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Accelerating net terrestrial carbon uptake during
the warming hiatus due to reduced respiration
Ashley Ballantyne1*, William Smith2, William Anderegg3, Pekka Kauppi4, Jorge Sarmiento5,
Pieter Tans6, Elena Shevliakova7, Yude Pan8, Benjamin Poulter9, Alessandro Anav10,
Pierre Friedlingstein10, Richard Houghton11 and Steven Running1

The recent ‘warming hiatus’ presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here
we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly
accelerated from−0.007±0.065 PgC yr−2 over thewarming period (1982 to 1998) to 0.119±0.071 PgC yr−2 over thewarming
hiatus (1998–2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that
is correlated (r = 0.58; P = 0.0007) and sensitive (γ =4.05 to 9.40 PgC yr−1 per ◦C) to land temperatures. Global land
models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including
soil temperature and moisture observations better captures the reduced respiration.

The terrestrial biosphere removes approximately one-quarter
of anthropogenic carbon (C) emissions from the atmosphere1;
however, considerable uncertainty in climate predictions

is due to poorly constrained terrestrial carbon cycle processes
that may lead to positive or negative carbon–climate feedbacks2.
Observations suggest that much of the variability in the global
C cycle arises from the terrestrial biosphere response to tropical
climate variability3–6. However, attributing this response to specific
terrestrial processes remains challenging because increased tropical
temperatures can suppress primary productivity7 and/or promote
respiration8, both of which reduce net terrestrial C uptake. Biases
have also been identified in the C cycle of Earth System Models
(ESMs) that may compromise their climate predictions5,9,10, but
diagnosing the specific C cycle processes contributing to these biases
is exceedingly difficult. Thus, disentangling the climate sensitivity of
terrestrial productivity and respiration is imperative for advancing
our knowledge of global C cycle processes and their potential
feedbacks on future climate predictions2.

We combine atmospheric CO2 measurements with satellite
observations in a complementary way to isolate the main terrestrial
C cycle processes:

NBP=GPP−TER (1)

Net biome productivity (NBP) is estimated as the residual ter-
restrial carbon sink from atmospheric CO2 measurements, while
accounting for emissions from fossil fuels and land use, and ac-
counting for ocean C uptake. Gross primary productivity (GPP)

is approximated from satellite observations10 and total ecosystem
respiration (TER) is calculated as the difference, that is, GPP–NBP,
with each term being a positive number. Although there are numer-
ous C loss pathways from ecosystems11,12, the sum of autotrophic
respiration by plants, and heterotrophic respiration by microbes
(that is, TER) is the dominant C loss pathway at the global scale.
To estimate NBP uncertainty we use a novel ‘el camino’ approach
to simulate the spatial and temporal autocorrelation of errors in
atmospheric measurements and emissions, these simulations are
then combined to estimate C uptake uncertainty and statistics are
performed on all combinations of simulations13 (see Methods). By
separating NBP into its component processes of GPP and TER, we
can thus investigate how the climate sensitivity of these processes
has changed from the warming period (1982–1998) to the warming
hiatus (1998–2012)14,15.

Has net terrestrial C uptake changed during the warming
hiatus? The rate of land surface warming decreased from a signif-
icantly increasing trend of 0.031 ± 0.012 ◦Cyr−1 (Mann–Kendall,
P value= 0.0045) during the warming period to an insignificant
trend of 0.009 ± 0.008 ◦Cyr−1 (Mann–Kendall, P value = 0.235)
during the warming hiatus (Fig. 1a). This decadal change in the rate
of land surface warming has been accompanied by an acceleration
of NBP from −0.007 ± 0.065 (PgC yr−2 (median ± σ ) during the
warming period to 0.119± 0.071 PgC yr−2 over the warming hiatus
(Fig. 1b). Furthermore, trend analyses that include simulated error
estimates show a significant increase in NBP trends during the
warming hiatus (two-tailed t-test; t-statistic= 5.39; P value< 0.01;
DF= 29), with 54% of the simulated trends in NBP negative during
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Figure 1 | Changes in trends of land surface temperatures and terrestrial C cycle processes over three decades. a–d, Land surface temperature
anomalies41–43 (a), net biome productivity (NBP; b)13, gross primary productivity (GPP; c)44, and total ecosystem respiration (TER ; d) are plotted with
uncertainty (1σ ; shaded areas). Median trend lines from 4,500 simulations are plotted for the warming period from 1982 to 1998 (solid lines) and the
warming hiatus (blue window) from 1998 to 2012 (dashed lines). e–h, Density functions of trend anomalies normalized to the entire era of common
observation are plotted for temperature (e), NBP (f), GPP (g) and TER (h), where unfilled densities with solid lines represent trend anomalies over the
warming period and grey filled densities with dashed lines represent trend anomalies over the warming hiatus.

thewarming period and 96%of the simulated trends inNBPpositive
during the warming hiatus (Fig. 1f and Table 1). Thus, rates of
net terrestrial C uptake have clearly accelerated from the warming
period to the warming hiatus.

What terrestrial C cycle processes caused this increase in net
terrestrial C uptake during the warming hiatus? The acceleration
of NBP can be explained only by an increasing trend in C uptake
through GPP and/or a decreasing trend in C loss mainly through
TER. Trends in GPP estimated from satellite observations show
that GPP has actually levelled from 0.328 ± 0.602 PgC yr−2 during
the warming period to 0.042 ± 0.730 PgC yr−2 over the warming
hiatus (Fig. 1c). This levelling off of GPP is still evident when
meteorological variables required to calculate GPP are held constant
or independent estimates of global GPP up-scaled from flux towers
are considered (Supplementary Fig. 3). Total respiration rates
appear to have decreased from 0.335 ± 0.605 PgC yr−2 during
the warming period, with 72% of the simulated trends positive,
to −0.077 ± 0.734 PgC yr−2 during the warming hiatus, with
54% of the simulated trends negative (Fig. 1h; P value < 0.01;
Table 1). Therefore, we conclude that the apparent acceleration
in net terrestrial C uptake over the warming hiatus is most
likely due to diminished respiratory losses rather than increased
photosynthetic gains.

What terrestrial C cycle processes are most sensitive to climate?
To diagnose climate sensitivity, we investigated the correlation
coefficient and the slope (γ ) of the relationship between terrestrial
C cycle processes and land temperature anomalies over the
last three decades. Our results indicate that land temperature
is significantly more correlated with TER than with GPP or
NBP (Supplementary Table 1). While there are no statistically
strong correlations between land temperature anomalies and NBP
(Supplementary Table 1), we see that γNBP is consistently negative
and varies between −2.92 PgC yr−1 per ◦C during the warming
period and −5.31 PgC yr−1 per ◦C during the warming hiatus,
suggesting that positive temperature anomalies at inter-annual
to decadal timescales tend to suppress net terrestrial C uptake
(Fig. 2a). In contrast, there are significant relationships between

land temperature and GPP over the entire period of observation
(r = 0.51; P value= 0.0035; DF = 30) and the warming period
(r = 0.55; P=0.0226; DF = 16), but not over the warming hiatus
(Supplementary Table 1). However, the climate sensitivity of GPP
has changed from positive γGPP= 6.48 PgC yr−1 per ◦C during the
warming period to slightly negative γGPP=−1.26 PgC yr−1 per ◦C
during the warming hiatus (Fig. 2b). A strong correlation is
observed between TER and land temperature anomalies (r=0.57;
P=0.0007; DF= 30) and this relationship is even stronger
during the warming period (r = 0.73; P = 0.0009; DF = 16),
but becomes insignificant during the warming hiatus (r = 0.32;
P=0.24; DF= 14) (Supplementary Table 1). While the correlation
coefficients are not statistically distinguishable between these
periods, the temperature sensitivity of total respiration (that is,
γTER) is consistently positive from the warming period 9.40 PgC yr−1
per ◦C through the warming hiatus 4.05 PgC yr−1 per ◦C, indicating
a strong and persistent positive terrestrial respiration response to
warm temperature anomalies (Fig. 2c). These findings suggest that
total ecosystem respiration is more sensitive to inter-annual to
decadal scale temperature variability than primary productivity at
the global scale and thus is likely to be the dominant process
explaining much of the observed temperature sensitivity of the
global C cycle5.

How well do global land surface models perform at simulating
terrestrial ecosystem respiration? Comparisons of total respiration
estimated from observations with total respiration simulated by
models of varying complexity reveal key differences that may
help improve models (Fig. 3a). Our analysis revealed a significant
decrease in cumulative change in TER between the warming period
and the warming hiatus (Fig. 3b). The TRENDY ensemble of
dynamic global vegetation models (DGVMs) that use historical
climate data to calculate TER16 also show a significant decrease in
cumulative respiration change over the warming hiatus (Fig. 3b),
albeit not as pronounced as our TER estimates. In contrast, the
Coupled Model Intercomparison Project (CMIP5)17 simulations, in
which respiration is calculated from prognostic climate variables,
actually show a slight increase in cumulative TER over the warming
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Table 1 |Trend statistics for processes in the global C cycle and their change during the warming period and warming hiatus.

Period of common observations (1982–2012) Warming period (1982–1998) Warming hiatus (1998–2012)

Trend (PgC yr−2) P values Trend (PgC yr−2) s.d. Trend (PgC yr−2) s.d.
GPP 0.136† 0.006 0.328 ±0.602 0.042 ±0.730
NBP∗ 0.026† 0.010 −0.007 ±0.065 0.119† ±0.071
TER 0.110† 0.005 0.335 ±0.605 −0.077† ±0.734

Reported are Mann–Kendall trend statistics and their Sen’s slopes with standard deviations for gross primary productivity (GPP), net biome productivity (NBP), and total ecosystem respiration (TER).
Trend statistics are calculated from 4,500 simulations with error of GPP, NBP and TER; median values of trend statistics are reported for the period of common of observation (1982–2012), the warming
period (1982–1998), and the warming hiatus (1998–2012). ∗Trend statistics for NBP are reported for the entire period of direct atmospheric observations (1959–2012). Processes with significant Sen’s
slopes are indicated by ‘†′ . Significant di�erences in trends are indicated in bold where NBP shows a significant increase during the warming hiatus (two-tailed; t-statistic= 5.39; P value< 0.01;
DF= 29), GPP shows no significant increase (one-tailed; t-statistic= 1.19; P value> 0.10; DF= 27), and TER shows a significant decrease (one-tailed; t-statistic= 1.80; P value< 0.05; DF= 27).
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Figure 2 | Climate sensitivity of terrestrial carbon cycle processes over the
last three decades. a, Plot showing net biome productivity (NBP), where
γNBP represents the temperature sensitivity of NBP over the warming
period (red) and the warming hiatus (blue). b, Plot showing gross primary
productivity (GPP), where γGPP represents the temperature sensitivity of
GPP over the warming period (red) and the warming hiatus (blue). c, Plot
showing terrestrial ecosystem respiration (TER), where γGPP represents the
temperature sensitivity of TER over the warming period (red) and the
warming hiatus (blue). Open circles represent median values of 4,500
simulations of carbon cycle process and median annual values from 3
di�erent land temperature records42,43,45 over the warming period (red
open circles) and the warming hiatus (blue open circles including 1998).
Transparent confidence intervals (±1 σ ) are plotted around carbon cycle
temperature sensitivity slopes.

hiatus (Fig. 3b). The fact that suppressed respiration rates over
the warming hiatus were simulated by DGVMs but not accurately
simulated by ESMs suggests that the temperature sensitivity of
respiration may be fairly well represented in land surface models
but that the inability of ESMs to capture quasi-decadal temperature
variability15 may lead to biases in predictions of net terrestrial C
mass balance on decadal timescales.

The DGVM simulations do show suppressed cumulative
respiration over the warming hiatus; however, they do not show
the slight decline evident in our TER estimates. This suggests that
environmental factors important in regulating respiration may
not be properly included in DGVM simulations. In fact, DGVM
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Figure 3 | Total respiration estimated from observations and simulated
frommodels. a, Z-scores of total respiration calculated from observations
(red solid line) and total respiration predicted empirically from global soil
moisture and temperature data sets (red dashed line), compared with nine
CMIP5 simulations (thin black lines), seven dynamic global vegetation
TRENDY simulations (thin blue lines), and thick mean lines. b, Cumulative
change in total respiration for the warming period (1984 through 1998) and
the warming hiatus (1998 through 2012), where all estimates are
normalized to comparable 15-year intervals and normalized to mean values
at the start of each interval. A significant decrease in cumulative total
respiration occurred for observed estimates (∗red bars; t-statistic= 17.3;
P value= 0.0065; DF= 26) and modelled estimates from the TRENDY
ensemble (∗∗blue bars, t-statistic= 2.9; P value= 0.0258; DF= 6),
whereas no significant change in CMIP5 ensemble simulations occurred
(P value= 0.6306; t-statistic= 0.5; DF= 8). Error bars represent
bootstrapped standard deviations for model simulations and the standard
error across estimates from observations, with simulated error (N=4,500).

simulations of TER show strong correlations with temperature
in most regions of the globe (Supplementary Fig. 8a), suggesting
that DGVM simulations of TER are perhaps overly sensitive to
temperature, especially in the tropics (Supplementary Fig. 8b),
and not sensitive enough to other environmental variables known
to control respiration18. While DGVMs show a fairly consistent
TER response to changes in carbon supply through GPP and
temperature, they tend to differ in their sensitivity of TER to
soil moisture19, which is a prognostic variable in DGVMs. To
diagnose the sensitivity of TER to C supply, soil temperature and
soil moisture, we adapted an empirical model of soil respiration to
the global scale (see Methods). If we consider the well-established
model of soil respiration (Rs)8 as a function of soil C and soil
temperature (Methods Rtemp

s (equation (4))), we see a fairly strong
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relationship between our independent TER estimate and the
Rtemp
s model (r = 0.58; P = 0.0007; normalized RMSE = 0.91).

However, if we include soil moisture20 into our global empirical
model21 (Methods Rtemp+moist

s (equation (5))), we see an improved
relationship (r = 0.61; P = 0.0003; normalized RMSE = 0.87)
(Supplementary Fig. 6) that more closely parallels our TER
estimates over the warming hiatus (Fig. 3a; dashed red line).
This slight decline in soil respiration derived from our empirical
Rtemp+moist
s model is the result of relatively flat temperatures over the

warming hiatus15 in combination with the continued decline in
observed soil moisture globally22 that is not predicted by DGVM
models (Supplementary Fig. 7). Thus, DGVM simulations of
respiration may be accurately capturing temperature sensitivity as
forced directly by climate data, but their inconsistent response to
internally predicted soil moisture may explain the slight divergence
between model simulations and observationally constrained
estimates of respiration. However, recent evidence of acclimation of
autotrophic respiration would suggest that the relationship between
temperature and respiration may vary over time and that a constant
Q10 relationship may not be appropriate to describe autotrophic
respiration23. It is also worth noting that we are using recently
developed gridded soil C and satellite-derived soil moisture data
products (Methods) with limited spatial and depth extent that may
restrict their incorporation into land surface models. Nonetheless,
our analysis suggests that land surface models, when forced with
observed temperature data, capture some of the reduced respiration
observed over the warming hiatus, but that soil moisture may
help reconcile respiration estimates from models and estimates
constrained by global observations.

Our analysis identifies total ecosystem respiration as the likely
process regulating the relationship between variability in land
temperature and atmospheric CO2

3,5. In our attempt to disentangle
major photosynthetic and respiration pathways in the global C cycle,
however, we have greatly oversimplified important processes that
contribute to TER. At the ecosystem scale, total respiration is
comprised of autotrophic respiration that integrates growth and
maintenance respiration, which are sensitive to C supplied through
primary productivity rates and temperature changes24, as well as
heterotrophic respiration, which is sensitive to temperature and
moisture25. A comparison of our top-down TER estimates with
a global database of soil respiration studies8 revealed that our
overall trend in TER 0.11 PgC yr−2 is statistically indistinguishable
from the reported trend in global soil respiration of 0.1 PgC yr−2
that has been attributed to surface warming8 (Supplementary
Fig. 5). The absolute values of our top-down TER estimates
(106 ± 12 PgC yr −1; mean ± σ ) are only slightly higher than
the bottom-up globally extrapolated soil respiration estimates
(98 ± 12 Pg C yr−1), suggesting that about 90% of TER is coming
from soil respiration. However, estimates of GPP from observations
and models vary widely from 112 to 169 PgC yr −1 (ref. 26), so if
we use the independent estimate of GPP = 123 ± 8 extrapolated
from a global array of flux towers27, we estimate that approximately
80% of TER is from soil respiration, which is more in the range
of ecosystem-scale studies, assuming that most of the autotrophic
respiration is from roots below ground28. This suggests that
our global GPP estimates derived from satellite observations are
on the low range, resulting in a possibly global TER estimate
that is biased low. However, how much autotrophic respiration
comes from below ground versus above ground probably varies
considerably among ecosystems and remains an open question at
the global scale. Nevertheless, independent GPP estimates show
a similar levelling off over the warming hiatus (Supplementary
Fig. 3), suggesting that the observed acceleration in the rate of
net terrestrial C uptake during the warming hiatus is robust and
not due to increased C gains from photosynthesis, but rather
reduced respiration.

Soil moisture appears to be a strong second-order control
on respiration and in the absence of temperature variability soil
moisture may emerge as the dominant environmental control on
respiration (Fig. 3a). Indeed, ecosystem-scale studies have identified
optimum soil moisture values for maximum soil respiration20, and a
global assessment of soil respiration studies identified mean annual
precipitation as the second best predictor of soil respiration after
temperature8. Thus, it is possible that soil moisture is an important
direct factor regulating heterotrophic respiration and precipitation
is an important indirect factor in regulating autotrophic respiration
by supplying C through photosynthesis29 and that soil respiration
integrates both of these respiration pathways.

Our estimate of TER implicitly includes other major C loss path-
ways from the biosphere, such as fire emissions (2 to 3 PgC yr−1)30
and evasion of CO2 from inland waters (2.1 PgC yr−1)31; however,
these C loss pathways are two orders of magnitude less than our
TER estimates and show no obvious trends according to available
global estimates. Therefore, these C loss pathways are probably not
contributing greatly to decadal variability in our TER estimates.
While our analysis helps identify major global C cycle pathways that
may be sensitive to climate, more detailed ecosystem-scale studies
and models are required to identify the specific metabolic mecha-
nisms contributing to the sensitivity of respiration to temperature
and moisture.

Using satellite and atmospheric data in a complementary way
to estimate total respiration provides new insight to help reconcile
previous global C cycle studies. First of all, the only way to
resolve an apparent deceleration in primary productivity32 and
an acceleration in net biome productivity in recent decades33 is
for TER to remain constant or decrease. Indeed, according to
observations and DGVM simulations, TER has remained fairly
constant over the warming hiatus. Second, it has been hypothesized
that the observed increase in NBP following the eruption of Mount
Pinatubo in 1991 was the result of increased photosynthesis in
response to more diffuse light34, and/or diminished respiration in
response to cooler temperatures35. Our results indicate that TERwas
reduced several years following the eruption. These observations
are supported by both ESM and DGVM simulations forced with
volcanic cooling effects but not diffuse light effects that show
a clear reduction in total respiration following the eruption of
Mount Pinatubo (Fig. 3). This is also consistent with previous
model results showing increased boreal forest NBP following the
Mount Pinatubo eruption as a result of decreased heterotrophic
respiration35. In contrast, the major El Niño events of 1987 and
1998 are associated with positive land temperature anomalies and
reduced NBP globally. During these events global GPP shows very
little change (Fig. 1), whereas TER appears to have increased in
response to both El Niño events. These results are not necessarily
consistent with recent DGVM simulations suggesting that much
of the inter-annual variability in the terrestrial C cycle is governed
by primary productivity in semi-arid ecosystems36. While our
GPP estimates show very little inter-annual variability, they are
largely driven by the observed fraction of photosynthetically active
radiation and a light use efficiency model that is sensitive to
temperature and atmospheric water vapour. Although this satellite-
informed model has been validated across an array of eddy-flux
sites, it may not accurately represent the response of semi-arid
ecosystems to inter-annual climate variability. Therefore, additional
ecosystem studies exploring the response of primary productivity
and total respiration to changing environmental variables, especially
in semi-arid ecosystems, is necessary to better align models and
observations of the global C cycle.

In conclusion, net terrestrial C uptake clearly accelerated during
the warming hiatus most likely due to reduced respiration and
not increased photosynthesis, thus preventing a large fraction
of terrestrial C from returning to the atmosphere. As warming
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trends resume37, however, we would expect a greater fraction of
terrestrial C to return to the atmosphere. Although recent evidence
indicates acclimation of both plant photosynthesis and respiration
at higher temperatures23,38, the net effect of this acclimation
response has the potential to sustain future terrestrial C uptake39,40.
Therefore, this vital ecosystem service provided by the terrestrial
biosphere of removing a large fraction of CO2 emissions from
the atmosphere has been mediated by decadal variability in the
balance of photosynthesis and respiration in response to decadal
temperature variability.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Gross primary productivity (GPP) estimates. GPP is estimated from satellite
observations combined with meteorological data44, such that:

GPP=FPAR×PAR×LUEmax× f (Tmin)× f (VPD) (2)

where the fraction of photosynthetically active radiation absorbed (FPAR) is
estimated from continuous measurements of normalized difference vegetation
index (NDVI) obtained from the Moderate Resolution Imaging Spectrometer
(MODIS; 2000 to 2012) and its predecessor the Advanced Very High Resolution
Radiometer (AVHRR; 1982 to 2006)46, and multiplied by photosynthetically active
radiation (PAR). The amount of actual absorbed photosynthetically active radiation
(that is, FPAR× PAR) is then multiplied by maximum light use efficiencies
(LUEmax), minimum temperature functions (f (Tmin)), and vapour pressure deficit
functions (f (VPD)), which vary according to 13 different land cover types47 to
yield annual GPP estimates using the MOD-17 algorithm47. While the LUE model
used here to translate satellite FPAR observations into a currency of carbon flux has
been criticized for being overly sensitive to temperature48, it has been validated
with reasonable success across a global array of eddy-flux tower sites49. This LUE
model approach does not necessarily agree with plot-based estimates of
productivity in tropical locations50, but tends to provide better estimates in
ecosystems with greater seasonal variability at high latitudes49. Comparison of our
LUE-based estimates of GPP with independent GPP global estimates up-scaled
from eddy-flux calculations51 revealed differences in the absolute values of annual
GPP but not appreciable differences in decadal trends that are the focus of this
analysis (Supplementary Fig. 3). While this favourable comparison is not surprising
given that the MOD-17 algorithm has been calibrated and validated against
eddy-flux sites and the up-scaled eddy-flux estimates use satellite and
meteorological data to extrapolate globally, it does corroborate our trends in GPP
and suggest that they are the result of changes in absorbed photosynthetically active
radiation and not an artefact of meteorological variables included in the model.
The two main sources of error in estimating GPP globally using the MOD-17 are
algorithm error and instrument error. Most of the algorithm error arises from the
globally gridded meteorological data sets of PAR, VPD and Tmin required to
estimate climate-driven reductions in vegetation light use efficiency. To test the
sensitivity of GPP calculations to meteorological data sets, we calculated global
annual GPP estimates from three of the most commonly used meteorological data
sets: National Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis; NASA Data Assimilation Office
(DAO); and European Center for Medium-Range Weather Forecasting (ECMWF)
according to Zhao and colleagues52. The standard deviation of these annual GPP
estimates was then re-sampled 1,000 times to generate an error distribution with a
mean of 22.0 PgC yr−1 (2σ ). It is important to note that the absolute magnitude of
annual GPP estimates may vary considerably depending on the meteorological
data set used but annual GPP anomalies tend to be consistent across meteorological
data sets at the global scale, such that anomalously high annual GPP estimates tend
to be high regardless of the meteorological data set used. Thus, the temporal
variability in annual global GPP estimates is driven primarily by changes in
observed FPAR10,52. To estimate instrument error the standard deviation of global
annual GPP estimates obtained independently fromMODIS and AVHRR satellites
using NCEP/NCAR reanalysis data during the overlap period of observation
(2000–2006) was re-sampled 1,000 times to calculate a mean instrument error
corresponding to 1.7 PgC yr−1 (2σ ). There was no difference in trends for the two
satellite observations of global annual FPAR indicating no evidence of satellite bias
in the record. Instrument degradation is likely over time and may lead to
temporally increasing uncertainties in FPAR; however, instrument error is an order
of magnitude less than algorithm error. Total error values were then randomly
drawn from our joint distribution of algorithm and instrument errors and added to
mean annual GPP calculated fromMODIS using the latest Global Inventory
Modeling and Mapping Studies (GIMMS) 3G data set46. A matrix of 4,500
simulated GPP time series with error were then differenced from our array of 4,500
NBP estimates to calculate 4,500 simulations of TER with error.

Net biome productivity (NBP) estimates. Global terrestrial NBP is inferred as
the residual land sink53 with errors propagated according to Ballantyne et al.13,
such that:

NBP=6E−dC/dt−NO (3)

where according to mass balance, NBP must be equivalent to the sum of fossil-fuel
and land-use emissions to the atmosphere (6E) minus the atmospheric CO2

growth rate (dC/dt) and net ocean C uptake (NO). While several C loss pathways
from the biosphere to the atmosphere exist and several of these pathways, such as
fire emissions and CO2 evasion from inland waters31,54, rival the magnitude of NBP,
if this C is lost from the biosphere and does not remain in the atmosphere we must
conclude that it was taken up by the land or ocean. For the atmospheric growth
rate, errors are calculated due to the spatial heterogeneity and sampling bias in the
global atmospheric observing network (NOAA/ESRL). This is done by re-sampling

the observation network within the marine boundary layer 100 times, with at least
one site selected from the Northern Hemisphere, Southern Hemisphere and
Tropics, to construct artificial observation networks of 40 sites55. From these
artificial networks the atmospheric growth rate is calculated as the difference
between mean December and January values of the current year and the mean
December and January values of the previous year among all sites and then the
median value across sampling networks is reported with a 2σ uncertainty. Standard
deviations between the atmospheric growth rate calculated across the global
atmospheric observing network (1980–2012) and the growth rate calculated from
just Mauna Loa and the South Pole (1959–2012) were calculated over the period of
common observation and added as uncertainty to the period prior to 1980.
Estimates of fossil-fuel emissions, including cement production, to the atmosphere
were obtained from three separate emission inventories—the Carbon Dioxide
Information and Analysis Center (CDIAC), the Emissions Database for Global
Atmospheric Research (EDGAR), and BP statistics (BP). Although these
inventories rely on similar energy consumption statistics, their protocols for the
treatment of bunker fuels and gas flaring, as well as emission factors of CO2 by fuel
type, vary considerably resulting in different global emission estimates. To estimate
emission errors, national emission estimates were tabulated and errors were drawn
from a random distribution of errors56 from countries grouped by UN development
classes13. Our novel ‘el camino’ approach is different in that emission errors are
temporally correlated from year to year thus following a path, in contrast to the
conventional Monte-Carlo approach that assumes errors are independent from year
to year. These random errors were then used to scale the temporally autocorrelated
noise with 20-year persistence, which was then added to the emission estimates of
each country. Country-level emission estimates were then aggregated into arrays of
500 simulations of global emissions for each of the three inventories for a grand
total of 1,500 simulated time series of fossil-fuel emission estimates (3× 500=
1,500), spanning the period from 1959 to 2012. Land-use emissions were estimated
using a similar approach from three different inventories57–59, where temporally
autocorrelated random noise with a 5-year persistence corresponding to the update
interval of deforestation/regrowth statistics60 was scaled to a reported 2σ error of
±0.5 PgC yr−1, and arrays of 500 time series were simulated for each of the three
land-use inventories (3× 500= 1,500). Land-use legacies, especially in countries
that have already undergone industrialization, can lead to biases in estimates of net
terrestrial C uptake61. However, it is worth noting here that the apparent
acceleration in NBP since 1998 is probably not due to land-use legacies because at
the global scale land-use emissions show no significant trend over the last five
decades62 and appear to have decreased slightly since 1998, albeit with some
uncertainties63. Therefore, the apparent increase in NBP since 1998 is the result of
increasing fossil-fuel emissions that are not remaining in the atmosphere64 and not
the result of appreciable changes in land-use emissions. Land-use emission arrays
were combined with each of our fossil-fuel emission arrays for a total emission
matrix of 4,500 simulations (3× 3× 500= 4,500). Net ocean C uptake was
estimated by simulating 900 realizations of NO from 5 different ocean
biogeochemical model simulations53 where random 2σ error of 1.2 PgC yr−1 was
added to each model simulation based on decadal measurements of atmospheric
O2

65,66 for a matrix of 4,500 simulations of NO (5× 900= 4,500)65,66. Our net ocean
uptake matrix was then subtracted from our total emissions matrix and then
atmospheric growth rates were randomly drawn from our simulated global
observing network and subtracted to yield 4,500 estimates of NBP simulated with
error from 1959 to 2012 (ref. 13).

Model simulations of global total respiration (TER). Our empirically derived
estimates of TER were compared with simulated values of TER from an ensemble
of ESM simulations from the Coupled Model Intercomparison Project Phase 5
(CMIP5) and an ensemble of DGVM simulations included in the TRENDY
archive16. While many of these DGVMs are embedded as the land model
component of these ESMs, the DGVM simulations are forced by atmospheric and
climate variables, whereas the ESM simulations have climate and atmospheric
variables (except volcanic aerosols) as prognostic variables. By looking at these
quasi-independent simulations we can isolate the extent to which climate versus
ecosystem response explain mismatches between TER calculated from
observations and TER simulated from models.

From ESM simulations TER was calculated as the difference between GPP and
NBP from the CMIP5 archive, which combined historic hindcasts with future
projections of climate and carbon dynamics into continuous experiments spanning
1900–2100. A total of nine ESM model simulations—BCC-CSM-1, BNU-ESM,
CanESM2, CESM1-BGC, IPSL-CM5A-MR, IPSL-CM5A-LR, MIROC-ESM,
MIROC-ESM-CHEM and NorESM-M, were considered in our analysis. From this,
we extracted years 1982 to 2012 for comparison with our inferred estimates of TER.
As these models vary between 20 and 40% in their mean estimates of TER,
individual model estimates were normalized and reported as z-scores to compare
relative changes in TER trends among models and observations.

Estimates of TER were also derived from DGVM-simulated responses of
autotrophic and heterotrophic respiration (excluding fire), to climate and CO2.
Autotrophic respiration was not a mandatory output for the models, and so was
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calculated as the difference between net primary production and gross primary
production. An ensemble of seven state-of-the-art DGVMs were analysed: LPJ67,
LPJ-GUESS68, JULES-TRIFFID69, SDGVM70, OCN71, ORCHIDEE72 and
NCAR-CLM4CN73. The model ensemble stem from the TRENDY Inter-model
Comparison (‘Trends in net land–atmosphere carbon exchange over the period
1980–2010’) that provided bottom-up estimates of carbon cycle processes for the
Regional Carbon Cycle Assessment and Processes (RECCAP)16. Our analysis uses
simulations from the ‘S2’ storyline that includes time-varying atmospheric CO2

concentrations and climate and fixed land cover for 2005. All simulations were
based on climate forcing from the CRU-NCEPv4 climate variables at 6-h resolution
for the years 1901–2012, including precipitation, snowfall, temperature, short-wave
and long-wave radiation, specific humidity, air pressure and wind speed. Global
atmospheric CO2 was provided as an annual time series reconstructed from
ice-core measurements and then merged with atmospheric observations starting in
1956 from the Mauna Loa record. Land use distinguished between managed crops
and natural vegetation using a common database with land use fixed for the year
2005 for all simulations included in our analysis. Soil databases specific to each
team were used to specify soil texture, water holding capacity, and thermal
diffusivity properties. Modelling groups also individually determined the treatment
of vegetation dynamics and disturbance, using either static or dynamic plant
functional types and including or excluding disturbance (mainly fire). Models were
spun-up to equilibrate soil and vegetation carbon pools for pre-industrial
conditions (typically 1,000–3,000 years) by recycling climate mean and variability
for years 1901–1920.

Lastly, to reconcile TER estimates constrained from global observations with
TER simulations from DGVMs we conducted a simple sensitivity experiment
comparing empirical respiration models. Assuming that a large fraction of TER is
composed of soil respiration (Rs), we predicted global soil respiration in response
to soil C content (Cs) and soil temperature (Ts), according to models previously
validated against a global database of Rs observations74:

Rtemp
s =Cs×64×(1.720.21×Ts ) (4)

as well as Rs as a function of Cs, Ts, and soil moisture (Ms):

Rtemp+moist
s =Cs×64×(1.720.21×Ts )×

(
Ms+2.1
0.55−2.1

)6.6481

×

(
Ms+0.007
0.55−0.007

)3.22

(5)

These independent empirical estimates of Rs were then compared with our
observationally constrained estimates of TER. As inputs to our model we used a
globally harmonized soil C database75, the European Space Agency’s remotely
sensed merged soil moisture data product (http://www.esa-soilmoisture-cci.org/
node/145), and land surface temperatures41. Due to the slight differences in
magnitude of TER and Rs we compared estimates using root mean squared error
(RMSE) on normalized z-scores and thus the reported RMSE values are unitless
and annual values were aggregated for global estimates of Rs.

Statistical analyses. For our statistical analyses, Mann–Kendall non-parametric
trend analyses were conducted to determine the statistical significance of any
observed trends and then Sen’s slope statistics were calculated with confidence
intervals76. Trend statistics and slopes were calculated on each of our 4,500
simulated estimates of GPP, NBP and TER for the period of common observations
(1982–2012), the warming period (1982–1998), and for the warming hiatus
(1998–2012), and median values are reported (Table 1). As we were analysing
differences in the distributions of trends from a large number of Monte Carlo
simulations (N =4,500) we could not use conventional Student’s t-tests due to the
overly inflated degrees of freedom (N −2=4,498 for a one-tailed t-test). Instead
we modified the Welch’s t-test for unequal variances by using mean and variance
values from the trends of our simulations (Fig. 1), but we calculated effective
degrees of freedom from the years of observations (N =31). By reducing the
effective degrees of freedom we greatly raised the exceedance for a significant
t-statistic value and reduced the odds of a type 1 statistical error.

Estimates of GPP, NBP and TER were compared with both observational and
gridded temperature data. For temporal correlations between global C cycle
processes and temperature we used mean land temperature anomaly data from
CRUTEM77, NASA-GISS42 and NOAA43. There is considerable decadal variability
in all land surface temperature records. While we recognize that the currently
observed temperature hiatus is debated78, it is clear that Earth’s surface has not
warmed continuously in response to anthropogenic perturbations to the
atmosphere, but rather has followed a decadal stair-step pattern with several
previous warming periods and warming hiatuses observed79. Here we use the
so-called ‘warming hiatus’ as a global experiment to test the sensitivity of global
C cycle processes to changes in surface warming. Our delineations of the warming
period (1982–1998) and the warming hiatus (1998–2012) are arbitrary, but they
correspond to two intervals of different land surface climate over which we have
concurrent global measurements of atmospheric CO2 and global satellite estimates
of primary productivity.

Data availability. All data analysed in this study are publicly available. Satellite
observations used for calculating GPP can be obtained from the Numerical
Terradynamic Simulation Group data portal (http://www.ntsg.umt.edu/data). All
data for estimating NBP are available through the Global Carbon Project53, with
errors estimated from a novel Bayesian fusion approach80. Simulated terrestrial
carbon cycle data were obtained for ESMs from the CMIP5 archive accessed
through the Earth System Grid Federation data portal (http://esgf.llnl.gov) and
from DGVMs from the TRENDY archive16. Land surface temperature data used
for calculating temperature sensitivity were obtained from three publicly available
sources—Climate Research Unit (https://crudata.uea.ac.uk/cru/data/temperature),
NASA Goddard Institute for Space Studies (http://data.giss.nasa.gov/gistemp) and
NOAA (https://www.ncdc.noaa.gov/data-access/marineocean-data/noaa-global-
surface-temperature-noaaglobaltemp).
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