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Abstract— Climate change is altering the water-table (WT)
height and near-surface moisture conditions in northern peat-
lands, which in turn both increases the susceptibility to fire and
reduces the carbon sink capacity of these ecosystems. To further
develop remote sensing-based measurements of peatland mois-
ture characteristics, we employed coincident surface reflectance
and moisture measurements in two Sphagnum moss-dominated
peatland sites. We applied the Mexican hat continuous wavelet
transform to the measured spectra to generate wavelet features
and coefficients across a range of scales. Overall, wavelet analysis
was an improvement over the previously tested spectral indices
at both the study sites. Linear mixed effect models for WT
height using wavelet features accounted for more of the variance
with both an improved marginal R2 (29% greater) and a larger
conditional R2 (21% greater) compared to the best performing
spectral index. While spectral indices performed similarly with
wavelet coefficients for moisture content measured at 3 cm depth,
they performed poorly for volumetric moisture content measured
at 7 cm depth. The current study also revealed the advantage
of selecting the best subsets of wavelet features based upon
genetic algorithm over a more widely used technique that selects
features based on correlation scalograms. It also provided new
insights into the significance of various spectral regions to detect
WT alteration-induced vegetation change.

Index Terms— Genetic algorithm (GA), hyperspectral, peat
moisture, vegetation indices, wavelet transform.
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I. INTRODUCTION

PEATLAND ecosystems, which are distributed mainly
across boreal and subarctic regions, likely reserve >30%

of soil organic carbon (470–620 Pg), despite representing only
about 3% of the global land surface [1], [2]. The accumulation
of peatland carbon generally depends on flooded conditions
that impede rates of decomposition. Thus, the formation and
maintenance of boreal peatlands are influenced by site condi-
tions that maintain a high water-table (WT) (such as the pres-
ence of perennially frozen ground and changes in precipitation
patterns and hydrology [3]). The strong controls of climate
and hydrology on peat formation make peatlands particularly
sensitive to climatic conditions [4], [5]. As such, monitoring
tools for measuring WT position and near-surface moisture
contents in a changing climate are needed to understand
the potential changes in peatland carbon balance, and would
greatly inform modeling efforts to understand the peatland
carbon dynamics. (see [6], [7]).

Collecting detailed ground-based hydrological measure-
ments in peatlands over large spatial scales is extremely
challenging. However, Sphagnum mosses, which often dom-
inate ground cover in northern peatlands, are highly sensi-
tive to changes in the near-surface moisture condition and
WT position [8]. Due to Sphagnum mosses’ physiology, their
hydrological conditions can often be inferred via changes in
their surface reflectance [8]–[12]. Remote sensing has been
widely used to infer the moisture content of vegetation and
fuels [13]–[15]. Assessments of surface moisture content and
WT position typically employ spectral indices leveraging the
near infrared (NIR) and short wave infrared (SWIR) regions
of the electromagnetic spectrum. Usually, one of the bands
related to strong water absorption regions are used in com-
bination with an NIR band as a reference to normalize the
effect of background and vegetation structure variability. For
example, Harris et al. [10] and Meingast et al. [12] employed
the floating water band index (fWBI) in the NIR and moisture
stress index (MSI) in the SWIR to assess the Sphagnum
moisture status and WT position in peatland ecosystems.
They reported high correlations between the Sphagnum surface
moisture content and both fWBI and MSI. Highly significant
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relationships were also reported between these spectral indices
and the WT position [11], [12].

Although many studies (see [9]–[11], [16]) have employed
remote sensing data to characterize the peatland moisture
status and WT positions, relationships have typically been
assessed based on individual Sphagnum plants and relatively
homogeneous Sphagnum canopies. These studies were also
often constrained by field measurements being confined to
ranges typical of nondrought conditions or seasonally high
WT positions. Building on these studies, Meingast et al. [12]
tested the utility of a suite of spectral indices for assess-
ing moisture conditions through a series of manipulation
experiments in both small experimental plots (mesocosms)
and extended field studies representing a broad range of
WT positions as well as mixed species assemblages. They
found a strong relationship between spectral indices and
near-surface moisture condition (3 cm depth) in the field,
but the relationship weakened for WT height and moisture
content at greater depths (7 cm) at the experimental plots.
The moisture variation was greater at the experimental plots
as experimental manipulations ranged from extreme drought to
high WT conditions. Studies carried out in forested ecosystems
have demonstrated that models employing spectral indices
perform poorly in areas that have large variation in moisture
values [17], [18]. The vegetation spectral response to changes
in moisture content vary across the NIR and SWIR regions:
as moisture content decreases, the strong water absorption
features become weaker, the amplitude of SWIR region
increases, and the absorption features corresponding with leaf
dry matter constituents (e.g., protein, lignin and cellulose)
become more apparent [18]. As such, spectral indices that
only employ 1–2 water absorption features often do not
capture the full range of moisture variations-induced spectral
changes.

Wavelet analysis has recently emerged as a promising
remote sensing analysis tool for analyzing spectral variations
that occur at multiple discrete wavelengths or for analyzing
spatial assemblages of similar spectral values that exist over
a range of discrete sizes [19], [29]. Vegetation reflectance
is governed by a suite of parameters, including leaf pig-
ments, moisture content, leaf dry matter, vegetation structure,
and background reflectance, among others. The sensitivity of
reflectance to these parameters is scale dependent, as some
impact reflectance locally across a narrow range (e.g., chloro-
phyll) while other reflectance is evident over a broader region
of the spectrum (e.g., vegetation structure). Furthermore, para-
meters such as leaf moisture content and dry matter impact
reflectance across multiple scales (i.e., across narrow and
broad absorption features) [23], [30]. Wavelet analysis, which
transforms the reflectance spectrum into coefficients resolving
at high scales (e.g., narrow absorption features) and low scales
(e.g., broad absorption features), is well suited for analysis
of signals that vary across multiple scales and wavelength
positions. As such, wavelet analysis has been increasingly
used in vegetation analysis via spectroscopic remote sensing.
Recent studies have also demonstrated the utility of wavelet
analysis for estimating leaf and canopy water estimation using
field-based and imaging spectroscopy [18], [31]–[33].

The major step in wavelet analysis is the selection of an
optimum number of wavelet coefficients associated with a
given type of spectral feature [34]. This enables the iden-
tification of the range of characteristic scales the feature
exists over that can be used to build an empirical model
predicting an attribute of interest (e.g., moisture content).
Cheng et al. [18] introduced a coefficients selection technique
that is based upon the correlation between wavelet coefficients
and moisture content. While this approach showed promise,
it does not necessarily generate the optimal combination of
wavelet coefficients that best describe the variation in the
independent variable (e.g., moisture content). This is because
a multiple regression model does not require that all dependent
variables be highly correlated with the independent variable,
rather they, in combination, provide the lowest modeling or
prediction error. A potential alternative approach is to conduct
wavelet coefficients selection using the theory of genetic algo-
rithms (GAs), which is widely implemented by studies involv-
ing imaging spectroscopy for vegetation analysis [35]–[37].
Recently, it has also been explored and demonstrated as a use-
ful technique for selecting wavelet coefficients [28], [38], [39].

As a result, the overarching goal of this study is to eval-
uate the utility of spectroscopic wavelet analysis to improve
understanding of moisture dynamics in peatland ecosystems.
This is achieved via the analysis of data at an experimental
peatland manipulation facility as well as at a natural peatland
site. Specifically, we seek to answer three questions as follows.

1) Is spectroscopic wavelet analysis an effective means to
characterize peatland moisture dynamics?

2) What is the most efficient means for selecting the
wavelet coefficients in that analysis of spectroscopy
data?

3) What spectral regions (of multiple scales) are influenced
by moisture variation?

To answer the first question, we compare wavelet-derived
moisture estimates with moisture estimates derived via spectral
indices used in previous studies to estimate the moisture of
peatland vegetation. The second question is addressed via
a comparison of two coefficient selection strategies, a GA
approach and an approach based on correlation scalogram.
We analyzed different wavelet coefficients with respect to their
scales and wavelength positions to answer the third question.

II. METHODS

A. Study Sites

This study utilized the data set collected and described
in [12]. The data set was collected at two sites, one outdoor
peatland manipulation experimental facility and one natural
peatland field site. The outdoor experimental facility allowed
us to undertake spectral analysis under an extreme range
of peatland moisture conditions and WT positions. The nat-
ural peatland field site facilitated additional assessment of
the methods under conditions with greater heterogeneity in
microtopography and vegetation structure. The sites and data
collection methods are described in detail in [12].

The outdoor experimental facility, called PEATcosm
(Peatland Experiment at The Houghton Mesocosm Facility) is
located at the USDA Forest Service Northern Research Station
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in Houghton, Michigan USA. The facility has 24 mesocosm
bins containing intact monoliths of peat extracted from
an extensive oligotrophic peatland in Meadowlands, MN
(N47.07278°, W92.73167° ) in May 2010. The peatland vege-
tation was dominated by the sedge Carex oligosperma Michx.,
ericaceous shrubs Chamaedaphne calyculata (L.) Moench.,
Kalmia polifolia Wangenh., Vaccinium oxycoccus L. and the
mosses Sphagnum rubellum Wilson, Sphagnum magellanicum
Brid., and Sphagnum fuscum (Schimp.) Klinggr. Three veg-
etation treatments were created by manipulating the plant
communities as described in detail in [40]: all ericaceous
shrubs were removed in the sedge treatment, all sedges were
removed in the ericaceae treatment, and the shrub and sedge
communities were left intact in the unmanipulated treatment.
The different water treatments in the PEATcosms were based
on the long-term WT trends from the USDA Forest Service
Marcell Experimental Forest (near the peat harvest sites).

The field site is located near Nestoria, MI (46°34′22.66′′ N,
088°16′44.85′′ W) and represents an extensive poor fen with
a maximum peat depth exceeding 5 m and approximately
30 ha in size. Unlike the PEATcosm experiment, this field
site allowed for destructive sampling for near-surface moisture
determination. The vegetation community composition of this
site was similar to that of PEATcosm. The overstory consists
of Larix laricina and Picea mariana and the understory
consists of mixed sedge (Carex spp.) and ericoid shrubs
(K. polifolia, C. calyculata, R. groenlandicum, A. polifolia
var. glaucophylla, Vaccinium spp.) with a Sphagnum moss
ground cover. Three species of Sphagnum are present: Spp.
magellanicum, Spp. angustifolium, and Spp. fuscum.

B. Reflectance Measurements

As described in [12], spectral data were collected using
an ASD Fieldspec 3 spectroradiometer (Analytical Spectral
Devices, Boulder, CO). The spectral measurements were
conducted at both the PEATcosm facility and the Nestoria
field site under clear and low haze conditions between
11:00 and 15:00 EDT. This spectroradiometer measures sur-
face reflectance over the spectral range of 350–2500 nm, with
a spectral resolution of 3 nm between 350 and 1000 nm
(1.4 nm spectral interval) and 10 nm for wavelengths from
1000 and 2500 nm (2 nm spectral interval). A linear inter-
polation routine produced reflectance measurements at every
1 nm interval within the wavelength range of the instrument.

ASD measurements were conducted immediately prior to
moisture and WT measurements at the PEATcosm facility.
An average of five ASD samples was recorded within each
bin from approximately 1 m above the vegetation surface using
a steel sampling frame to attach the spectroradiometer. In the
field study, systematic ASD measurements were taken at 10 m
intervals along three transects across a gradient of moisture,
canopy, and microtopographic conditions present at the site.
In an effort to accurately characterize the heterogeneity in
the system as well as increase the moisture variability in
the data set, measurement locations were alternated between
hummocks, lawns, and hollows. The spectral signatures from
both the PEATcosm experiment and field study were processed
using the statistical software package R (v3.0.1).

C. Moisture Measurements

Near-surface moisture [integrated 7 cm volumetric moisture
content (VMC)] was measured in the PEATcosm based upon
the apparent dielectric constant of the peat using a Thetaprobe
(Delta-T Devices, Cambridge, U.K.). Output voltage signal
was converted into VMC by applying a calibration equa-
tion based on peat samples from the Nestoria field site
(R2 = 0.77, RMSE – 0.13, n = 20). At the field site, cylinders
of the Sphagnum peat material were harvested by passing a
sharpened circular tin ring of 7 cm diameter through the peat
canopy to a depth of 3 cm. The samples were separated across
the bottom of the ring using a serrated knife. The fresh samples
were inserted into a preweighed plastic bag and weighed. Upon
returning from the field they were oven dried at 65 °C in a
preweighed paper bag to determine the moisture weight of the
samples. VMC was then calculated by multiplying moisture
weight by bulk density. Thetaprobe moisture measurements
were taken immediately following spectral measurements and
immediately prior to vegetation harvesting at the field site to
determine 7 cm VMC in a nondestructive manner.

D. Wavelet Analysis

Wavelet analysis resolves a signal over a range of scales
by convolving the signal with a series of wavelet daughter
functions {ψα, b(λ)}, which are generated by changing the
dilation (i.e., scale parameter) and positions of the mother
wavelet function (ψ(λ) as (see [19], [25], [26], [34])

ϕa,b (γ ) = 1√
a
ϕ

(
γ − b

a

)
(1)

where a > 0 and represents the scaling factor defining the
width of the wavelet and b is the translation parameter that
determines the location in the signal. Representing the data
at multiple scales by wavelet decomposition is somewhat
analogous to looking at data with moving windows of different
widths. The “gross” features (or trend) of the original data are
resolved at larger scales and “fine” features or (high frequency
variation) are resolved at small scales [22]. The final product of
wavelet decomposition constitutes a set of wavelet coefficients
that are a function of the scale of the analyzing wavelets and
the position of the signal (part of the signal being analyzed).

Wavelet transforms are applied in two primary forms:
discrete and continuous. In discrete analysis, wavelet
coefficients are usually sampled at some discrete scale and
positions, whereas in continuous wavelet transform (CWT),
data are analyzed at all the possible scales and positions.
In this paper, we chose the CWT because the scale
component is directly comparable to the input reflectance
spectrum on a band-by-band basis, and the results are
easy to interpret [18]. The second derivative of a Gaussian
function also known as the Mexican Hat wavelet was
used as a mother wavelet basis since previous research
has found it ideal for vegetation moisture estimation due
to the similarity between the shape of absorption features
and the shape of a Gaussian function. Since the wavelet
decomposition across a continuum of possible scales would
be computationally expensive and would ultimately lead to
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large data volumes, a discrete approximation of the CWT
was performed at dyadic scales 21, 22, 23, . . ., and 210 [25].
CWT analysis of a single plot spectrum (2151 bands)
in this case produces wavelet power scalogram of
2151 × 10 dimensions. Each element of the scalogram
is the wavelet power, which refers to the magnitude of each
wavelet coefficient that characterizes the correlation between
a subset of the input spectrum and a scaled, shifted version
of the mother wavelet [24]. For a simple representation of the
scalograms, these scales are labeled as scales 1, 2, 3, . . ., and
10 in the following section and are comparable to the scales
described in [18] and [23].

E. Wavelet Feature Selection Based Upon
Correlation Scalograms

A commonly employed wavelet feature selection technique
(see [18], [31], [32]) was used to identify the most important
CWT coefficients for WT height and VMC. The method to
select meaningful wavelet coefficients is comprised of four
steps, which are described in detail in [18]. In Step 1, the CWT
was applied to all reflectance spectra to calculate the wavelet
power as a function of wavelength and scale. A correlation
scalogram was then constructed in Step 2 by establishing R2

between each element of the wavelet power scalograms and
either WT or VMC. In Step 3, wavelet coefficients where
the R2 is not statistically significant (p ≥ 0.05) are masked
and the top 1% wavelet coefficients (as ranked by R2) are
extracted. In Step 4, wavelet coefficients with the maximum
R2 within each region are determined to represent the spec-
tral information captured by the feature region. Eventually,
a small number of sparsely distributed coefficients are selected
representing these regions and capturing the most important
information related to changes in either WT or VMC.

F. Wavelet Feature Selection Based Upon the
Genetic Algorithm

The GA [41], which is widely used for solving a range
of optimization problems, is a popular technique for variable
selection. To determine the “fitness” of random subsets of
variables, the GA takes cues from Darwin’s biological theory
of “natural selection” and “survival of the fittest” in which
more genetically fit individuals have a greater chance of
selection [42]. An initial run of the GA is set up with input
parameters and a randomized population of variable subsets.
A specified merit function (e.g., RMSE) assesses the fitness
of each subset, with subsets below the average fit discarded.
Subsets with greater fitness are allowed to survive and undergo
exchange of variables (cross-breeding) and poor subsets are
discarded. The iterative process converges once a predefined
criterion is met, returning the best subset of variables.

In this paper, the GA was employed using the GA toolbox
in MATLAB (version 7.1; Mathworks, Inc.). The algorithm
was run separately for VMC and WT to build a range
of models with different numbers of wavelet coefficients
(n = 2, 3, . . . , 5). Models with n > 5 were not searched
for the purpose of parsimony. We used a leave-one-out
cross-validation (CV-RMSE) between observed and predicted

TABLE I

SPECTRAL INDICES USED FOR VEGETATION MOISTURE
CONTENT AND WT HEIGHT

WT or VMC as the fitness function. To avoid multicollinear-
ity, subsets with highly correlated variables (i.e., Pearson
correlation coefficient greater than 0.8) were discarded. The
GA was run five times for each data set to find the best
subset of coefficients, with the following GA parameters found
best in [26] for a similar purpose: 1) population = 100;
2) mutation rate = 0.5; 3) cross over rate = 0.7; and
4) stopping criterion = 500 generations or 25 generations with
no improvement in the best fitness value.

G. Spectral Indices

In order to assess the performance, WT-based peatland
moisture estimates were benchmarked against two commonly
used moisture-based spectral indices that were recently found
to perform best for spectral assessment of VMC and WT [12].
Table I displays the equations used to calculate the spec-
tral indices. The water index (WI) is a ratio-based spec-
tral index that divides a reference wavelength (R900) where
water does not strongly absorb electromagnetic radiation by
a wavelength where water strongly absorbs electromagnetic
radiation (R970). The fWBI is formulated so that the strong
water absorption denominator is dynamic (i.e., it is automat-
ically set as the minimum reflectance values across a water
absorption band in the wavelength range 960–1000 nm). This
dynamism can strengthen the index’s response to vegetation
moisture as water absorption features can shift significantly
under varying degrees of plant water stress [43].

H. Statistical Analysis

For the PEATcosms study, spectral features were statisti-
cally related to VMC and WT positions using linear mixed
effects models via the linear and nonlinear mixed effects mod-
els R package [44]. Spectral features represented three differ-
ent subsets of independent variables: commonly used spectral
indices (WI and FWBI980), CWT coefficients selected via the
GA approach (CWT-GA), and CWT coefficients selected by
the correlation scalogram approach (CWT-CS). Linear mixed
effects models were used to account for repeated measure-
ments on the same experimental unit at the PEATcosm facility
(i.e., an individual PEATcosm bin). This was achieved by
setting a random intercept for each experimental unit within
the model. The mixed linear model was compared to a linear
least squares regression model using a likelihood ratio test
to further support the need for using mixed effects models
to account for artifacts of repeated sampling over the same
experimental units. Stepwise regression techniques were used
to reduce the number of CWT-CS coefficients based on the
overall model significance ( p = 0.05). Model fits for mixed
effects models were evaluated using the Akaike Information
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Fig. 1. Correlation scalograms for VMC and WT height (WT).
(a) VMC 3 cm (Nestoria). (b) VMC 7 cm (Peatcosm). (c) VMC 7 cm
(Nestoria). (d) WT (PEATcosm).

Criterion (AIC) as well as marginal R2 [which describes the
variance explained by fixed effects (i.e., spectral features)]
and conditional R2 [which describes the variance explained
by the full model containing both fixed effects (i.e., spectral
features) and random effects (i.e., experimental effects)] [45].
This was accomplished using the rsquared.glmm function
in R (V3.0.1) [46].

For the field study, in which repeated measurements were
not utilized, spectral indices were related to VMC and
WT using least square regression. Simple linear regression
was used to model the relationship of individual spectral
indices (independent variable) with WT and VMC (dependent
variable), while stepwise multiple regression was used to
model the relationship between CWT features and WT and
VMC. Models with variable n were subject to the following
constraints: 1) all independent variables were significant at
a = 0.05 and 2) there could not be multicollinearity, i.e., all
variance inflation factors (VIFs) had to be less than 10. The
regression residuals for all the selected models were tested for
normality using the Lilliefors test [47]. A leave-one-out CV
was then used to evaluate and rank competing models.

III. RESULTS

Correlation scalograms for VMC and WT at the two study
sites are shown in Fig. 1, which displays R2 between the
dependent variable (either WT or VMC) and CWT coefficients
related to a specific wavelength and scale (1–10). Although the
magnitude of the correlations is different, a similar pattern
is exhibited in all the plots (i.e., the strongest correlation
occurs in the wavelength range of 600–1350 nm at different
scales and moderate correlations occur in the SWIR region of
1650 and 2200 nm at different scales).

The strongest relationship was observed between CWT
coefficients and 3 cm VMC at the Nestoria field site,
while somewhat weaker relationships were observed at the
PEATcosm site. Based on each correlation scalogram and
the four steps described in Section II-E, 10–12 CWT coef-
ficients were extracted. Table II shows the number of coef-
ficients extracted, as well as their wavelength positions and
wavelet scales. The selected coefficients ranged from visible
to SWIR depending upon the sites and variables of interest,
and primarily represented three weak water absorption regions
(950–970, 1150–1260, and 1520–1540 nm). The selected
CWT coefficients comprised of both low (minimum 2) and
high scale (maximum 9) coefficients.

TABLE II

CWT COEFFICIENTS AND THEIR RELATED WAVELET SCALES SELECTED
BASED UPON THE CORRELATION SCALOGRAM ANALYSIS. THE

FINAL SUBSET OF SELECTED COEFFICIENTS AND THEIR

CORRESPONDING SCALES DERIVED VIA

STEPWISE REGRESSION ARE
HIGHLIGHTED IN BOLD

TABLE III

MODEL STATISTICS FOR THE BEST MODELS WITH DIFFERENT NUMBERS

OF CWT COEFFICIENTS (2–5) SELECTED BY THE GA; CV-RMSE
AND CV-R2 REFER TO RMSE AND R2 FROM A

LEAVE-ONE-OUT CV, RESPECTIVELY

Stepwise regression models combining a number of coef-
ficients were then investigated for estimating VMC and WT.
A stepwise regression model based upon model significance
(p = 0.05) selected three CWT coefficients [centered on
680 nm (scale 2), 955 nm (scale 7), and 2158 nm (scale 5)]
for WT and three for CWT coefficients [653 nm (scale 8),
840 nm (scale 7), 955 nm (scale 47), and 1740 nm (scale 8)]
at the PEATcosm site. At Nestoria site, two CWT coefficients
were selected for both 3 cm VMC [968 nm (scale 7) and
1246 nm (scale 47)] and 7 cm VMC [968 nm (scale 4)
and 1340 nm (scale 5)]. The CWT coefficients selected by
stepwise regression for VMC and WT are highlighted in bold
in Table II.

A. Wavelet Coefficients and Spectral Bands Selected by GA

The GA was run to select models with n = 2–5 wavelet
coefficients. The results of model selection using GA for
either VMC or WT are presented in Table III. The table
shows the number of wavelet coefficients selected, their central
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TABLE IV

CENTER WAVELENGTH OF SELECTED CWT COEFFICIENTS BY GA
AND RELATED WAVELET SCALE IN TWO STUDY SITES

TABLE V

SUMMARY STATISTICS OF REGRESSION MODELS FOR SURFACE VMC TO
WAVELET COEFFICIENTS AND SPECTRAL INDICES IN THE NESTORIA

wavelength position and wavelet scale, as well as model fit
and CV statistics. CV-RMSE and CV-R2 refer to RMSE and
R2 calculated based upon the leave-one-out CV, respectively.
The results demonstrate that both calibration and CV accuracy
improved with an increasing number of CWT coefficients
for WT. For example, CV-R2 and CV-RMSE improved from
0.73 to 0.84 and 5.9 to 4.8 cm for VMC and WT, respectively,
for models with five wavelet coefficients compared to models
with only two wavelet coefficients. The number of selected
coefficients for each data set and their respective scales in
relation to absorption features are provided in Table IV. Similar
to the WT results, the best subset selected by GA comprised
of five coefficients for 7 cm VMC at the PEATcosm site.
At the Nestoria site, little improvement in CV accuracy was
achieved after adding additional wavelet coefficients beyond
two for 3 cm VMC and four for 7 cm VMC. Hence, the
respective number of coefficients was chosen for each variable
for final model building. As with coefficients selected by
the correlation scalogram approach, wavelet coefficients were
selected from a range of wavelet scales and mainly represented
three weak water absorption regions (950–970, 1150–1260,
and 1520–1540 nm) except for 7 cm VMC at PEATcosm
where only one feature related to a water absorption region
(959 nm) was selected.

B. Regression Results at the Nestoria Site

The results of the final models for VMC in Nestoria
are shown in Table V. The first column in the table shows
the dependent variable used in the regression model.
CWT-GA and CWT-CS refer to the wavelet coefficients

Fig. 2. Predicted versus observed plots related to surface 7 cm VMC
(cm3 cm−3) at the Nestoria field site using spectral indices and wavelet
features. Independent variables are (a) wavelet feature selected from GA,
(b) wavelet features selected from the correlation scalogram, (c) fBWI980,
and (d) WI.

selected by the GA analysis and by the correlation scalogram
analysis, respectively. The linear regression results for
both 3 and 7 cm VMC demonstrate that the model derived
from CWT-GA provided the best fit (as indicated by greatest
R2 and lowest RMSE) as well as the best prediction accuracy
(as indicated by CV R2 and RMSE). All 3 cm VMC models
were associated with a high statistical fit (CV R2) and
low RMSEs with slight differences among models.
In contrast, greater differences in the model statistics occurred
between the models based upon CWT-GA (CV-R2 = 0.76,
CV-RMSE = 0.09) and spectral indices [WI (CV-R2 = 0.50,
CV-RMSE = 0.13) and fBWI980 (CV-R2 = 0.51,
CV-RMSE = 0.13)] for 7 cm VMC. Models based upon
CWT-GA performed better compared with models based
upon CWT-CS (CV-R2 = 0.56, CV-RMSE = 0.12). The
independent tests for all the regression residuals did not reject
the null hypothesis that the residuals come from a normal
distribution (p = 0.05). VIF for all the variables was less than
10 in wavelet-based models, which implies absence or little
multicollinearity among variables in the multiple regression
model. Further analysis demonstrated strong relationships
between observations and predictions with minimal bias for
models based upon CWT-GA [Fig. 2(a)]. In contrast, the
relationship between observations and predictions were poor
for spectral indices with only a few data points lying close to
the 1:1 line [Fig. 2(c) and (d)].

C. Mixed-Effects Regression Results at the PEATcosm Site

According to the linear mixed effects models, CWT coef-
ficients were more strongly related to WT compared with the
spectral indices assessed (Table VI). The strongest relation-
ship to WT position was observed for the model built with
CWT-GA followed by CWT-CS, with marginal R2 values
of 0.85 and 0.68, respectively. The mixed effect models for
CWT coefficients produced smaller AIC and Bayesian Infor-
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TABLE VI

MODEL STATISTICS FOR MIXED EFFECTS MODELS COMPARING WAVELET
COEFFICIENTS AND SPECTRAL INDICES. CONTINUOUS WAVELET

COEFFICIENTS INCLUDE THOSE SELECTED BY THE

GA (CWT-GA) AND CORRELATION

SCALOGRAM (CWT-CS) ANALYSES

Fig. 3. Predicted versus observed plots related to WT height (cm below
peat surface) at the PEATcosm site using spectral indices and wavelet
features. Independent variables are (a) wavelet feature selected from the GA,
(b) wavelet features selected from the correlation scalogram, (c) WI, and
(d) fBWI980.

mation Criterion values compared with counterpart models
with a reduced number of coefficients (results not shown here),
suggesting the absence of overfitting in the more complex
models. The differences between the marginal and conditional
R2 values for models based upon wavelet coefficients were
lower (0.05 and 0.06 for CWT-GA and CWT-CS, respectively)
than models based upon spectral indices (0.13 and 0.11 for
WI and fBWI980, respectively). As is evident in Fig. 3, the
relationship between predictions and observations for wavelet-
based models was much stronger and characterized by mini-
mum bias compared to models based upon spectral indices,
which also showed significant overprediciton at lower WT
values. The results for 7 cm VMC models were similar to
that of WT, but a greater improvement in marginal R2 was
obtained with CWT-GA (Marginal R2 = 0.75) compared with
the spectral index models (marginal R2 = 0.39 and 0.41 for
WI and fBWI980, respectively).

IV. DISCUSSION

Previous studies have demonstrated the relationship between
NIR spectral indices and surface moisture dynamics of

vegetation in peatland ecosystems. Most recently,
Meingast et al. [12] demonstrated the strength and consistency
of these spectral indices across an extreme range of WT
positions as well as with mixed species compositions. To our
knowledge, previous studies have relied solely on spectral
indices for estimating the moisture dynamics in peatland
ecosystems, rather than exploring multivariate analysis
combining information from multiple bands. In this paper, we
demonstrated the utility of spectroscopy data for monitoring
peatland moisture dynamics; the predictions of moisture
content were significantly enhanced by incorporating CWT
analysis. The analysis was carried out using the test data set,
which contains significant variation in moisture ranges and
vegetation diversity. This is broadly representative of northern
peatland ecosystems.

The results of this paper showed that CWT coefficients
explain more variation in surface moisture content and
WT in peatlands compared with spectral indices. At the
PEATcosm site, the conditional R2 values from a linear
mixed-effect model increased from 0.66 to 0.89 for WT
and from 0.39 to 0.75 for 7 cm VMC using CWT coef-
ficients selected by GA (CWT-GA) over the WI. Similar
results were obtained for 7 cm VMC model at the Nestoria
site with models based on CWT-GA (CV-R2 = 0.66 and
CV-RMSE = 0.08) outperforming those based on fWBI 980
(CV-R2 = 0.51 and CV-RMSE = 0.13) and WI (CV-R2 =
0.50 and CV-RMSE = 0.13). As evidenced in Fig. 2, a number
of VMC values were clustered around 0.6 likely due to the
insensitivity of the Thetaprobe instrument to larger VMC val-
ues. We performed further analysis by removing VMC obser-
vations exceeding 0.55 and found that the relationship between
CWT-GA and VMC −7 cm remained essentially unchanged.
However, the linear relationship further weakened for vegeta-
tion indices and CWT-CS when these values were removed.
In comparison to VMC 7 cm, only a marginal improvement
was obtained for VMC measured at 3 cm depth at the Nestoria
site with wavelet-based models, providing statistical relation-
ships with strengths slightly superior to those based on spectral
indices. The superiority of CWT coefficients over spectral
indices found in this paper is consistent with that from recent
studies leveraging CWT for leaf and canopy level moisture
prediction in forested ecosystems [18], [31]–[33], [52].

The superior performance of CWT coefficients in this
analysis is likely the result of several factors. First, CWT
analysis facilitates a multiple regression model development
approach for estimating peatland moisture content. In addition
to selecting multiple coefficients related to water absorption,
the stepwise regression approach also allows the inclusion of
other important wavelet coefficients that, although insensitive
to variation in moisture content, are sensitive to other veg-
etation characteristics important for moisture dynamics and
sensing. Among the five CWT-GA coefficients in the highest
ranked WT model, three coefficients were related to water
absorption regions (1148, 1242, and 1549 nm), one with a
lignin absorption region (1735 nm; [48]), and one in the NIR
region insensitive to leaf and canopy moisture, but related
to leaf or vegetation structure (720 nm). Similarly, among
the five CWT-GA coefficients in the best performing VMC
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model at the PEATcosm site, one feature was related to a
water absorption region (959 nm), one to a cellulose and
protein absorption feature (2364 nm), two to the NIR region
(711 and 741 nm), and one to visible wavelengths (535 nm)
that are minimally influenced by vegetation moisture. The
nonwater absorption-related wavelet coefficients included in
the model potentially suppress the impact of extraneous fac-
tors that negatively contribute to Sphagnum reflectance such
as vegetation structure and leaf dry matter, among others.
Alternatively, water stress, in low WT conditions might cause
physiological changes related to pigmentation and dry matter
content in the Sphagnum canopy in addition to changes in
the vegetation moisture content. CWT coefficients that are
sensitive to changes in lignin or protein content and discol-
oration might have additionally captured this physiological
variation, ultimately improving model accuracy. Finally, the
fact that CWT coefficients were selected across various scales
of wavelet decomposition also indicated a contributing factor
for improved performance compared with other methods. The
multiscale coefficients transform and represent the original
reflectance spectrum in myriad forms: fine scale coefficients
(Scales 1 and 2) capture abrupt changes in the amplitude of
reflectance in narrow wavelength regions related to absorption
features, while the medium scale coefficients (Scales 3–5) can
account for changes in the depth and shape of absorption
features, and coarser scale coefficients (Scales 6–10) cap-
ture subtle trends occurring over broader spectral intervals
(e.g., NIR and SWIR) and the overall reflectance contin-
uum [26], [28]. By including coefficients at different scales,
the wavelet-based models account for multiscale dynamics
related to the changing moisture condition of peatland vegeta-
tion, ultimately explaining greater variation in VMC and WT.

The spectral indices tested in this paper utilize a single
water absorption region near 980 nm and a reference band
near 920 nm. Such indices can greatly reduce the complexity
of spectroscopy data by summarizing information into a single
variable. While doing so, they also miss potentially rich
and relevant information offered by highly dimensional data.
Indeed, the performance of models based on the spectral
indices was comparable to the wavelet-based models for VMC
measured at 3 cm depth at Nestoria, but performed poorly
for 7 cm VMC and WT. The weakening of the relationship
from surface VMC to WT for spectral indices has been shown
previously in [11]. These indices rely on changes in water held
in thin surface tissues and therefore are only related to water
content of the Sphagnum at the peatland surface due to the lim-
ited penetration of optical solar radiation into the canopy [49].
Our wavelet-based results indicate that the methods sensitive to
changes in multiple leaf and canopy attributes are required to
estimate WT position and VMC at greater depths as a function
of spectral changes. Several studies in forested ecosystems
have documented that the spectral indices relate poorly to
leaf water content due to large spectral variability arising
from the richness of species composition [18], [50], [51].
Similar results were observed in peatlands by Harris et al. [10]
and Meingast et al. [12]. They reported that a variation
in Sphagnum species, particularly S. rubellum, can signif-
icantly alter the relationship between spectral indices and

WT position limiting their broader applicability in peat-
land ecosystems with diverse vegetation communities. Further
problems related to atmospheric interference arise when data
are collected from aircraft or satellite platforms. Sims and
Gamon [50] showed that water vapor in the atmosphere results
in several absorption bands that limit atmospheric transmit-
tance. They found that the water absorption regions surround-
ing 980 nm used in the WI and fBWI980 indexes overlaps with
a weak atmospheric water vapor absorption band, reducing
their utility under high atmospheric water vapor conditions.
In contrast, the other water absorption regions (1150–1260 and
1520–1540 nm) utilized by the wavelet-based models over-
lapped with regions of high atmospheric transmittance,
strengthening their performance compared with the spectral
index models. However, we caution that in ecosystem-level
moisture mapping efforts involving several different hyper-
spectral image scenes, rigorous atmospheric correction effort is
necessary to have consistent radiometric values across scenes
before building wavelet-based prediction models.

We compared two different feature selection methods to
select optimal subsets of CWT coefficients for describing
variation in moisture content and WT position in peatland
ecosystems. The results demonstrate that CWT coefficients
selected by the GA (CWT-GA) outperformed coefficients
selected from the correlation scalogram approach (CWT-CS).
The GA was imbedded in multiple regression models and was
constrained to minimize multicollinearity while maximizing
prediction accuracy. On the contrary, the search process for
the correlation scalogram method was independent of the
modeling process, and the coefficients were selected based
on their individual correlation with VMC and WT. The supe-
rior performance by CWT-GA models suggests that a model
selection procedure that considers the impact of a suite of
dependent variables on model quality (rather than a single
variable at a time as in CWT-CS) results in higher model
accuracy. CWT-GA included coefficients related to vegetation
moisture as well as to leaf or vegetation structure indicative of
the subsurface moisture condition. Taken together, these results
suggest superior performance of the CWT-CS over spectral
indices, indicating that wavelet coefficients are a useful feature
selection tool.

GA selected an entirely different subset of best CWT
features for VMC-7 cm between the PEATcosm and Nestoria
sites. The PEATcosm site represents a controlled, experimen-
tally manipulated study of vegetation and WT treatments.
The spectra collected at this site are likely more consistent
compared with those collected in a natural peatland such as
the Nestoria site. Indeed, several factors such as microtopog-
raphy (lawn, hummock, and hollow) and vegetation structure
certainly contribute an additional source of spectral variation
at the Nestoria site. The different subsets of CWT-GA features
highlight the major limitation of all empirical models; they are
site specific and are not readily extendible to new areas with
different environmental conditions. Such differences might
also have been due to the result of redundant information
in hyperspectral data and subsequent CWT features leading
to various combinations of optimum features. While these
findings cannot be generalizable to all boreal landscapes with-
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out further calibration at broader scales, incorporating whole-
ecosystems, we note here that the plant functional groups
involved are broadly representative of open poor fen and bog
systems across North America.

In this paper, we did not exclude noisy bands in
the atmospheric absorption regions (370–390, 1340–1450,
1790–2030, 2480–2500 nm) prior to calculating wavelet coef-
ficients (similar to [52]). One of the primary strengths of
wavelet analysis is its inherent ability to suppress high fre-
quency noise into a small number of low-scale features. The
GA would presumably exclude such noisy features in the fea-
ture selection process. However, we recognize that removing
such noisy bands in the atmospheric absorption regions is a
good practice and is recommended in future studies.

V. CONCLUSION

Our objective was to test the utility of the CWT analysis
for estimating surface moisture content and WT in peatland
ecosystems. Two sets of wavelet coefficients selected by a GA
and from a correlation scalogram approach were examined
along with best spectral indices found useful in previous
studies. We found that CWT coefficients perform the best for
monitoring both WT position and surface moisture content.
CWT affords multiscale analysis of absorption features and
the spectral continuum that offers an opportunity to capture
the relevant information that is manifested at different scales.
The spectral indices were correlated similarly with surface
moisture content measured at 3 cm depth but performed
poorly for VMC measured at 7 cm depth and WT position.
Multiscale wavelet coefficients detect and isolate variation in
the reflectance continuum and capture the shape and depth of
absorption features not detectable in the original reflectance
domain over broad and narrow spectral regions. Our results
provide new insights into the significance of various spectral
regions apart from water absorption regions to detect vegeta-
tion changes caused by extreme WT ranges. CWT identified
regions that reflect changes in the physiology of the vegetation
to aid in the prediction of VMC and WT. This further fortifies
the ability of CWT analysis in predicting VMC and WT
over simple indices limited to water absorption regions of the
spectrum. We also demonstrated that selection of useful subset
of variables using GA can provide improved estimates of
moisture variables than more commonly used feature selection
techniques based on correlation scalogram.
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