of the benefits that are provided by tree canopy.
Stable-impoverished neighborhoods had the lowest UTC cover and largest
proportion of tree loss compared with other types of neighborhoods.
Although there were new planting efforts in stable-impoverished neigh-
borhoods in Washington, D.C., they were not enough to stem the overall
loss of tree canopy in those neighborhoods. Environmental justice is fre-
quently included as one of the objectives of urban tree canopy goals.
However, merely increasing the investment in new planting in low-income
and low-UTC areas may not produce a lasting increase in tree canopy.
Preventing tree loss and providing incentives for planting and maintaining
trees in residential areas may be as important as new planting im-
plemented by municipalities.
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