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Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and
their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in
recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact
of emerging stresses such as invasive pests, land use change and climate change. The Delaware River
Basin (DRB), sited in the southern edge of the northern hardwood forest, features diverse forest types
and land-use histories. In 2001-2003, the DRB Monitoring and Research Initiative established 61 forest
plots in three research sites, using Forest Service inventory protocols and enhanced measurements.
These plots were revisited and re-measured in 2012-2014. By comparing forest biomass C stocks in
the two measurements, our results suggest that the biomass C stock of the DRB forest increased, and
was thus a carbon sink over the past decade. The net biomass C stock change in the Neversink area in
the north of the DRB was 1.94 Mg C ha~! yr~!, smaller than the biomass C change in the French Creek area
(2.52 Mg Cha'yr~!, southern DRB), and Delaware Water Gap Area (2.68 Mg C ha~! yr~!, central DRB).
An increase of dead biomass C accounted for 20% of the total biomass C change. The change of biomass
C stocks did not correlate with any climatic or topographic factors, but decreased with increasing stand
age, and with tree mortality rate. Mortality rates were highest in the smallest size class. In most of the
major tree species, stem density decreased, but the loss of biomass from mortality was offset by recruit-
ment and growth. The demographic changes differ dramatically among species. The living biomass of
chestnut oak, white oak and black oak decreased because of the large mortality rate, while white pine,
American beech and sweet birch increased in both biomass and stem density. Our results suggest that
forests in the DRB could continue to be a carbon sink in the coming decades, because they are likely at
a middle successional stage. The linkage between demography of individual trees species and biomass
C change underscores the effects of species-specific disturbances such as non-native insects and
pathogens on forest dynamics, and highlights the need for forest managers to anticipate these effects
in their management plans.
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1. Introduction

As global forest C stocks have increased consistently in the past
several decades, their potential to sequester additional atmo-
spheric carbon dioxide (CO,) is considered a mitigation strategy
to reduce global warming (Luyssaert et al.,, 2007; Pan et al.,
2011; Ciais et al., 2013). Quantifying forest biomass C stock change
and identifying the factors causing changes are important to
understand forest dynamics and its feedback with climate change,
and to successfully implement forest carbon management
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strategies (Hyvonen et al.,, 2007; Bonan, 2008). However large
uncertainty still exists as forest biomass is highly heterogeneous
(both spatially and temporally), and its dynamics are determined
by different factors at different scales (Birdsey et al., 2006; Pan
et al,, 2013).

It is widely accepted that seasonal weather and climate regulate
short-term fluctuations of carbon uptake, while disturbance his-
tory and management control C stock change on decadal time
scales (Barford et al., 2001; Williams et al., 2012). Climatic, topo-
graphic and geologic factors determine forest dynamics across a
broader range of environmental conditions, while stand age and
gap dynamics control biomass accumulation at smaller spatial
scales (Brandeis et al., 2009; Yi et al., 2010). Living tree biomass
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is one of the largest and most active C pools in forest ecosystems
(Woodbury et al., 2007), and its dynamics are driven by the balance
among three forest demographic changes: growth, recruitment
and mortality (including harvesting). Each of these demographic
changes can vary with age and species (Vanderwel et al., 2013a;
Rozendaal and Chazdon, 2015). Long-term, periodic biometric
measurements provide a unique opportunity to not only investi-
gate forest biomass C dynamics at the regional scale, but also link
biomass C stock with demographic change (Curtis et al., 2002; Xu
et al.,, 2014).

Based on inventory data, forests in the northeastern U.S. are an
overall net sink for atmospheric carbon in recent decades (Turner
et al., 1995; Lu et al., 2013). However, C accumulation in some
northern hardwood forests has been halted due to the impact of
emerging stresses such as invasive pests, land use change and cli-
mate change (Brooks, 2003; Siccama et al., 2007; Duarte et al.,
2013). Small scale disturbances such as invasive pests, disease
and selective harvesting may affect species differently, and
increase C turnover at regional scales (Makana et al., 2011). The
Delaware River Basin (DRB), situated in the southern edge of the
northern hardwood forest, features diverse forest types and land-
use histories. Most of the forests in the DRB are secondary forests
recovering from agricultural land use, with stand ages around 80-
100 years. Succession in the DRB during the recovery process may
affect forest biomass C change (Xu et al., 2012). These forests are
sensitive to the controlling factors defining forest dynamics; thus,
quantifying the biomass C stock in DRB forests acts as the basis for
regional C cycle assessment and is essential for effective forest C
management.

During 2001 to 2003 a set of forested plots were established in
the DRB, and their total biomass C stock (including above- and
belowground biomass, but not including fine roots; see below)
was measured in a multi-agency program known as the Collabora-
tive Environmental Monitoring and Research Initiative (CEMRI).
Here we report the results of re-measuring these plots using the
same measurement protocols in 2012-2013. By comparing forest
biomass C in the two measurements, and carefully documenting
demographic changes, the major goals of this study are: (1) to
quantify biomass C stock change in the DRB forest during the
recent decade, (2) to investigate the controlling factors of forest
biomass C stock change at the regional scale, and (3) to examine
the impact of tree demographic change on biomass C change by
comparing biomass C change in different size groups and tree
species.

2. Methods
2.1. Research area

The Delaware River is one of the major rivers in the mid-
Atlantic region of the United States, draining an area of about
33,000 km? in Pennsylvania, New Jersey, New York, Delaware,
and Maryland. The Delaware River Basin is characterized by a
humid continental climate, with mean annual temperature of 9-
12°C and mean annual precipitation of 1143 mm (Kauffman
et al., 2008). The DRB is located in the eco-zone of deciduous for-
ests and is ecologically diverse, comprised of five physiographic
provinces and multiple species assemblages that represent most
of the major eastern U.S. forest types (Murdoch et al., 2008).

Three areas in the DRB were selected as intensive monitoring
and research sites for process-level studies in forested landscapes:
the Neversink River Basin (NS) in the northern, mostly forested
region of the Appalachian Plateau province; the Delaware Water
Gap Area (DEWA) with three small watersheds (Adams Creek,
Dingman’s Falls and Little Bushkill) lying in the central Appala-

chian Plateau Province; and the French Creek Watershed (FC) in
the midbasin Piedmont province (Fig. 1).

During 2001-2003, 68 inventory plots were randomly located
in the three sites. Within each plot, all trees with diameter at
breast height (DBH) greater than 5 inches (12.7 cm) were mea-
sured and marked, and the specific locations of the plots were
mapped. In 2012-2013, 61 forested plots of the 68 original plots
were revisited and biomass parameters were re-measured using
the same protocols. Seven plots were not revisited due to accessi-
bility issues such as permission from the landowner. Between the
two measurements some plots had been disturbed by human
activities, such as clear-cut or land use change. Anthropogenic dis-
turbance was recorded in the field and while disturbed plots were
included in the determination of biomass estimates, they were not
included in the demographic analyses. The number of usable plots
for demographic analyses was therefore reduced from the original
68 to 55 plots.

2.2. Field measurements and biomass C calculations

The plot design and sampling method follow the forest inven-
tory protocols in the two measurements, including additional vari-
ables that were specified for the intensive study sites (Fig. 2; U.S.
Department of Agriculture, 2014). Each plot has four round sub-
plots, in total covering an area of 672.44 m?. Live and dead trees,
stumps and residue materials were measured in each subplot.
DBH, total and bole height, tree species, and status change (e.g.,
live versus dead) of each tree were recorded. A laser rangefinder
was used to measure the tree and bole heights. Each subplot has
one microplot (area: 13.49m?) and three transects (length:
7.92m). Live and dead sapling (1in.<DBH<5in.), seedling
(DBH < 1in.), shrub and herb coverage were measured in the
microplots. Coarse woody debris and fine woody debris were mea-
sured along the transects.

Within each plot, two trees close to the subplots that represent
the dominant species and growing condition of the forest stand
were selected as site trees. The age of the site trees was measured
by counting rings in a tree core. The stand ages of plots were deter-
mined as the mean age of the two site trees.

Field measurement data from the original 2001 to 2003 inven-
tory were acquired from a U.S. Forest Service (USFS) database gen-
erated by the CEMRI project (http://www.fs.fed.us/ne/global/
research/drb/summary.html). Data from the two inventories were
compiled into a single database for biomass C calculations. Cole
et al. (2013) provides a detailed description of the database, which
contains CEMRI project data on tree biomass.

Biomass of live trees, dead trees, saplings, seedlings, shrubs,
coarse woody debris, fine woody debris, and stumps were each cal-
culated and summed for each of the two survey periods. Fine root
biomass was the only biomass pool not estimated in either survey
in this study. As a result, we assumed that fine root biomass did not
change between the two sampling periods. The species-specific
allometric equations from Jenkins et al. (2004) were used to calcu-
late above-ground tree biomass (Suppl. Table 1) as described in
Cole et al. (2013). The proportion of coarse roots biomass to above-
ground biomass was estimated based on DBH for each species as
described in Jenkins et al. (2004) and Cole et al. (2013). The total
biomass of each tree was the sum of above-ground biomass and
coarse roots. Dead tree biomass was multiplied by a reduction fac-
tor according to their decade classes and species groups (Waddell,
2002) to subtract the biomass loss from decomposition. Biomass of
coarse woody debris and fine woody debris were calculated using
standard equations (Woodall and Williams, 2005). Stump biomass
was calculated as coarse root biomass multiplied by the reduction
factor according to the decade classes. A conversion factor of 0.5
was used to convert biomass to C stock. The biomass C change of
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Fig. 1. The hydrological boundary of the Delaware River Basin and the main stream and tributaries of the Delaware River. The three research areas of the current study are
shown in different shading color. The red dots represent the locations of forest biomass plots. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

each component was calculated as the difference of biomass C in
the two measurements divided by the number of years between
the two measurements in each of the plot.

2.3. Data analysis

Mean topographic and climatic factors for each site (Table 1)
were spatially averaged from spatial data layers based on the coor-
dinated of each plots. The elevation data was derived from Global
Land Cover Characterization datasets with a spatial resolution of
1 km (https://lta.cr.usgs.gov/GLCC), and temperature and precipi-
tation data were derived from the PRISM Gridded Climate data as
30-year means from 1981 to 2010 with a spatial resolution of
800 m (http://www.prism.oregonstate.edu/normals/, Thornton

et al., 2014). Wet deposition data were inorganic nitrogen deposi-
tion at a spatial resolution of 1 km and averaged from 1983 to 2007
(Grimm, 2008). Plot-scale climate and N deposition data were the
non-spatially averaged data mentioned above, while the elevation
data were values directly measured in the field. Measured topo-
graphic data was found to be essentially the same as database
values.

Biomass C stocks in each component and their changes between
the two measurements were averaged by site and in all plots com-
bined. In addition, all live trees were classified into size classes by
their DBH using 5 cm intervals from 10 to 40 cm (size classes 1-6).
Trees with DHB 40-50 cm were classified as size class 7 and trees
DBH > 50 cm were classified to size class 8. The biomass C stocks of
living tree were summed by each tree size class. Mortality rates
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Fig. 2. Plot design used for forest measurement (Revised from U.S. Department of
Agriculture, Forest Service. (2002)). Trees within each subplot were measured.
Sapling and seedlings were measured in microplots. Coarse and fine woody debris
were measured on transects.

(% yr~1) of each plot and each size class were calculated by solving
the equation:

N dead

1-M"=1-
( ) Niiye1

where M is the mortality rates, Ng.qq is the number of trees that died
between the two measurements, Nj;,.; is the number of live trees in
the first measurement, and n is the number of years between the
two measurements. The mortality rates and proportions of biomass
C from each tree size class in the two measurements were com-
pared to examine the structure change in each site.

Tree species richness (S), Shannon’s diversity index (H), and
evenness (Ey) were calculated for each plot using the live tree data
in the second measurement to represent the species diversity at
plot level. Species importance values were determined for each site
and species following Forrester et al., 2003 (Suppl. Table 2):

Importance values = (relative live density
+ relative live basal area) + 2

The 15 most important species in each site were selected and their
biomass C and density change was examined. Biomass C loss from
mortality was calculated as the biomass C of trees that were live
in the first measurement and died before the second measurement.
Biomass C gain from recruitment was calculated as the biomass of
new ingrowth trees in the second measurement. Biomass C gain
from growth was calculated as the biomass increase for trees living
in both of the two measurements.

Table 1

Differences among the three sites in total biomass C and bio-
mass C change were compared using one-way ANOVA. Type II
(major axis) regression analysis was used to test correlations
between biomass C stock changes and biotic (stand age, tree mor-
tality rate, Shannon’s biodiversity index) and abiotic (slope, eleva-
tion, temperature, precipitation, and wet nitrogen deposition)
factors in all plots combined to detect regional patterns.

A non-metric multidimensional scaling (NMS) analysis was
conducted using PC-ord (Version 6.08, MjM Software, Gleneden
Beach, Oregon, U.S.A.) on the basis of live tree data to differentiate
the species composition in the three sites. Species that were pre-
sent in only one plot were removed from the database, after which
one plot in FC had only 4 trees remaining and was thus also
removed from the database. As a result, data for 60 plots and 28
species (Suppl. Table 3) were used in the NMS analysis. NMS ordi-
nation was run using k = 3 dimensions, as this led to significantly
lower stress than the two-dimensional model and was not sub-
stantially improved by using four dimensions. One-way ANOVA
on plot scores of the first two NMS axes was used to test for differ-
ences in species composition among the three sites. Statistically
significant differences between each pair of sites were compared
using the Wilcoxon method.

3. Results
3.1. Forest biomass C stock change and its components

In the 61 plots that were revisited in 2012-2013, the mean bio-
mass C stock in the second measurement was 161.2 Mg C ha~'. The
net biomass C stock change between the two measurements was
2.01 Mg Cha'yr~'. Among the 61 plots, six plots had visible dis-
turbances in the past decade. The biomass C loss in the disturbed
plots was up to 9.72 Mg Cha~'yr~! (Fig. 3). In the remaining 55
undisturbed plots, the total biomass C stocks were 146.7 Mg C ha™!
in FC, 114.7 Mg C ha~' in DEWA, and 159.3 Mg C ha~! in NS in the
first measurement during 2001-2003 (Table 2). In the second mea-
surement during 2012-2014 of the same 55 undisturbed plots, the
total biomass C stocks were 172.1MgCha™' in FC,
142.2 Mg Cha~! in DEWA, and 185.1 Mg C ha~! in NS. The forests
in the most northern site (NS), with higher elevation, and greater
precipitation and nitrogen deposition, had larger biomass C pool
than the other sites. The net biomass C stock change between the
two measurements was 2.52 Mg Cha~'yr~! in FC, 2.68 Mg C ha™!
yr~! in DEWA, and 1.94 Mg Cha—!yr~! in NS. The mean biomass
C stock change in all the undisturbed plots was 2.45 Mg C ha™!
yr~!. The undisturbed forests in the DRB were therefore a net
carbon sink over the recent decade (i.e., the mean of each site
was above the zero line in Fig. 3). The total biomass C change did
not differ among the three sites (p = 0.76).

Among all biomass components, live trees were the largest C
pool and C sink over the past decade (Table 2). On average, live tree
biomass contributed 76.9% of the total biomass C change. Dead bio-
mass was also an important contributor to total biomass C change
(20.1%). Dead trees and CWD were the two largest C pools in dead
biomass. Variation in biomass C change among plots was large,
especially in the dead biomass components (Table 2).

Environmental conditions in the three research sites in the Delaware River Basin. All data were extracted from geographic information layers, and mean values for each site are
shown. The elevation data was derived from Global Land Cover Characterization datasets (https://Ita.cr.usgs.gov/GLCC). Annual temperature and precipitation are 30-year means
from 1981 to 2010 (Thornton et al., 2014). Wet deposition is inorganic nitrogen deposition from 1983 to 2007 (Grimm, 2008).

Elevation (m) Mean annual temperature (°C)

Mean annual precipitation (mm) Wet deposition (kg N ha™')

Average stand age

French Creek (FC) 166 11.16
Delaware Water Gap (DEWA) 360 8.53
Neversink (NS) 773 5.75

1171 6.55 85
1219 6.33 107
1503 6.44 91
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Table 2

Total biomass C stocks in the two measurements (unit: Mg C ha~!) and biomass C
stock change in different components (unit: g C m~2 yr~') in each site and in all plots
combined. Standard deviations among plots are given in the parentheses. p values
show the statistical significance of differences among sites in a one-way ANOVA.
(* represents statistical significance at p<0.05, and ** represents statistical
significance at p <0.01).

FC DEWA NS Total p value
(n=13) (n=28) (n=14) (n=55)
Total Biomass C (Mg Cha™!)
2001-2003  146.7 (50) 114.7 (39) 1593 (37) 133.6(45) 0.004*
2012-2014  172.1(56) 1423 (51) 185.1(45) 1602 (53) 0.017*

Biomass C change (gCm 2 yr?)

Live tree 216.0 (255) 204.8 (262) 131.1(117) 188.7(231) 0.56
Dead tree 57.3(104) 202 (50) —12.8(113) 30.8(106) 0.18
Sapling —6.0(21) -62(28) 184(40) 0.2 (31) 0.036*
Seedling 1.2 (6) 102 (13) 2.1 (4) 6.0 (11) 0.010*
CWD 5.8 (45) 18.0(63) 36.0(37) 19.7(54) 034
FWD ~15.5(29) 5.5 (29) 1.2 (14) ~05(27) 0.06
Stump -82(33) -5.0(37) ~-6.0(36) 0.80

Live biomass  212.1(262) 210.7 (258) 151.2(108) 195.9 (228) 0.84
Dead biomass 402 (131) 57.0(122) 42.6(104) 49.3 (118) 0.49

Total 2523 (224) 267.7 (247) 193.9 (142) 2452 (218) 0.76

3.2. Controlling factors in biomass C change

For all undisturbed plots combined, the change in biomass C
stock between the two measurements was poorly correlated with
climatic and topographic factors, although the three sites have very
different environmental conditions (Table 3, Fig. 4). Stronger corre-
lations were detected between biomass C change and biotic factors
(Table 3, Fig. 4). The change in biomass C decreased significantly
with tree mortality rate between the two measurements
(r=0.417, p<0.01). Biomass C change was negatively correlated
with stand age (r=-0.232, p=0.09). No significant correlation
was detected between biomass C change and tree species diversity.

3.3. Forest demographic changes

Large trees (>35 cm DBH) made greater contributions to the
living biomass, especially in FC where the largest size class

Table 3

Type I (major axis) correlations between biomass C change and environmental
factors. (* represents statistical significance at p <0.05, and ** represents statistical
significance at p < 0.01).

Variable Slope Intercept R? p
Slope (degree) 4.13 216 0.010 0.47
Elevation (m) -0.18 320 0.037 0.16
Precipitation -6.09 963 0.033 0.18
Temperature 18.48 92 0.030 0.21
Total biomass (2001-2003) 0.004 189 0.089 0.25
Mortality rate -56.52 335 0.173 <0.01**
Stand age -2.13 454 0.054 0.09*
Shannon'’s diversity index -92.91 368 0.032 0.19

(>45 cm DBH) accounted for 37.8% of the total live tree biomass.
Live tree biomass increased between the two measurements in
all size classes, but the change in biomass was greater in large size
classes than in small size classes (Fig. 5a-c). Mortality rates were
also greater in smaller size class (10-20 cm DBH, Fig. 6d) compared
to trees in the middle size class (20-35 cm DBH). High variability
was observed in large size class mortality rates because there were
few large trees (>35 cm DBH, Fig. 5d).

Tree species composition of forests in NS was significantly dif-
ferent from FC and DEWA, but forests in FC and DEWA had more
similar species composition. In results of NMS, all of the NS plots
were in the lower-left quadrant, with only 4 plots from FC and
DEWA (Fig. 6). The NS plots had significantly smaller scores on
both of the axes comparing with FC and DEWA (axis 1: NS vs FC
p<0.01, NS vs. DEWA p <0.01, axis 2: NS vs FC p<0.01, NS vs.
DEWA p <0.01). However the difference between FC and DEWA
was not significant on both of the axes (axis 1: p=0.73, axis 2:
p = 0.59). Forests in NS were dominated by maple-beech-birch for-
est, while in FC and DEWA consisted of tree species typical of a
southern deciduous type of oak-hickory forest. The DEWA site,
located between the other two sites from north to south, was a
transition zone for tree species (Table S1).

Over the past decade, in spite of reduced stem density, the bio-
mass C stock increased in the 15 most important species in the DRB
forest (Fig. 7). Growth of existing trees accounted for most of the
biomass C increase, while recruitment contributed little to total
biomass C change. Conversely, mortality played an important role
in counterbalancing growth and recruitment. Because of the high
mortality rate, the living biomass of chestnut oak, white oak and
black oak declined in FC and DEWA. White pine, red oak and sweet
birch increased in both biomass and stem density in the oak-
hickory forests in DEWA. In the maple-beech-birch forests in NS,
the stem density of American beech, and biomass C stock of yellow
birch and hemlock increased dramatically.

4. Discussion
4.1. The large biomass C sink in the DRB forests

The average biomass C stock in the DRB forest was smaller than
previously reported for old growth forests in the region (Gunn
et al., 2014; McGarvey et al., 2015), but comparable with the aver-
age biomass C stocks in deciduous forests of the northeast U.S. esti-
mated by forest inventory data (Nunery and Keeton, 2010). The
change of biomass C stocks over the past decade in the DRB forest
was greater than other long-term biomass measurement in north-
ern hardwood forests, such as the Adirondack Mountains (Bedison
et al,, 2007) and the Hubbard Brook Valley (van Doorn et al., 2011).
The change in biomass C stock was also greater than the national
average of biomass C stock change during 2000-2007 (Pan et al.,
2011).
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Forest biomass C stocks differed significantly among the three
sites (Table 2). Larger potential biomass C stocks in the maple-
beech-birch forest and fewer disturbances at high elevation may
be responsible for the larger biomass C stock in the NS (Turner
et al., 1995). For the two sites dominated by oak-hickory forest
(i.e., FC and DEWA), FC had a larger biomass C stock but smaller
biomass C change, suggesting that the plots in FC were in a later
successional stage compared to the plots in DEWA. The greater
contribution of biomass C from the largest size classes and the high
mortality rate in smaller size classes in the FC (Fig. 5a and d) also
indicated forest maturity. Although the average stand age in FC
was younger than in DEWA (Table 1), possibly because a warmer
climate and greater atmospheric N deposition in FC compared to
DEWA and NS (Table 1) has allowed the forest in FC to accumulate
more biomass C in a shorter period of time, and the growth rate of
biomass C might have started to decline earlier (Odum, 1960;
Anderson-Teixeira et al., 2013). In contrast, biomass C stocks
increased at a greater rate in DEWA because the forests may be
in a relatively earlier successional stage and have greater potential
to sequester more biomass C in the future.

Dead biomass was a substantial C pool in the DRB forests, but its
change was also highly variable. The coefficients of variance ranged
from 214% to 325% in the three sites (Table 2). Changes in dead bio-
mass were negatively correlated with live biomass changes at the
plot level (Suppl. Fig. 1), suggesting that biomass C lost from live
biomass is transferred to, and can be preserved in, dead biomass
for at least a decade. Dead biomass can thus function as a buffering
C pool, reducing the C turnover rate at the ecosystem scale (Woods,
2014). McGarvey et al. (2015) demonstrated that the contribution

of dead biomass to the total biomass C stock is larger in old-growth
forest compared to the surrounding younger forest in the mid-
Atlantic region, which includes the DRB. As a result, we might
expect dead biomass C pools to increase in the future as the DRB
forest ages.

4.2. Environmental versus biotic factors in determining biomass C
change

The observed lack of correlation with climatic and topographic
factors for biomass C change is likely because the plot variation in
forest biomass is much larger than the spatial variation in environ-
mental factors (as illustrated by scattering in a wide range verti-
cally, but clustering in a small range horizontally in
Fig. 4a and b). The environmental factors were not adequate to
explain the variation in biomass C change within each site, while
biological factors such as tree mortality rate and stand age
appeared to be more important in determining variation in bio-
mass C stock changes. Our results suggest that forest biomass C
change at the regional scale was mostly driven by internal
community-level processes such as competition and natural suc-
cession, more so than external environmental factors. This is con-
sistent with previous studies that concluded that the direct effect
of climatic variables on long-term forest dynamics may be small
compare to successional processes and disturbances (Kardol
et al., 2010; Nowacki and Abrams, 2015; Zhang et al., 2015).

To explain the lack of correlation between environmental fac-
tors and biomass C change, two points need to be mentioned. First,
this result does not mean that forest biomass C is unaffected by cli-
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mate change in the DRB. Caspersen et al. (2000) previously con-
cluded that forest biomass C change results from a combination
of natural growth and enhancement by climate change, whose
effects cannot be easily separated. Second, environmental factors
may determine demographic change and disturbance regime, and
therefore may have indirect impacts on biomass C change
(Vanderwel et al., 2013b; Baez et al., 2015). However, these effects
are not strong enough to be detected at such small spatial scales
compared to the more dominant influence of plot dynamics. Long

term observations at more sites are needed to address the interac-
tions between factors.

The observed negative correlation between stand age and bio-
mass C change (Fig. 4c) is consistent with the forest succession
model, which predicts a decline in forest growth with increasing
stand age (Williams et al., 2012). Our observed correlation was
not particularly strong because the range of stand ages in our
DRB plots was relatively narrow, and the correlation was mostly
driven by the three plots with the youngest stand ages. The obser-
vation that younger forests accumulated more biomass C than
older forest over the past decade still indicated that most of the
forests in the DRB had reached or passed the stage of maximum
growth rate. While still accumulating C and thus acting as a sink,
the rate at which C may be sequestered in the future may decrease
as the age distribution shifts toward older stands in the DRB forest.

Although live biomass C loss from mortality could be preserved
in the ecosystem as dead biomass for several decades, tree mortal-
ity rates still had a significant impact on biomass C change
(Fig. 4d). A larger proportion of the spatial variation in biomass C
change can be explained by tree mortality rate, rather than the
average tree growth rate (Table 3), indicating the importance of
tree mortality in determining forest dynamics (Purves et al.,
2008; Xu et al., 2012). It has been reported that tree mortality rates
vary with climate, forest density, species and succession stage
(Bell, 1997; Brown and Schroeder, 1999; Lutz and Halpern, 2006;
Bond-Lamberty et al., 2014).

4.3. Demographic changes in different size classes and species

Large trees played an important role in determining forest bio-
mass C stock in the DRB forest. The largest 10% of trees accounted
for 47% of the live tree biomass in FC, 41% in DEWA and 38% in NS.
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Between the two measurements, more biomass C was accumulated
in the larger size classes than smaller size classes (Suppl. Table 4),
which is consistent with other studies (Fedrigo et al., 2014). Bio-
mass C increases in large trees can be attributed to increased num-
ber of large trees as a result of shifting forest age structure (as
small trees grow into large ones), and to faster growth rates of
large trees because they have better access to more resources such
as light and water than do small trees (Stephenson et al., 2014).
The fact that large trees in the DRB forests are still growing rapidly
indicated a large potential for biomass C increase in the future. In
this study, most of the trees in the largest size class (50-70 cm
DBH) are comparable to only the middle size class in the old-
growth forest of the Mid-Atlantic (McGarvey et al., 2015). This
comparison further suggests that the forests in the DRB are likely
in a stage of middle succession, and could continue to be a carbon
sink in the future, although C sequestration rate may decline.

The highest mortality rates were observed in the smallest tree
size class (especially in FC, where the forest biomass largely

consisted of the largest size class, Fig. 5a and d), which can be
explained by severe competition in the understory layer. Once
individual tree height reaches the canopy height, growth is not
limited by light and the mortality rate decreases (Bell, 1997;
Miura et al., 2001). Our observations contrast with the pattern of
mortality rate increasing with stem size as reported in an old-
growth forest (Runkle, 2013). It is observed that as forests age,
the peak of mortality biomass C loss shifts from young, small trees
to large, dominant trees (Bond-Lamberty et al., 2014; Woods,
2014; Rozendaal and Chazdon, 2015). However, increased mortal-
ity rate in large trees was only present in DEWA, which has the lar-
gest sample size (number of trees =953), and not in FC and NS,
which both have a smaller number of trees in the largest size class.

Stem density decreased in most of the major species, probably
due to the self-thinning process caused by resource competition
during forest development (Coomes and Allen, 2007). Although
tree density decreased, live tree biomass C stock in the DRB forest
still increased because the loss of biomass C from mortality was
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offset by recruitment and growth in most of the dominant species.
However, the balance between growth, recruitment and mortality
varies dramatically among species. Our results reflect the impor-
tance of species-specific disturbances such as non-native insects
and diseases, which may threaten a single species or genus of trees
(Lovett et al., 2002; Flower et al., 2013). These disturbances are
gradually changing the species composition in the DRB forest and
may have profound impacts on biomass C stock change by altering
the demographic change in different tree species (Hicke et al.,
2012; Fahey et al., 2013).

For example, in the oak-hickory forests in FC and DEWA, oak
species (e.g. chestnut oak and black oak in FC, white oak and chest-
nut oak in DEWA) are declining in both stem density and biomass C
stock. The possible reasons for oak decline include regional selec-
tive harvesting and defoliation induced by gypsy moth outbreaks,
or infestation of sudden oak death (Murdoch et al., 2008).

In the maple-beech-birch forests in NS, the most dominant
species, American beech, was affected by infestations of beech bark
disease (Griffin et al., 2003; Lovett et al., 2013), causing the largest
biomass C loss from mortality (mostly from the largest size class)
and the largest biomass C gain from recruitment among all the spe-
cies and sites. These results implied that the forests in the NS are in
the aftermath phase of the disease, in which the disease may stim-
ulate regeneration and change the forest structure (Houston, 1994;
Forrester et al., 2003).

4.4. Implications for regional C cycle and forest management

In this study, periodic long-term field measurements of tree and
forest biomass allowed the quantification of total biomass C stock
change and how the demographics of individual tree species con-
tributed to the total biomass change of the forest. Our results
showed that forest biomass in the DRB was a relatively large car-
bon sink over the past decade compared with other sites in the
Northeast U.S. and the national average. It is likely that the DRB
forest will continue to be a carbon sink in the coming decades,
because the forest is in its middle rather than a late successional
steady state (Odum, 1969). These results can serve as a reference
level according to international standards for evaluating the poten-
tial of forest management and forest health protection to increase
biomass C sequestration in the DRB forest in the future (FAO,
2015).

We found that biomass C stock changes were driven by tree
demographic change, which varied with tree size and species. This
highlights the potential importance of species-specific distur-
bances such as insects and pathogens which have become major
determinants of individual tree species demographic changes,
and how the changing frequency and severity of these disturbances
might impact forest biomass C sequestration. Our results can pro-
vide important information for understanding forest recovery pro-
cesses in major forest types of the northeastern U.S. and for
improving ecological modeling and forest management at the
regional scale. Forest management strategies need to pay close
attention to the species that show declines in density and biomass
over time, or are likely to show such declines in the near future,
especially late successional species susceptible to biotic distur-
bances, to ensure sustainable forest development and a continuing
biomass carbon sink.
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