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Abstract. 1. Dispersal and host detection are behaviours promoting the spread of
invading populations in a landscape matrix. In fragmented landscapes, the spatial
arrangement of habitat structure affects the dispersal success of organisms.

2. The aim of the present study was to determine the long distance dispersal capabilities
of two non-native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified
and fragmented landscape with non-native pine trees. The role of pine density in relation
to the abundance of dispersing beetles was also investigated.

3. This study took place in the Southern Alps, New Zealand. A network of insect panel
traps was installed in remote valleys at known distances from pine resources (plantations
or windbreaks). Beetle abundance was compared with spatially weighted estimates of
nearby pine plantations and pine windbreaks.

4. Both beetles were found >25km from the nearest host patch, indicating strong
dispersal and host detection capabilities. Small pine patches appear to serve as stepping
stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance
had a strong inverse association with pine plantations and windbreaks, whereas H. ater
abundance was not correlated with distance to pine plantations but positively correlated
with distance to pine windbreaks, probably reflecting differences in biology and niche
preferences. Host availability and dispersed beetle abundance are the proposed limiting
factors impeding the spread of these beetles.

5. These mechanistic insights into the spread and persistence of H. ater and H.
ligniperda in a fragmented landscape provide ecologists and land managers with a better
understanding of factors leading to successful invasion events, particularly in relation to
the importance of long-distance dispersal ability and the distribution and size of host
patches.

Key words. Biological invasions, Coleoptera: Scolytinae, exotic bark beetles, inverse
distance weighting.

Introduction dispersal ability, effective host detection, and the availability
of host resources are also clearly associated with colonisation
success (Byers, 1996; Skarpaas & @kland, 2009). One group
of successful colonisers are bark and ambrosia beetles, which
can accidentally be transported in logs shipped overseas or

in wooden pallets, crates, and dunnage (Brockerhoff ezal.,

Which traits make wood and bark-boring beetles one of the
most successful groups of biological invaders? In addition
to high propagule pressure (Brockerhoff eral., 2014), good

Correspondence: Kevin D. Chase, Department of Entomology, Uni-

versity of Minnesota, 1980 Folwell Avenue, St Paul, MN 55108, U.S.A.
E-mail: kchase @umn.edu

“Current address: Department of Entomology, University of Min-
nesota, 1980 Folwell Avenue, St Paul, MN 55108, U.S.A.

© 2016 The Royal Entomological Society

2006a; Piel et al., 2008; Liebhold et al., 2012). After transport,
emerging populations may establish, potentially causing major
ecological and economic damage (e.g. Ips grandicollis Eich-
hoff, Dendroctonus valens LeConte, and Xyleborus glabratus
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Eichhoff) (Morgan, 1967; Yin, 2000; Rabaglia et al., 2006). In
total, 8286 interceptions of Scolytinae were recorded by port
inspectors from 1984 to 2008 in the United States and more
than 1500 in New Zealand from 1950 to 2000 (Brockerhoff
etal., 2006a; Haack etal., 2014). After establishment, popula-
tions may subsequently expand their range into regions with a
suitable habitat; this spread occurs as a combined result of both
population growth and dispersal (Skellam, 1951; Williamson,
1996; Liebhold & Tobin, 2008).

While the majority of spreading insect individuals typically
disperse relatively short distances, a small fraction may disperse
very long distances, passively (e.g. anthropogenic transport),
actively (e.g. flying), or semi-passively (e.g. an actively flying
insect carried by the wind), to novel habitat locations (Coulson,
1979; Shigesada eral., 1995; Suarez etal., 2001; Liebhold &
Tobin, 2008). The consequences of such a ‘fat-tailed” dispersal
kernel can include increased rates of range expansion, damp-
ened inbreeding depression, escape from predators and para-
sitoids, and reduced intra-specific competition (Dytham, 2009).
Risks and costs associated with long-distance dispersal include
arrival at locations with a low-quality habitat (or unsuitable
habitat) or dispersal beyond the climatic limit of the species
(Dytham, 2009; Bonte et al., 2012). Additionally, low numbers
of colonising propagules are subject to Allee effects (inverse
density dependence), potentially resulting in establishment fail-
ure and a slower spread (Kot eral., 1996; Keitt etal., 2001;
Taylor & Hastings, 2005; Kanarek ez al., 2014).

The ability of a dispersing organism to detect a suitable host
and reproduce is a critical component of successful establish-
ment (Moeck etal,, 1981). Bark beetles can be attracted to
host tree volatiles such as alcohols and terpenes (Person, 1931;
Moeck etal., 1981; Borden, 1989; Miller, 2006). Trees that are
physiologically stressed or mechanically wounded can attract
the first colonising bark beetles (Raffa & Berryman, 1983;
Phillips eral., 1988; Wallin & Raffa, 2000, 2002; Pureswaran
etal., 2004). In some bark beetle species, pioneer beetles pro-
duce aggregation pheromones that attract conspecifics, some-
times causing mass-aggregation on hosts that allow the beetles
to overcome host defenses (Wood, 1982; Raffa & Berryman,
1983). At close range, visual cues may also become important in
host detection by colonising bark beetles (Hynum & Berryman,
1980; Wood, 1982; Saint-Germain et al., 2007).

The goal of the present study was to determine how far
invading bark beetles disperse from host resources, to improve
our understanding of dispersal dynamics during biological
invasions. Specifically, we investigated long-distance dispersal
and the abundance of two non-native bark beetles in relation to
host plant density in remote regions of New Zealand at varying
distances from pine plantations and pine windbreaks (also
called shelterbelts) across diverse landscapes. We also related
abundance to spatially weighted estimates of pine density.

Methods and material

Study system

Hylastes ater Payk. and Hylurgus ligniperda F., both native
to Eurasia, are two of the world’s most successful bark beetle

colonisers and have established in many southern hemisphere
countries with pine plantations, including South Africa, Chile,
Argentina, Australia, and New Zealand (Brockerhoff eral.,
2006a). Although neither species kills living trees, as they are
saprophytic (dead wood infesting) insects, both species are
facilitators of timber-degrading ophiostomatoid fungi in the
genera Ophiostoma and Leptographium (McCarthy et al., 2013).
Hylastes ater was detected in New Zealand in 1929 (Clark,
1932) and H. ligniperda in 1974 (Bain, 1977). Since their
introduction, both species have spread to most pine plantations
throughout both the North and South Islands of New Zealand.

In New Zealand, there are no native species in the family
Pinaceae; however, many species have been introduced for
ornamental and timber production purposes and 18 species have
become naturalised (Webb eral., 1988). Non-native plantation
forests (including Pinus spp. and Douglas fir Pseudotsuga
menziesii) cover ~1.7 Mha and are a major component of the
New Zealand economy (NZFOA, 2014). Unfortunately, wilding
pine and Douglas fir trees have become important invaders in
New Zealand covering at least 500000 ha in the South Island
alone (Ledgard, 2001; Gous et al., 2014). Many wilding conifer
stands are young and vigorous with little dead wood and thus
should not currently provide suitable host material for H. ater
and H. ligniperda to breed in. However, as these stands mature
or trees are killed to limit the spread of wilding conifers, the
stands could provide suitable bark beetle host material.

Trapping network

To sample dispersing H. ater and H. ligniperda, we deployed
169 traps across 12 study areas (11 areas in the Southern
Alps and one area on Stewart Island) and 10 control (possible
beetle-source) areas (five pine plantations, two wilding pine
areas, and three pine windbreaks) throughout the South Island
of New Zealand from October 2012 to March 2013 (Fig. 1,
Table 1). Study areas were selected to vary in distance and
isolation from operational pine plantations, including several
areas located in remote valleys vegetated by grasslands and
surrounded by mountains with native vegetation and no pines.
In all study areas, the dominant vegetation type was recorded
(obtained from the Landcare LRIS portal, Land Cover Database
v4.0 [Informatics Team Landcare Research, 2015]) within each
valley (Table 1).

Traps consisted of black panel insect traps (Kerr ez al., 2016)
baited with the host (Pinus spp.) primary attractants a-pinene
(release rate of c¢. 0.76 gday™') and ethanol (release rate of
c. 0.02gday™") (Kerr etal, 2016) that are known to attract
both H. ater and H. ligniperda (Reay & Walsh, 2002; Petrice
etal., 2004; Brockerhoff eral, 2006b; Costa etal., 2013).
Currently, no secondary attractants (i.e. sex pheromones) are
known from either species of bark beetle (Perttunen, 1957;
Petrice et al., 2004; Brockerhoff et al., 2006b). Lures consisted
of attractant baits with 150ml of each attractant in separate,
sealed polyethylene bags. All panel traps were hung from metal
fence posts (~1.5 m tall) deployed in pairs separated by ~0.5 km
and located along transects with at least 3 km between trap pairs
(mapped using a handheld GPS). The length of each transect and
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Fig. 1. Location of the 156 traps in the Southern Alps and 10 traps in Stewart Island, and local density of pines derived from the Landcare LRIS
portal, Land Cover Database v4.0. Refer to Table 1 for categorisation of study and control sites and for codes to site names. Pine density represents
the following % cell coverage: low =0.1—17; medium low = >17-36; medium = >36—-57; medium high =>57-81; high=>81-100. White pixels on
land represent zero pine density. [Colour figure can be viewed at wileyonlinelibrary.com].
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Table 1. Site characteristics and trapping results across South Island and Stewart Island, New Zealand.

Trapping Nearest pine
period #Trap plantation Hylurgus ligniperda  Hylastes ater/
Site Vegetation type # Traps (month/year) days (~km)* /trap/week trap/week
Ashley forest (AF)* Exotic Forest 3 10/13-4/14 188 0 75.05 2.45
Balmoral forest (BF)* Exotic Forest 2 10/13-4/14 149 0 3.68 0.43
Rockwood forest (RW)T Exotic Forest 2 10/13-1/14 181 0 3.17 0.02
Hanmer Springs forest (HS)"  Exotic Forest 4 11/13-4/14 144 0 0.72 0.57
Oxford forest (OX)" Exotic Forest 2 10/13-4/14 181 0 0.00 0.00
Selwyn windbreak (SS)T Exotic Forest, exotic 2 10/13-4/14 181 23 0.40 0.04
grassland
Westerfield windbreak (WS)+ Exotic Forest, exotic 2 10/13-4/14 181 27 0.04 0.00
grassland
Rockwood windbreak (RS)* Exotic Forest, exotic 2 10/13-4/14 181 2 0.02 0.04
grassland
Cragieburn wilding pine (CB)" Exotic Forest, exotic 4 9/13-4/14 202 1 0.77 0.75
grassland
Mt. Barker wilding pine (MB)" Exotic Forest, exotic 4 9/13-4/14 218 16 0.16 0.05
grassland
Island Hills (IH)* Exotic grassland, exotic 12 11/13-2/14 103 0 7.15 0.05
forest, kanuka and
manuka forest
Mt. White (MW)* Exotic grassland and grey 14 9/13-4/14 202 13 0.29 0.74
scrub
Glynn Wye (GW)* Exotic grassland and 8 11/13-3/14 144 15 0.47 0.54
exotic forest
Avoca river (AV)¥ Exotic and tussock 10 9/13-4/14 218 18 0.20 0.07
grassland, grey scrub
Wilberforce river (AV) Exotic grassland and grey 14 9/13-4/14 218 22 0.0005 0.00
scrub
Rakaia river (RG)* Exotic grassland 20 9/13-4/14 188 24 0.09 0.06
Boyle river (BR)* Exotic grassland 10 11/13-3/14 134 25 0.2 0.27
Upper Grey (UG)* Indigenous forest and 6 12/13-3/14 106 29 0.03 5.66
exotic grassland
Haketere (HP)* Exotic and tussock 16 11/13-4/14 132 33 0.07 0.08
grassland
Lake Heron (LH)* Herbaceous freshwater 12 9/13-4/14 199 34 0.18 0.03
vegetation, grey scrub
and exotic grassland
Lewis Pass (LP)* Exotic grassland 10 12/13-3/14 132 40 0.03 0.2
Stewart Island* Indigenous forest and 10 1/14-4/14 89 40 0.00 0.09

broadleaved indigenous
hardwoods

Two letter codes can be used to identify sites in Fig. 1.
«Straight line distance from nearest operational pine plantation to center of transect.

FControl site.
FStudy site

number of trap pairs varied with the length of the study area.
Each pine windbreak area (N =3) contained one pair of traps,
and both wilding pine areas contained two pairs of traps.

The number of traps placed in Pinus radiata pine plantations
varied from two to four. Traps placed in Ashley Forest (a
pine plantation) were part of a national forest insect survey
programme (S. M. Pawson, unpublished). The two traps from
the Oxford Forest plantation were not included in the analysis
because they were filled with pine needles at every trap check,
which prevented bark beetles from entering and/or allowed
them to escape. All Pinus radiata plantations used in this study
received at least one stand harvest within ~2 years of trapping

to ensure suitable breeding material (recently dead stumps
and slash) was available to populations of H. ligniperda and
H. ater.

Sampling periods varied from 89 days (Stewart Island) to
218 days (Wilberforce and Avoca; Table 1), according to local
weather conditions and site access restrictions. The variation in
duration of trapping periods may present a temporal bias, but we
accounted for this in the statistical analysis (see below).

The identity of H. ater adult samples trapped on Stewart Island
was confirmed by John Bain (New Zealand Forest Research
Institute/Scion) and specimens deposited in the National Forest
Insect Collection at the New Zealand Forest Research Institute,
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Rotorua, as this was the first record of this species on Stewart
Island.

Distance measurements

The distance from individual traps to the nearest operational
pine plantation was measured in ArcMap (version V 10.1; ESRI,
2011) using the New Zealand mainland exotic vegetation layer
imported from the Landcare LRIS portal, Land Cover Database
v4.0. A straight-line distance was measured from the edge of
the nearest pine plantation to the centrepoint of the trap pair to
obtain distance.

Although we expected most bark beetles captured to originate
from pine plantations containing large amounts of the host
material (stumps and dead woody material in contact with
the ground), it is possible that dead pine tree material in
agricultural landscapes with windbreaks and small stands of
pines also provide host material for small populations to persist.
Therefore, we also measured the distance from individual traps
to the nearest pine windbreak. Distances were individually
measured in Google Earth (Version 7.1.4.1529) because the
Land Cover Database layer does not show all windbreaks.
Distance measurements were taken from satellite imagery taken
on 29 September 2013. We defined a windbreak as a continuous
stretch of Pinus spp. at least 25 m in length, except for Stewart
Island where a small private plantation of Pinus spp. was used
for the analysis, as it is the only continuous patch of Pinus spp.
on the island. Wilding pine areas in the geographic area were
generally young and vigorous stands (i.e. unsuitable bark beetle
habitat) and were hence not considered in the analysis as it is
highly unlikely that they contain any suitable breeding material.
A straight-line distance was measured from the trap to the edge
of the nearest pine windbreak.

Inverse distance weighted estimates

To quantify the effect of local pine density on bark beetle cap-
ture, we calculated inverse-distance weighted average estimates
of pine densities around each trap. Data on pine densities were
extracted from a national (New Zealand) vector GIS layer of pine
forest cover (Informatics Team Landcare Research, 2015). Indi-
vidual pine trees and very small windbreaks are not accounted
for in this GIS layer. This coverage was converted into a 1-km
raster layer with each raster cell coded as the proportion of the
cell covered by pine forests. This vector-to-raster conversion
was performed using ArcGIS software (ESRI, 2011).

Two matrices (¢ and d) were used to delineate a fixed
neighbourhood of pine density and distance from a focal point
(insect trap) (Liebhold ef al., 1993). The first matrix, ¢, contained
I x 1km? cells with values of conifer density based on the
New Zealand mainland exotic raster layer used previously for
straight-line distances. Note that the original vector coverage
corresponded to all conifers and we could not separate Douglas
fir (Pseudotsuga menziesii) from Pinus species. However, the
area of Douglas fir was small (<16%) so the density estimates
should be dominated by pines. The second matrix, d, was created
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using a distance decay function (Euclidean distance):

\/((xlim + 1) =x)" + (Glim+ 1) - y,)’

where xlim and ylim sets a maximum extent of the ¢ matrix
included to obtain estimates from the focal point x; and y;,.
The maximum extent used was 50km (i.e., 100X 100 cells)
because this distance would include at least one operational pine
plantation for all traps and we observed bark beetles up to 40 km
from any pine plantation (Table 1). Furthermore, because of the
nature of the inverse distance weighting function, points more
distant than 50 km would have a negligible effect on estimates.
Spatially weighted average pine density w around each trap
was computed from all raster cells within 50 km of each trap
location using an inverse distance power weight function,

d’
__t
1
&
1

where p =a power parameter that was varied to obtain the best
fit in the regression of trap capture on weighted pine density. The
inverse density function gives greater weight to nearby locations,
but the parameter p determines the rate at which the distant
areas decrease in their contribution to the estimate. Specifically,
if the best-fit model had a low value of p (e.g. 0.5), beetle
catch was affected even by remote pine stands, implying that
dispersal was effective over long distances, whereas if the best
fit model had a high value of p (e.g. 3.0), beetle catch was
affected mainly by local sources, implying limited long-distance
dispersal (see Lu & Wong, 2008). We tested models with a
P-value of 0.1, 0.5, 1, 1.5, 2, 2.5, and 3 and used the best-fit
value of p for all subsequent analyses for that species. Weighted
average pine densities were computed using a script written in
the R language (V. 3.2.3, R Development Core Team, 2015,
Supporting information Appendix S1).

w =

Statistical analysis

Counts (bark beetle trap~'; N = 167 traps) of H. ligniperda and
H. ater were analysed using negative binomial generalised linear
models with a log link in the statistical software R version 3.2.3
(R Development Core Team, 2015; R package mass, Venables &
Ripley, 2002). Negative binomial models were used to account
for overdispersion and to allow model comparisons based on the
Akaike Information Criterion (AIC) (Akaike, 1973). We did not
run models with combinations of weighted average pine density,
w, as these values would be highly autocorrelated because of the
nested structure of the data. Potential outliers that could cause
confounding effects on regression models were checked using
Cook’s distance considering a value of 1 as a threshold (Fox,
2002), but no influential outliers were found. Likelihood ratio
tests were used to assess the significance of the fixed term(s) in
each regression model (dropl command in R, Zuur ez al., 2009).
For each model, we also calculated the explained deviance, also
known as pseudo R?, according to Dobson (2002).

© 2016 The Royal Entomological Society, Ecological Entomology, 42, 173—183
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Four models were run for each species containing the follow-
ing predictors: (i) distance to the nearest pine plantation; (ii)
distance to nearest pine windbreak; (iii) weighted estimate of
pine density using a best-fit value of P as described above; (iv) a
multiple regression including distance to plantation, distance to
windbreak, and weighted pine density estimate. We used an off-
set function in all models to account for the variation in number
of trapping exposure days (Zuur et al., 2009).

Results
Pine distance and density effects on Hylurgus ligniperda

We captured 4900 H. ligniperda in pine plantations (84%
of all those captured). As expected, the highest trap catch of
H. ligniperda occurred in a pine plantation (Ashley Forest,
mean="75.5 trap~! week™!). For traps away from plantations,
we captured 844 H. ligniperda across all 11 sites in the Southern
Alps, but none on Stewart Island (Table 1). A total of 23 and 112
H. ligniperda were captured across the windbreak and wilding
pine sites, respectively. The most remote location at which H.
ligniperda was captured was 40.4km from the nearest pine
plantation and 26.3 km from the nearest pine windbreak.

Hylurgus ligniperda trap capture significantly decreased with
increasing distance to pine resources in all modelled scenar-
ios (Figs 2 and 3); it was negatively correlated with dis-
tance to pine plantation (L=likelihood ratio test statistic;
L=229.31,df =1, P=<0.001, deviance explained = 58%) and
distance to pine windbreak (L=34.77, df =1, P=<0.001,
deviance explained =17%; Fig. 2). The best distance power
function for weighted pine density for H. ligniperda was p =0.5
[AIC =861.3, next lowest AIC=2866.51 (P=0.1)], meaning
that distant pines constitute important sources of local catch
rates (i.e. long-distance dispersal is effective). Using this value
of p, H. ligniperda catch was significantly positively related
to pine density w (L=260.52, d.f.=1, P=<0.001, deviance
explained =61%; Fig. 3a). The multiple regression model,
which included distance to pine plantation, distance to pine
windbreak, and weighted density, was the best predictor of H.
ligniperda (i.e. the model with the highest explained deviance)
showing that all three different estimates of pine resources made
independent contributions to predicted catches (Table 2).

Pine distance and density effects on Hylastes ater

We captured 217 H. ater in pine plantations. Unexpectedly,
more H. ater were captured at non-plantation sites (Upper Grey
Valley: 37% of total capture, mean=5.7 trap~' week™!, Mount
White Station: 31% of total capture) than in pine plantations
(17% of total capture). A total of 1059 H. ater were captured
across the 12 non-plantation study sites in the Southern Alps and
on Stewart Island. Hylastes ater was captured at all 12 sites apart
from Wilberforce (Table 1), including on Stewart Island (this is
the first known record of H. ater on Stewart Island). A total of
four H. ater were captured across the three windbreak sites in
the Canterbury plains. At the wilding pine sites, 97 H. ater were
captured. The most distant captures of H. ater occurred 43.0 km
from the nearest pine plantation and 27.6 km from the nearest
pine windbreak.

Hylastes ater abundance was not significantly correlated
with trap distance from the nearest pine plantation (L =2.49,
df=1 P=0.11, deviance explained=2%). Unexpectedly,
the trap catch was significantly positively correlated with
increasing distance to the nearest pine windbreak (L =23.95,
df =1, P=<0.001, deviance explained =64%) (Fig. 2). The
best-fit-power function for H. ater abundance in relation to
pine density occurred at p=0.1 [AIC=2853.09, next lowest
AIC=847.23 (P=0.5)], a very low value indicating that
catches were affected strongly by even distant pine stands.
Relatively high numbers of H. ater were observed at the highest
values of pine density w but the highest abundances occurred
at intermediate values of pine density ((L=8.65, d.f.=1,
P=0.003, deviance explained =5%; Fig. 3b). The multiple
regression model including distance to the plantation, distance
to windbreak, and weighted pine density w was the best fit
model overall, showing that for H. ater these three different
measures of pine resource all contributed to predicted trap catch
rates.

Discussion

The Eurasian bark beetles H. ater and H. ligniperda are inva-
sive pests that have successfully colonised most pine-growing
countries in the Southern Hemisphere. Our results show that one
contributing factor to their invasion success could be their effec-
tive long-distance dispersal, as indicated by their abundance as a
function of host availability. The very low values for the spatial
scaling function p, and trap captures in some sites tens of kilome-
ters from the nearest pine resources all indicate surprisingly high
levels of long-distance dispersal in these two bark beetles. Over-
all, the present study provides new insight into traits positively
associated with the spread and establishment of two non-native
bark beetles and it has wider implications for bark beetle ecology
and biological invasions.

At the start of this study, we expected to find remote areas,
distant from, and typically devoid of pine resources (including
windbreaks and wilding pines), to be absent of H. ater and H.
ligniperda. As a general rule, the trap catch of forest insects is
usually strongly positively correlated with greater host density
(Hayes etal., 2009; Chase etal., 2014), even at the landscape
scale (Zausen etal., 2005). Yet, this was not consistently the
case. Instead, we captured both bark beetles in almost every area
we looked, often on more than one occasion throughout the flight
season. The observed relationships between trap capture rates
and distance from the host material (i.e. pine resources) differed
markedly between the two bark beetles. The trap catch rate of
H. ligniperda was closely associated with higher values of pine
density (i.e. pine plantations) whereas the clustering of H. ater
also occurred at intermediate values of pine density (i.e. larger
pine windbreaks).

Another unexpected result of this study was that in some of
the remote sites we captured more H. ater than H. ligniperda.
Previous studies indicate that H. ligniperda is the more abundant
species in New Zealand and Chile (Reay & Walsh, 2001;
Brockerhoft et al., 2006b; Mausel ez al., 2007; McCarthy et al.,
2010), but all of these studies took place in or near pine
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Fig. 2. Trap captures of H. ligniperda (left) and H. ater (right) as a function of distance to the nearest pine plantation (upper) or windbreak (lower).
Lines represent significant negative binomial generalized linear model fits; grey areas indicate 95% confidence intervals. N =167 traps. Each point

represents one individual insect trap.

plantations. We propose five possible (not mutually exclusive)
explanations for finding greater abundances of H. ater in remote
locations: (i) H. ater can colonise the root systems of damaged
trees (Chararas, 1962; Sopow etal., 2015) in pine windbreaks,
thereby using these resources as ‘stepping stones’ (Saura et al.,
2014) to spread through and persist in the landscape. In a recent
study, H. ater was captured in emergence traps placed around
the buttresses of damaged windbreak trees in New Zealand
(Be etal., unpublished data); (ii) H. ater has been in New
Zealand c. 35years longer than H. ligniperda which might
have allowed it to colonise more remote sites with low-density
host material; (iii) within pine plantations, H. ater could be an
inferior competitor compared to H. ligniperda, which would
be consistent with the greater abundance of the latter in areas
with a high density of pines; (iv) H. ater may be able to
better tolerate colder temperatures and wetter climates than
H. ligniperda. Initially, Hylastes ater was much more common
in plantation forests after establishing but has since declined in
areas where H. ligniperda is present (Reay, 2000). However, in
the southern half of the South Island where temperatures are
cooler and where H. ligniperda has invaded more recently (post
2004) and populations are still very low, H. ater was still found

at higher populations than H. ligniperda (Brockerhoff etal.,
2006b); (v) H. ater may be more prone to enter wind-aided long
distance dispersal than H. ligniperda. Species within the genus
Hylastes are particularly known to disperse long distances via
the wind (see paragraph below), and this may explain why in the
mountainous, windy regions of the Southern Alps we found high
numbers of H. ater at great distances away from pine resources.

Dispersal aided by wind (also known as anemochorous dis-
persal) is an important mechanism for spread that allows some
bark beetles to disperse great distances (Nilssen, 1978, 1984;
Compton, 2002; Nathan et al., 2003). Bark beetles can enhance
wind-assisted dispersal by flying higher into the air column
where winds are stronger. For example, Nilssen (1978) found
evidence of wind-aided long-distance dispersal by examining
fish guts in high mountain lakes ~180 km from the nearest major
spruce forests. Most relevant to the current study, Nilssen (1984)
captured both Hylastes cunicularius Erichson and H. brunneus
Erichson in either pine or spruce billets 171 km from the near-
est major spruce forest and ~78 km from the nearest pine forest,
indicating that Hylastes species can be particularly widely dis-
persed. In the same study, the bark beetle Dryocoetes hectogra-
phus Reitter and the bark-feeding weevil Hylobius abietis L.
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Fig. 3. Total beetle catch per trap as a function of pine density weighted estimate for (a) H. ligniperda and (b) H. ater. Lines represent significant
negative binomial generalised linear model fits using weighted pine density, calculated using the best-fit power scaling function p given on the x-axis.
Grey areas indicate 95% confidence intervals. Note differences in y-axis values.

Table 2. Multiple regression negative binomial GLM output from the dropl function in R predicting bark beetle trap capture across all sites,
2013-2014, predicted from distance to nearest plantation, distance to nearest windbreak, and weighted pine density (w).

Bark beetle Predictor d.f. Deviance LRT Pr (>Chi) Deviance explained
Hylurgus ligniperda Null - 167.12 - - 67%

Distance plantation 1 184.5 17.38 <0.001 -

Distance windbreak 1 177.31 10.19 0.001 -

Weighted density 1 194.14 27.04 <0.001 -
Hylastes ater Null - 158.85 - - 26%

Distance plantation 1 162.61 3.75 0.05 -

Distance windbreak 1 194.29 35.44 <0.001 -

Weighted density 1 163.66 4.81 0.03 -

Weighted density was calculated using best-fit estimates for power function p (0.5 for H. ligniperda, 0.1 for H. ater), see text.

were also found at these distances (Nilssen, 1984 and references
within). Wind-aided dispersal of H. abietis was also investigated
by Solbreck (1980) who estimated that the majority of beetles
travelled between 10 and 80 km. Because our study took place
in the Southern Alps, a mountainous region with frequent strong
winds, wind-aided dispersal is a likely mechanism that explains
the detection of H. ater and H. ligniperda in remote river valleys.

Additional studies measuring long-distance dispersal have
been conducted for bark beetles in the genus Dendroctonus. For
example, Miller and Keen (1960) measured the dispersal of the
western pine beetle Dendroctonus brevicomis LeConte from the
natural pine forest edge to isolated patches of Pinus ponderosa
Douglas ex. C. Lawson and concluded that beetles dispersed
between 3.2 and 30 km. Dendroctonus valens LeConte, invasive
in China, was recorded dispersing 20—35 km in the Luliang and
Taihang mountains (Zhang eral., 2002). In the United States,
Smith (1971) reported D. valens flying distances of up to 16 km.
Airborne mountain pine beetles (Dendroctonus ponderosae
Hopkins) were found at 800m above the forest canopy in

western Canada, and with wind assistance, were estimated
to spread 30—110kmday~' (Jackson etal., 2008). Flight mill
studies conducted in laboratory settings have provided estimated
flight distances of Dendroctonus and Ips bark beetles of up to
45 km (Atkins, 1961; Jactel & Gaillard, 1991; Byers, 2000).

Additionally, the movement of firewood and timber could
explain the occurrence of H. ater and H. ligniperda in areas
without host resources; it is a known pathway for the movement
of other bark and wood-boring beetles (Haack eral., 2010).
Pinus radiata is commonly used for firewood throughout New
Zealand and this may help explain the presence of H. ligniperda
and H. ater in sites near backcountry homesteads. On Stewart
Island, Pinus spp. firewood is commonly moved across Foveaux
Straight from the South Island (Chase, pers. obs.), and we
suspect this is the most likely pathway for the invasion of H.
ater of Stewart Island.

After dispersal to a new area, beetles have to find and
colonise suitable host material. This is a multistep process
dependent on the physiological state of the beetle and local
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environmental conditions (Wallin & Raffa, 2000; Raffa eral.,
2016). Both primary attraction and random landing are proposed
as mechanisms of how a pioneer bark beetle finds a host
(Person, 1931; Jactel eral., 2001; Zhang & Schlyter, 2004;
Saint-Germain etal., 2007). For colonisation to occur, host
material must be in a suitable physiological state (in this case,
dying or dead pine materials). Additionally, because no sex
pheromone which could cause aggregation has been detected
for H. ater and H. ligniperda, it is also necessary for both a
male and female to arrive to the same host at the same point
time, reducing the chance of successful colonisation. However,
there is evidence that H. ligniperda can mate with siblings before
dispersal and, therefore, females may not need to find a mate
upon arrival, increasing the probability of colonisation success.
Establishing a continuing population in remote locations is
dependent on availability of ephemeral hosts, the number of
arriving beetles, and the ability to find both host and mate.

In scenarios where bark beetles disperse randomly and
invade previously un-colonised suitable host-forest, establish-
ment becomes dependent on both host density and propagule
pressure (Lockwood etal., 2005; Nowicki eral., 2014). Addi-
tionally, as insects disperse across a landscape, the chances of
population establishment decrease with increasing distance from
source populations; Allee and stochastic effects may limit the
capacity for low-density populations to establish (Tobin ez al.,
2007; Kanarek ez al., 2013), leading to a ‘range-pinning’ effect
(i.e. population establishment thresholds create an abrupt edge
at the limit of a species’ spatial distribution) (Keitt ez al., 2001).
However, it has recently been proposed that spread can still
occur through a landscape if a portion of habitat patches have
reduced Allee thresholds (Walter eral., 2016). In the present
study, we found that two highly successful saprophytic bark bee-
tles were remarkably effective dispersers and their main limita-
tion for range expansion appears to be the shortage of host mate-
rial in areas away from large pine forests. That such small beetles
appear to have very high dispersal capabilities is important both
for understanding the processes determining which species are
successful biological invaders and for designing effective biose-
curity incursion response plans.
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