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Abstract

Context Tree species distribution and abundance are

affected by forces operating at multiple scales. Niche

and biophysical process models have been commonly

used to predict climate change effects at regional

scales, however, these models have limited capability

to include site-scale population dynamics and land-

scape-scale disturbance and dispersal. We applied a

landscape modeling approach that incorporated three

levels of spatial hierarchy (pixel, landtype, and

ecological subsection) to model regional-scale shifts

in forest composition under climate change.

Objective To determine (1) how importance value of

individual species will change under the PCM B1 and

GFDL A1FI modeling scenarios and (2) how overall

forest composition at different spatial scales will

change under these climate change scenarios in the

short, medium, and long term in the Central Hard-

wood Forest Region (CHFR).

Methods We used LANDIS PRO to predict forest

composition changes from 2000 to 2300 accounting

for climate change, population dynamics, dispersal,

and harvest in the CHFR. We analyzed forest compo-

sition shifts under alternative climate scenarios and at

multiple spatial scales.

Results Shifts in forest composition were greater

under the GFDL A1FI than the PCM B1 modeling

scenarios and were greatest at the scale of ecological

sections followed by forest sub-regions and the whole

CHFR. Forest composition shifted toward more

southern and xeric species and lesser northern and

mesic species.

Conclusions We suggest it is essential to include

site- and landscape-scale processes in models and to

evaluate changes at multiple spatial and temporal

scales when evaluating changes in species composi-

tion due to climate change and disturbance.

Keywords Abundance � Harvest � Succession �
Demography � LANDIS PRO � U.S. Forest Service

Inventory and Analysis (FIA) data

Special issue: Macrosystems ecology: Novel methods and new

understanding of multi-scale patterns and processes.

Guest Editors: S. Fei, Q. Guo, and K. Potter.

W. J. Wang � H. S. He (&) � J. S. Fraser

School of Natural Resources, University of Missouri,

203 ABNR Bldg, Columbia, MO 65211, USA

e-mail: heh@missouri.edu

W. J. Wang

e-mail: wangwenj@missouri.edu

J. S. Fraser

e-mail: fraserjs@missouri.edu

F. R. Thompson III � W. D. Dijak

USDA Forest Service, Northern Research Station, 202

ABNR Bldg, Columbia, MO 65211, USA

e-mail: frthompson@fs.fed.us

W. D. Dijak

e-mail: wdijak@fs.fed.us

123

Landscape Ecol (2016) 31:149–163

DOI 10.1007/s10980-015-0294-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-015-0294-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-015-0294-1&amp;domain=pdf


Introduction

Tree species distribution and abundance are affected

by forces operating at multiple scales. Spatial varia-

tion in climate at a regional scale is an important factor

affecting tree distribution and abundance (Thuiller

et al. 2004; Pederson et al. 2014). Ecological sections

or subsections are ecologically defined regions in the

U.S. (McNab et al. 2007) that may be useful for

summarizing regional changes in forest composition.

Differences in nutrient and water availability as

captured by landform and soil may have a dominant

effect at an intermediate landtype scale (also called

ecoregions for broad-scale studies). Population

dynamics and biotic interactions such as inter- and

intra-species competition may play the greatest role at

a site or pixel scale (Araújo and Luoto 2007; Pigot and

Tobias 2013; Normand et al. 2014; Liang et al. 2015).

Models can account for forces at multiple scales when

predicting effects of climatic change on forests. Niche

models (Guisan and Thuiller 2005; Araújo and Rahbek

2006; Iverson et al. 2008; Gritti et al. 2013) and

biophysical process models (Bachelet et al. 2008;

Morin et al. 2008; Medvigy et al. 2009) are common

models that use a two-level hierarchy, cell and region,

to model climate change effects at regional scales

(Morin and Thuiller 2009). Both types of models

divide the study region into grid cells (usually

20–50 km in size) at which regional climate is

spatially downscaled and environmental data (e.g.,

soil) is aggregated (Iverson et al. 2011; McMahon

et al. 2011). Process models simulate grid cell-level

vegetation dynamics based on interactions between

physiological drivers and plant functional types

(Neilson et al. 2005). Niche models predict probabil-

ities of species occurrence for all grid cells based on

the statistical associations between the observed

distributions and environmental variables (Pearson

and Dawson 2003). Both types of models aggregate

individual grid cells without accounting for interac-

tions among cells to make inferences at a regional

scale. From the perspective of hierarchy theory, grid

cell-level simulation provides mechanisms for regio-

nal-level outcomes, whereas the region provides the

spatial context for cell-level simulations (O’Neill et al.

1986).

The 20–50 km grid cell size used by niche models

and biophysical process models corresponds to the size

of ecological subsections and sections (McNab et al.

2007). Ecological subsections are ecologically defined

but may still be too coarse to realistically simulate site-

scale population dynamics and landscape-scale pro-

cesses. Thus, population dynamics (e.g., tree species

demography and biotic interactions in a forest stand,

usually 30–500 m in size) and landscape-scale pro-

cesses (e.g., dispersal and harvest, usually spanning over

a few sites) are either ignored or highly simplified in

niche and biophysical process models (Purves and

Pacala 2008; Elith and Leathwick 2009). Population

dynamics may play a greater role than climate change in

affecting forest composition in temperate deciduous

forests and tree harvest may accelerate shifts in

composition by providing regeneration opportunities

and altering the competitive balance among tree species

(Thompson et al. 2011; Luo et al. 2014; Wang et al.

2015). Dispersal, occurring from hundreds of meters to a

few kilometers, links site-scale population (seed abun-

dance and distribution), dispersal capacity, and envi-

ronmental constraints and is found to be a key process

affecting tree species migration and composition shift

(Neilson et al. 2005; Thuiller et al. 2008; Doxford and

Freckleton 2012; Corlett and Westcott 2013). Site-scale

population dynamics and landscape processes can be

incorporated at pixel sizes of 30–500 m in landscape

models to more realistically simulate regional changes

in forest composition (Wang et al. 2013a, b).

We applied a landscape modeling approach that

included three levels in an ecological and spatial

hierarchy (pixel, landtype, and ecological subsection)

to model regional-scale changes in forest composition

and structure. We simulated species-level processes

such as growth, mortality, and establishment and

stand-level processes such as competition at a pixel

scale. We simulated effects of soil nutrients and water

conditions, as captured by soils and landforms, on

species establishment and maximum growing space.

We also simulated seed dispersal among pixels, which

can result fine grain (e.g. within landtype) hetero-

geneity in species distributions (He and Mladenoff

1999; Wang et al. 2013a). Regional climate models

can be downscaled to subsections and landtypes to

affect species- and site-level processes. The simulated

results under this framework are the outcome of

interactions at all three scales (Wang et al. 2014a, b;

Wang et al. 2015).

Forest landscape models have employed this multi-

level hierarchy to simulate forest change (e.g.,
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Schumacher and Bugmann 2006; He 2008), however,

they have not been able to predict regional-scale (e.g.,

[100 million ha) forest changes because of the

immense computational load. The maximum simula-

tion capacity (number of pixels) of forest landscape

models is currently in the range of 106–107 pixels (e.g.,

He 2008; He et al. 2011). Even at such a simulation

capacity, site-scale population dynamics are simpli-

fied omitting tree density and size metrics, which are

key for determining stand-scale competition for

resources (e.g. light) (Bohlman and Pacala 2012).

Recent advances in the LANDIS PRO forest landscape

model have expanded the simulation capacity to 108

pixels at 30–500 m resolution (Wang et al. 2014a). The

simulation capacity of LANDIS PRO makes it possi-

ble to predict forest change for a large temperate

deciduous forest region under alternative climate

scenarios while mechanistically simulating site- and

landscape-scale processes.

We used LANDIS PRO, a regional-scale forest

landscape model, to simulate forest change due to

succession, harvest, and climate change over the next

300 years in the Central Hardwood Forest Region of

United States (CHFR). The CHFR is one of the most

extensive temperate deciduous forests in the world

(Johnson et al. 2009). Temperate deciduous forests are

among the biomes that have been most severely

influenced by global change factors such as climatic

change, land use (e.g., logging, agriculture conver-

sion), and land management (e.g., fire suppression,

harvest) (Reich and Frelich 2001; Pederson et al.

2014). These factors will undoubtedly continue to alter

tree species occurrence and abundance and thus lead to

shifts in forest composition and structure, which will

affect the ecological, economic, and social services

these forests provide (Thompson et al. 2011; Ander-

son-Teixeira et al. 2013; Brandt et al. 2014; Vander-

wel and Purves 2014). Temperate deciduous forests

occupy highly populated and developed regions of the

world and play an expanding role under burgeoning

global populations and climate change. Understanding

and anticipating their future composition shifts is

critical to designing a sound management strategy for

conservation, adaptation, and mitigation for change.

We investigated the effects of two different climate

change modeling scenarios on forest composition at

multiple scales within the CHFR. The PCM B1

modeling scenario predicts a moderate temperature

increase (?1.8 �C) and higher growing season

precipitation (?4.2 cm) and the GFDL A1FI model-

ing scenario predicts a large temperature increase

(?5.2 �C) and large precipitation decrease (-20 cm)

compared to current climate. Together, they bracket

the best-case and worst-case scenarios of future

climate changes, under which the strongest deviations

in forest composition are expected across our study

region. Our objectives were to determine (1) how

importance value of individual species will change

under the PCM B1 and GFDL A1FI scenarios

compared to current climate modeling scenario in

the CHFR and (2) how overall forest composition at

different spatial scales will change under these climate

change modeling scenarios in the short, medium, and

long term.

Methods

Study area

The study area was in the CHFR in the eastern United

States, which covered 125 million hectares from

eastern Oklahoma to West Virginia, and southern New

York to Alabama (Fig. 1). This area encompassed 14

ecological sections and 100 ecological subsection and

covered variable vegetation, terrains, soils, and cli-

mates (Cleland et al. 2007). About 70 % of this area is

forested (i.e. forests, woodlands, savannas) and the

remaining area is agricultural and urban land uses

(Johnson et al. 2009). The region is divided into three

sub-regions that reflect three climax associations

(Braun 1950). The oak-hickory forest sub-region is

four ecological sections in the western portion of the

study area and is composed of mixtures of white oak

(Quercus alba L.), black oak (Q. velutina Lam), post

oak (Q. stellata Wangenh.), northern red oak (Q. rubra

L.), scarlet oak (Q. coccinea Muenchh.), mockernut

hickory (Carya. tomentosa Nutt.), pignut hickory

(C.glabra Sweet), and shagbark hickory (C.ovata

K.Koch); The western mesophytic forest sub-region is

five ecological sections in the mid-western portion of

the study area and is composed of oaks, hickories, red

maple (Acer rubrum L.), sugar maple (A. saccharum

Marsh.), American beech (Fagus grandifolia), yellow-

poplar (Liriodendron tulipifera), white ash (Fraxinus

Americana L.), and black cherry (Prunus serotina

Ehrh.); The mixed mesophytic forest sub-region is five

ecological sections in the eastern portion of the study
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area and is composed of white oak, chestnut oak (Q.

prinus L.), northern red oak, red maple, sugar maple,

yellow-poplar, American beech, eastern white pine

(Pinus strobus), and eastern hemlock (Tsuga canaden-

sis) (Braun 1950). The soil types are mostly Alfisol,

Inceptisols, Mollisols, and Ultisols (McNab et al.

2007). The current climate of the CHFR is generally

characterized as a humid continental climate with cool

winters and long, hot summers. Average annual

temperatures follow an east–west gradient and range

from 4 to 18 �C. Average annual precipitation ranges

from 50 cm in the northwest to 165 cm in the

southeast, occurring mostly in spring and fall (Johnson

et al. 2009).

Climate scenarios

We captured the environmental heterogeneity in

terrain, soil, and climate by stratifying the CHFR

into 600 landtypes by intersecting 100 ecological

subsections and 6 landforms derived from a digital

elevation model (DEM) (Dijak 2013). We assumed

resource availability (measured as maximum growing

space, MGSO) and species establishment probabilitie

(SEP) were uniform within a landtype. Climate change

affected species demography by modifying MGSO and

SEP values for each landtype. We modeled MGSO and

SEPs under each climate modeling scenario using

LINKAGES II, an ecosystem model that simulates

individual tree species growth and mortality accounting

for nitrogen availability, climates, and soil moisture

(Wullschleger et al. 2003). We input SEP and MGSO

values for each landtype under each climate modeling

scenario into LANDIS PRO as model parameters to

capture climate change effects (He et al. 1999).

We incorporated regional climate in our modeling

approach by intersecting landtypes with downscaled

general circulation model (GCMs) predictions. We

included a current climate modeling scenario and

PCM B1 and GFDL A1FI modeling scenarios, which

Fig. 1 The study area was located in Central Hardwood Forest

Region (CHFR) in eastern U.S.A. It covered 125 million

hectares and 14 ecological sections, which were grouped into

three forest type sub-regions ranging from west to east: oak-

hickory forest sub-region, west mesophytic forest sub-region,

and mixed mesophytic forest sub-region
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represented the extremes from the lowest to highest

increases in summer temperatures in the region,

respectively. The B1 and A1FI represented the

extremes from the least to most fossil fuel intensive

emission scenarios (IPCC 2007); the PCM GCM had

an overall increase in precipitation while GFDL GCM

had the largest overall decrease for the region (Brandt

et al. 2014; Butler et al. 2015). Thus, by simulating

these scenarios, we were able to generate the best- to

worst- predictions of forest composition shifts to

climate change and incorporated uncertainty in future

climate change projections for the region as described

by IPCC (2007).

For the current climate modeling scenario, we

downloaded daily climate data for maximum and

minimum temperature, daily precipitation, daily solar

radiation, and day length at 1 km resolution for

1990–2009 from DAYMET (Thornton et al. 2012)

for each ecological subsection. We obtained the down-

scaled climate change projections for the two GCM-

based scenarios for the period 2080–2099 for each

ecological subsection from the U. S. Geological

Survey Center for Integrated Data Analysis (USGS

CIDA) Geo Data Portal (Stoner et al. 2011). We

obtained wind speed data for current climate and

climate change modeling scenarios from the National

Oceanic and Atmospheric Administration-National

Climatic Data Center (NOAA-NCDC 2011) for each

ecological subsection.

We obtained measures of soil organic matter,

nitrogen, wilting point, field moisture capacity, per-

cent clay, sand and rock for each landtype from

Natural Resources Conservation Service soil survey

(Soil Survey Staff 2013, http://soils.usda.gov/). Spe-

cies biological traits were compiled from the previous

studies and literature (Wullschleger et al. 2003;

Woudenberg et al. 2010; Appendix Table 2). In

LINKAGES II, we simulated individual tree species to

estimate SEP under each climate modeling scenario

for each landtype using climate and soil data. The

simulated biomass at simulation year 30 was used to

derive SEP for each species at landtype level by

transforming values to a 0 to 1 scale (He et al. 1999,

Wang et al. 2015). We simulated 23 tree species

together for 300 years to estimate MGSO under each

climate modeling scenario using climate and soil data

for each ecological subsection (Wang et al. 2015). We

varied values of SEP and MGSO for the two climate

change modeling scenarios linearly for the first 100

simulation years based on the point estimates for

current climate and 2100 from LINKAGES II and held

values constant for the following 200 years. There-

fore, our predictions represented linear changes in

climate change for the first 100 years but no change

for years 100–200.

LANDIS PRO simulations

We used the LANDIS PRO Succession module to

simulate tree growth, mortality, fecundity, dispersal,

establishment, and competition (Wang et al. 2013a,

2014a). LANDIS PRO represented forests as number

of trees and diameter at breast height (DBH) by

species and age cohort within each pixel. We modeled

the 23 most abundant tree species as determined by

basal area in the U.S. Forest Service Inventory and

Analysis (FIA) data (Woudenberg et al. 2010). We

compiled the biological traits for each tree species

including longevity, maturity, shade tolerance, dis-

persal distance, sprouting probability, maximum stand

density index, and maximum DBH from previous

studies and literature (Table 1, Burns and Honkala

1990; Wang et al. 2013a, 2014a). We derived the

initial forest conditions including absence/presence,

and number of tree by age cohort for 23 tree species at

year 2000 by stochastically assigning a representative

FIA plot to each pixel based on landform, land cover,

FIA unit, and size class from 1995 to 2005 FIA data

including all trees whose DBH was equal or above

2.54 cm using Landscape Builder (Dijak 2013). The

initial forest conditions, model parameters, and pre-

dictions have been previously evaluated using FIA

data and old-growth studies under current climate for

300 years with and without harvest; for further details

on model calibration and evaluation see (Wang et al.

2013a, b, 2014a, b).

We simulated partial tree harvest using the

LANDIS PRO Harvest module and incorporated

different partial harvest regimes for each FIA unit

(Fraser et al. 2013). The basal area harvested within a

selected stand was determined by the initial and

residual stand basal area. Depending on the basal area

harvested per pixel, this approach represented thinning

from above, partial harvest, or clearcutting at the raster

cell level and captured the variation in harvest regimes

across the region. We derived the parameters for the

harvest regimes (minimum entering basal area, resid-

ual basal area, proportion of private lands, tree species

Landscape Ecol (2016) 31:149–163 153

123

http://soils.usda.gov/


T
a
b
le

1
P

er
ce

n
t

ch
an

g
es

in
tr

ee
sp

ec
ie

s
im

p
o

rt
an

ce
v

al
u

e
b

et
w

ee
n

a
cu

rr
en

t
cl

im
at

e
sc

en
ar

io
in

y
ea

r
2

3
0

0
an

d
P

C
M

B
1

(u
p

p
er

)
an

d
G

F
D

L
A

1
F

I
(l

o
w

er
)

m
o

d
el

in
g

sc
en

ar
io

s
in

y
ea

r
2

3
0

0
fo

r
1

4
ec

o
lo

g
ic

al
se

ct
io

n
s

an
d

C
en

tr
al

H
ar

d
w

o
o

d
F

o
re

st
R

eg
io

n

C
H

F
R

O
ak

-h
ic

k
o

ry
fo

re
st

su
b

-r
eg

io
n

W
es

te
rn

m
es

o
p

h
y

ti
c

fo
re

st
su

b
-r

eg
io

n
M

ix
ed

m
es

o
p

h
y

ti
c

fo
re

st
su

b
-r

eg
io

n

O
za

rk
H

B
o

st
M

A
rk

aV
O

u
ch

M
C

T
P

-

O
ak

H

IL
P

-

S
h

aH

IL
P

-

B
lu

eg

IL
P

-

T
ra

H

IL
P

-

H
R

im

S
U

G
A

P
W

G
A

P
N

R
V

A
ll

eg
M

N
C

M

W
h

it
e

O
ak

-
3

.9
-

8
.9

4
.7

-
3

7
.2

-
3

7
.3

1
.1

7
.3

4
.7

3
3

.3
1

.1
1

3
.7

1
.0

-
3

3
.3

-
2

1
.5

-
3

1
.8

-
3

6
.7

-
7

8
.1

-
9

2
.7

-
8

9
.6

-
9

7
.6

9
8

.2
-

2
2

.0
-

1
.1

-
3

2
.5

-
8

0
.5

1
1

.4
-

2
4

.8
-

4
4

.2
-

3
5

.8
-

4
8

.6

C
h

es
tn

u
t

O
ak

-
5

.5
3

0
.8

-
3

8
.0

–
–

1
.8

-
2

4
.3

-
2

5
.4

-
1

1
.8

-
4

7
.6

-
8

7
.2

-
5

8
.9

-
2

7
.8

-
7

5
.9

-
7

6
.6

-
6

1
.1

-
9

9
.3

-
9

5
.0

–
–

-
9

2
.9

-
9

0
.5

-
9

0
.2

-
7

4
.7

-
9

4
.9

-
9

8
.3

-
7

6
.9

-
5

9
.7

-
6

8
.8

-
8

1
.8

P
o

st
O

ak
1

8
.4

1
6

.5
1

9
.3

2
2

.7
2

8
.1

-
2

.0
-

2
0

.7
-

2
6

.2
-

1
6

.6
-

1
.7

–
–

–
–

–

6
.8

6
4

.1
-

6
.0

-
3

.7
4

3
.4

2
8

.4
-

7
.2

2
9

.1
8

0
.1

8
2

.5
–

–
–

–
–

N
o

rt
h

er
n

R
ed

O
ak

6
2

.3
-

3
5

.5
-

5
5

.6
-

5
9

.7
-

9
4

.8
7

.0
-

1
9

.8
9

.1
4

1
.7

-
1

5
.0

1
9

2
.6

6
2

.7
9

1
.3

-
4

5
.3

-
4

4
.0

1
9

9
.4

-
9

3
.2

-
9

1
.5

-
4

7
.9

-
9

7
.9

-
7

9
.4

-
6

1
.7

-
8

4
.4

-
8

8
.0

-
9

6
.0

5
4

5
.2

9
8

0
.0

4
0

0
.1

3
5

2
.1

3
3

.7

B
la

ck
O

ak
8

.3
1

3
.7

-
4

6
.4

-
5

9
.1

-
9

3
.9

6
.9

-
3

1
.9

1
7

.4
4

7
.7

-
2

1
.2

-
7

1
.7

-
8

0
.5

-
7

9
.0

-
8

3
.7

-
7

7
.8

-
8

5
.1

-
9

4
.9

-
9

5
.6

-
4

1
.9

-
9

6
.5

-
9

1
.4

-
8

1
.0

-
8

5
.6

-
9

6
.2

-
9

6
.5

-
8

5
.7

-
6

9
.9

-
6

5
.8

-
7

9
.1

-
8

8
.3

S
ca

rl
et

O
ak

-
2

9
.1

-
4

3
.2

-
9

3
.1

–
0

.0
-

2
3

.8
-

5
0

.2
-

4
9

.6
-

3
7

.6
-

7
0

.6
-

8
6

.9
-

9
0

.2
-

8
8

.6
-

8
9

.1
-

9
0

.4

-
6

3
.7

-
9

8
.1

-
9

3
.4

–
0

.0
-

9
6

.9
-

9
2

.9
-

9
4

.8
-

9
7

.1
-

9
4

.9
-

9
9

.6
-

9
5

.1
-

9
8

.2
-

8
7

.5
-

9
9

.8

S
o

u
th

er
n

R
ed

O
ak

5
7

.4
9

2
.1

5
3

.9
2

0
.6

6
4

.1
1

3
.3

-
1

2
.8

-
9

.2
-

2
1

.1
5

3
.9

–
–

–
–

–

-
7

4
.2

-
3

1
.1

-
1

8
.6

-
8

4
.3

-
9

8
.5

2
7

7
.5

-
1

7
.8

2
5

.8
1

4
.2

5
3

.0
–

–
–

–
–

R
ed

M
ap

le
4

.6
-

7
.0

-
2

9
.1

1
0

.0
8

.2
5

.0
-

2
3

.9
-

2
0

.0
1

.1
-

1
4

.8
-

1
6

.7
-

5
6

.1
1

8
6

.3
-

1
7

.6
-

6
2

.4

1
2

3
.9

2
5

9
.0

1
5

1
.9

1
1

3
.5

9
9

.3
1

3
5

.9
5

2
.2

4
1

.4
7

6
.4

2
3

9
.4

3
3

.0
-

2
9

.0
2

9
2

.8
0

.9
-

2
7

.2

S
u

g
ar

M
ap

le
-

3
2

.3
-

8
0

.9
-

8
6

.7
1

.1
-

8
.9

-
3

6
.5

-
5

8
.0

-
2

7
.8

-
5

6
.2

-
3

7
.0

8
9

.8
1

3
5

.5
3

0
5

.5
1

8
0

.3
1

6
4

.0

-
5

2
.4

-
9

1
.0

-
8

6
.4

5
7

.2
2

.2
-

7
5

.7
-

8
7

.0
-

8
3

.9
-

8
5

.6
-

6
8

.7
-

8
5

.1
-

8
1

.5
-

8
5

.4
5

5
.7

-
8

0
.9

Y
el

lo
w

P
o

p
la

r
-

0
.2

9
2

.7
1

8
8

.2
6

5
.9

–
-

9
.8

6
0

.1
-

1
.6

1
.4

5
9

.5
6

6
2

.2
1

6
4

.3
7

0
7

.0
5

2
.1

1
1

4
.5

1
6

.6
1

9
8

.3
-

5
.7

-
9

9
.7

–
2

8
2

.0
1

4
7

.2
1

7
8

.5
8

3
.3

2
4

8
.8

6
7

6
.2

2
4

7
.2

1
1

2
2

.2
1

4
.8

6
0

.5

A
m

er
ic

an
B

ee
ch

-
5

.3
-

6
7

.8
-

8
5

.6
7

.2
2

.9
-

1
7

.7
-

2
7

.0
-

4
.8

-
3

1
.7

-
2

0
.5

-
2

9
.1

1
1

.7
-

3
4

.6
-

2
3

.5
-

3
6

.1

-
7

0
.1

-
6

9
.6

-
8

6
.2

5
4

.5
3

1
.9

-
6

1
.8

-
3

2
.3

-
6

1
.6

-
4

8
.2

-
4

0
.9

-
9

1
.4

-
9

2
.9

-
9

5
.5

-
4

2
.0

-
9

4
.1

E
as

te
rn

H
em

lo
ck

8
.4

–
–

–
–

–
–

–
–

–
-

1
5

.2
4

9
.3

-
3

4
.5

-
4

6
.9

-
6

2
.2

-
9

2
.6

–
–

–
–

–
–

–
–

–
-

9
0

.3
-

7
8

.7
-

9
7

.3
-

3
8

.2
-

7
2

.6

R
ed

S
p

ru
ce

-
2

6
.5

–
–

–
–

–
–

–
–

–
0

.0
-

1
0

0
.0

0
.0

-
9

9
.5

0
.0

-
6

2
.3

–
–

–
–

–
–

–
–

–
0

.0
-

1
0

0
.0

0
.0

-
9

9
.7

0
.0

E
as

te
rn

W
h

it
e

P
in

e

-
2

4
.2

–
–

–
–

–
–

–
–

–
7

2
.1

2
.7

8
0

4
.6

3
3

6
.2

4
8

.6

-
7

3
.3

–
–

–
–

–
–

–
–

–
-

9
8

.2
-

9
9

.7
-

9
4

.8
2

1
.8

-
9

4
.9

154 Landscape Ecol (2016) 31:149–163

123



T
a
b
le

1
co

n
ti

n
u

ed

C
H

F
R

O
ak

-h
ic

k
o

ry
fo

re
st

su
b

-r
eg

io
n

W
es

te
rn

m
es

o
p

h
y

ti
c

fo
re

st
su

b
-r

eg
io

n
M

ix
ed

m
es

o
p

h
y

ti
c

fo
re

st
su

b
-r

eg
io

n

O
za

rk
H

B
o

st
M

A
rk

aV
O

u
ch

M
C

T
P

-

O
ak

H

IL
P

-

S
h

aH

IL
P

-

B
lu

eg

IL
P

-

T
ra

H

IL
P

-

H
R

im

S
U

G
A

P
W

G
A

P
N

R
V

A
ll

eg
M

N
C

M

B
la

ck
C

h
er

ry
-

2
.1

1
8

.3
2

0
.7

3
.1

-
6

.4
-

8
.7

-
2

8
.5

-
5

.9
-

3
4

.5
-

1
.8

1
6

5
.6

-
7

.3
1

1
0

.7
3

9
.1

-
4

1
.8

-
3

2
.5

-
3

4
.0

-
9

8
.2

-
9

8
.7

-
9

8
.3

2
8

.3
-

5
5

.5
-

1
7

.9
-

6
5

.8
-

7
3

.9
6

1
.4

-
2

5
.5

1
1

5
.7

6
.9

-
7

1
.3

W
h

it
e

A
sh

2
3

.0
4

.9
6

.9
-

3
0

.4
-

5
9

.1
1

5
.8

7
7

.5
5

4
.2

-
1

8
.9

1
7

.9
7

6
.3

2
0

9
.0

-
5

2
.9

2
4

.5
4

1
.2

-
1

0
9

.8
-

3
3

.4
-

3
1

.4
-

5
.7

-
6

6
.6

-
8

3
.5

-
8

3
.5

-
5

4
.9

-
6

3
.1

-
9

7
.1

-
6

5
.8

2
6

.3
-

5
3

.8
0

.4
-

3
8

.3

P
ig

n
u

t
H

ic
k

o
ry

1
.1

4
4

.4
2

5
.2

-
6

6
.5

-
5

8
.8

-
0

.9
-

2
9

.2
-

5
5

.8
1

2
.1

-
1

3
.1

4
0

.9
-

6
.5

2
6

5
.2

-
1

9
.3

1
.4

-
6

4
.5

-
7

3
.9

-
9

4
.3

-
9

8
.7

-
9

7
.3

8
.8

-
4

6
.3

-
4

3
.7

-
6

1
.6

-
7

8
.4

-
7

.6
-

1
3

.1
2

4
8

.9
-

2
6

.0
-

5
2

.0

M
o

ck
er

n
u

t

H
ic

k
o

ry

5
4

.3
8

6
.4

3
9

.1
6

.6
6

5
.3

-
6

.6
-

4
4

.5
-

6
7

.0
-

3
2

.5
-

9
.5

–
–

–
–

–

-
7

8
.3

4
7

.7
-

5
0

.0
3

8
.9

-
9

8
.6

3
1

0
.4

2
7

.0
7

0
.4

3
7

.1
2

0
.0

–
–

–
–

–

S
h

ag
b

ar
k

H
ic

k
o

ry
1

5
.3

2
8

.4
5

.2
-

9
6

.9
-

9
1

.6
-

2
.5

-
2

.0
4

3
.6

4
2

.9
-

3
0

.4
–

–
–

–
–

-
1

0
6

.7
-

9
3

.0
-

9
7

.7
-

9
7

.5
-

9
5

.9
-

8
9

.2
-

7
5

.0
-

9
0

.4
-

9
0

.9
-

8
6

.2
–

–
–

–
–

S
h

o
rt

le
af

P
in

e
-

2
3

.5
-

9
.7

-
3

.4
1

.6
7

.3
-

1
.0

-
3

0
.3

1
8

.2
-

2
2

.0
-

7
.0

–
–

–
–

–

1
3

1
.4

-
1

.3
1

.9
1

6
.4

-
3

2
.1

0
.8

-
3

9
.8

-
1

.9
-

1
4

.6
9

.3
–

–
–

–
–

L
o

b
lo

ll
y

P
in

e
1

5
.4

1
4

.4
-

4
0

.1
-

2
2

.6
-

3
4

.0
4

.5
-

3
2

.9
-

3
7

.1
-

2
3

.6
-

3
4

.0
3

9
.4

-
8

2
.3

-
1

8
.1

-
9

2
.0

-
7

6
.5

1
8

2
.2

7
3

.1
-

3
7

.1
2

2
6

.0
2

8
0

.6
1

4
6

.4
-

1
6

.4
-

7
6

.2
4

2
.9

-
2

8
.0

2
6

3
.9

2
0

5
.0

1
0

9
.8

3
7

6
.6

-
5

.2

E
as

te
rn

R
ed

ce
d

ar
-

1
6

.9
-

2
4

.2
-

7
.4

9
.1

5
.1

-
4

.1
-

2
3

.5
-

2
7

.5
-

1
9

.3
-

8
.5

-
8

7
.9

1
5

.0
-

6
3

.9
-

9
0

.0

3
2

.1
4

4
.3

5
.7

2
5

.4
-

7
.6

1
.1

-
2

9
.9

-
3

1
.4

-
2

5
.9

3
.0

9
.2

6
.7

-
5

4
.4

-
4

5
.7

S
w

ee
tG

u
m

-
3

.2
-

4
.6

4
.2

2
4

.5
3

2
.1

-
1

.8
-

1
9

.8
4

3
.6

-
1

9
.2

-
0

.3
–

–
–

–
–

-
1

2
.4

2
.5

1
6

.3
5

6
.6

3
2

.2
1

0
.4

-
2

.2
1

0
6

.2
-

1
0

.0
2

6
.6

–
–

–
–

–

S
ec

ti
o

n
n

am
es

:
O
za
rk
H

O
za

rk
H

ig
h

la
n

d
s,
B
o
st
M

B
o

st
o

n
M

o
u

n
ta

in
s,
A
rk
a
V

A
rk

an
sa

s
V

al
le

y
,
O
u
ch
M

O
u

ch
it

a
M

o
u

n
ta

in
s,
C
T
P
-O

a
kH

C
T

P
-O

ak
-h

ic
k

o
ry

,
IL
P
-S
h
a
H

In
te

ri
o

r
L

o
w

P
la

te
au

-S
h

aw
n

ee
H

il
ls

,
IL
P
-B
lu
eg

IL
P

-B
lu

eg
ra

ss
,
IL
P
-T
ra
H

IL
P

-T
ra

n
si

ti
o

n
H

il
ls

,
IL
P
-H

ig
h
R
im

H
ig

n
la

n
d

R
im

,
S
U
G
A
P

S
o

u
th

er
n

U
n

g
la

ci
at

ed
A

ll
eg

h
en

y
P

la
te

au
,
W
G
A
P

W
es

te
rn

G
la

ci
at

ed
A

ll
eg

h
en

y
P

la
te

au
,
N
R
V

N
o

rt
h

er
n

R
id

g
e

an
d

V
al

le
y

,
A
ll
eg
h
M

A
ll

eg
h

en
y

M
o

u
n

ta
in

s,
N
C
u
m
b
M

N
o

rt
h

er
n

C
u

m
b

er
la

n
d

M
o

u
n

ta
in

s

Landscape Ecol (2016) 31:149–163 155

123



harvest preferences) from FIA data based on harvest

records from 1995 to 2005.

We simulated succession (including tree growth,

mortality, fecundity, dispersal, establishment, and

competition) under current climate, PCM B1, and

GFDL A1FI modeling scenarios and simulated the

same tree harvest in all scenarios. We used the same

initial forest conditions for all three modeling scenar-

ios and predicted forest composition shift from 2000 to

2300 using 10-year time steps at 270 m resolution. We

ran five replicates for each modeling scenario to

capture the variability resulting from stochastic com-

ponents in the model.

Analysis of simulation results

We calculated importance value (IV) for each tree

species as IV = ([individual species density 9

100/total species density] ? [individual species basal

area 9 100/total basal area]/2). We calculated IVs for

three spatial scales (ecological sections [N = 14],

forest sub-region [N = 3], and the CHFR [N = 1]) for

all climate modeling scenarios and simulation years

50, 100, and 300 (actual year 2050, 2100, and 2300) to

represent the short-, medium-, and long-term changes

in forest composition. We summarized change in

species IVs under each climate modeling scenario by

averaging IVs from the five replicate simulations for

each scenario and calculating percent change under

PCM B1 and GFDL A1FI modeling scenarios com-

pared to current climate modeling scenario at year 300

for each ecological section and the CHFR.

We determined overall compositional shifts in the

forest community by calculating the Bray-Curtis (BC)

dissimilarity index (Faith et al. 1987) based on

species-level IVs at the three spatial scales (ecological

subsection, forest sub-region, and the CHFR) and

comparing PCM B1 and GFDL FI modeling scenarios

to current climate modeling scenario in the short,

medium, and long term. We converted the dissimilar-

ity index to a similarity index by subtracting it from 1.

We tested if there was a significant forest composi-

tional shift among the current climate, PCM B1, and

GFDL A1FI modeling scenarios at the forest sub-

region and the CHFR in the short, medium, and long

term using nonparametric multivariate analysis of

variance (PerMANOVA). We used the PerMANOVA

procedure in the Vegan Community Ecology Package

(Oksanen et al. 2009) in the R statistical language and

the ‘‘adonis’’ function and a BC distance matrix (R

Development Core Team 2006). To further visualize

the forest composition shift relative to initial compo-

sition, as well as relative to the composition of two

future climate modeling scenarios among ecological

sections across time, we conducted nonmetric dimen-

sional scaling (NMDS) using BC dissimilarity values

for the 14 ecological sections and three time periods.

We conducted the ordination using MetaMDs in the

Vegan Community Ecology Package (Oksanen et al.

2009) in the R statistical language with two axes

determined by a scree plot of stress values.

Results

Climate change effects on the species importance

values

Tree species IVs varied greatly among ecological

sections under the current climate, PCM B1, and GFDL

A1FI modeling scenarios by year 2300 (Table 1). The

greatest changes in species IVs were in the Boston

Mountains ecological section on the southwest border of

the CHFR and adjacent to prairie to the south and west.

There was a large increase in red maple (?151.9 %) and

decreases in oaks (e.g., white oak, -92.7 %), hickories

(e.g., shagbark hickory, -97.7 %), and sugar maple

(-84.4 %). The greatest increases in IVs were in the

Northern Ridge and Valley ecological section in the

mixed mesophytic forest sub-region. Yellow-poplar

(?1122.2 %), northern red oak (?400.1 %), red maple

(?292.8 %), and pignut hickory (?248.9 %) showed

great increases, whereas eastern white pine (-94.8 %),

scarlet oak (-98.2 %), and black oak (-65.8 %)

showed large decreases. Differences in importance

values between current climate modeling scenario and

PCM B1 and GFDL A1FI modeling scenarios varied

among ecological sections. For example, the IV for

white oak was -78.1 % smaller under GFDL A1FI

scenario than current climate modeling scenario but

98.2 % greater in the Ozark Highlands and Central Till

Plains-Oak Hickory ecological section (Table 1).

Climate change effects on the forest composition

shifts at multiple scales

There were no significant changes in overall species

composition among current climate, PCM B1, and

156 Landscape Ecol (2016) 31:149–163
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GFDL A1FI modeling scenarios based on perMA-

NOVA tests for the region and subregion in the short

term (P[ 0.4) but changes were significant

(P\ 0.05) for the CHFR and all but one sub-region

in the medium and long term (Table 2). Forest

composition at the regional scale was similar to

current climate modeling scenario under PCM B1

scenario in the short medium and long term with

similarity values [0.9 (Fig. 2a); however, under

GFDL A1FI scenario similarity was reduced to 0.65

by the long term (Fig. 3a). There was less similarity of

forest composition of both PCM B1 and GFDL A1FI

scenarios with current climate at the sub-regional scale

but similarity was generally less for GFDL A1FI

scenario (Fig. 2b–d). The greatest species composi-

tion shift occurred in the oak-hickory forest sub-region

under the GFDL A1FI scenario (Fig. 3b, similarity

value = 0.45), followed by the western mesophytic

forest sub-region (Fig. 3c, similarity value = 0.50),

and the mixed mesophytic forest sub-region (Fig. 2d,

similarity value = 0.6). At the ecological subsection

scale, forest composition under the PCM B1 scenario

was generally similar to that under current climate

modeling scenario (Fig. 3a). Subsections with lower

similarity under PCM B1 scenario were mostly in the

southern portion of the CHFR including the East

Central Ouachita Mountains, White River Hills, and

Outer Bluegrass subsections and subsections at higher

(or lower) elevations such as northern Ridge and

Valley (Fig. 3a). However, similarities were substan-

tially lower under GFDL A1FI scenario. Similarities

were generally lower in most subsections in the oak-

hickory forest and western mesophytic forest sub-

region than in subsections in the mixed mesophytic

forest sub-region (Fig. 3b).

The NMDS analysis provided additional insight

into variation in forest composition as represented by

tree species IVs among ecological sections, forest sub-

regions, and climate modeling scenarios. The first axis

in the ordination primarily reflected a precipitation

gradient. Ecological sections within their respective

forest sub-regions were ordinated along a gradient of

increasing precipitation from oak-hickory forests to

mixed-mesophytic forests, which also mimicked their

geographic distribution (Fig. 4a). Also within subsec-

tions and within the region scenarios tended to be

ordinated from the driest (GFDL A1FI in 2300) to

wettest (Current climate in 2000 or 2300). The change

of tree species IVs among scenarios for the region as a

whole was much less than the change within individ-

ual subsections within a sub region as indicted by the

spread of points on both axes (Fig. 4a). The compar-

ison of PCM B1 and GFDL A1FI scenarios in 2300 to

current climate modeling scenarios revealed that

forest composition shifted toward being more xeric;

this was especially evident for ecological sections

within oak-hickory forest sub-regions as shown by

their wide spread across axis one (Fig. 4a). The

distribution of tree species in ordination space pro-

vided insight into what the changes in subsections and

the region meant in terms of changes in the importance

of individual species (Fig. 4b). Mesic tree species

including red spruce, eastern hemlock, eastern white

pine, sugar maple, and American beech had higher

scores on axis one whereas xeric tree species including

post oak, southern red oak, shortleaf pine, loblolly

pine, eastern redcedar, sweetgum, and shagbark hick-

ory had lower scores (Fig. 4b).

The second axis in the ordination was primarily

associated with temperature; ordination scores under

PCM B1 and GFDL A1FI modeling scenarios were

higher than those under the current climate modeling

scenario (Fig. 4a). Tree species IVs shifted towards

southern species under PCM B1 and GFDL A1FI

Table 2 Nonparametric MANOVA permutation tests for the

hypothesis of no change in species composition among current

climate, PCM B1, and GFDL A1FI climate modeling scenarios

for the Central Harwood Forest Region and three forest sub-

regions at year 2050, 2100, and 2300

Year 2050 Year 2100 Year 2300

F. model p F. model p F. model p

Central Hardwood Forest Region 0.005 0.511 0.154 0.041 3.232 0.015

Oak-hickory forest sub-region 0.009 0.441 0.256 0.031 5.715 0.033

Western mesophytic forest sub-region 0.001 0.676 0.133 0.047 3.429 0.011

Mixed mesophytic forest sub-region 0.091 0.583 0.176 0.231 0.718 0.044
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warming scenarios. Thus, southern tree species

including loblolly pine, southern red oak, mockernut

hickory, post oak, and yellow-poplar had relatively

higher scores on the second-axis whereas northern tree

species including sugar maple, pignut hickory, black

cherry, American beech, and white ash had lower

scores on the second axis (Fig. 4b). Furthermore, the

second axis also reflected forest succession and

harvest, because the ordination under current climate

modeling scenario at year 2300 generally had higher

scores than those at the initial year 2000 (Fig. 4a). This

represented the increases in IVs for species that could

benefit from both late-succession and forest harvest

such as northern red oak, white oak, black oak, black

cherry, yellow poplar, red maple, and loblolly pine

(Fig. 4b).

Discussion

Forest composition shifts under climate change

There was a hierarchy of spatial scales in forest

responses to climate change. The forest composition

shifts were greatest among ecological sections fol-

lowed by forest sub-regions and whole CHFR, because

variations were decreased when scaling up from 14

ecological sections, to three forest sub-regions, and

one whole CHFR. The western forest sub-regions

(oak-hickory forest and western mesophytic forest)

generally experienced greater forest composition

shifts than the eastern sub-region (mixed mesophytic

forests) under the GFDL A1FI warming scenario.

There were greater shifts in forest composition under

the GFDL A1FI than PCM B1 scenarios in the western

sub-regions, whereas shifts in forest composition were

similar between the climate scenarios in the mixed

mesophytic forest sub-region. We suggest that western

oak-hickory sub-region was more vulnerable to

climate change than the eastern mixed mesophytic

forest sub-region.

While the shift in forest composition could be low

for a sub-region, composition shift could still be high

for some subsections within the sub-region that

effectively acted as refugia (e.g., Muscatatuch flats

and valleys and Crawford uplands in western meso-

phytic forest region). This was because besides

climatic controls at the regional and sub-region scale,

nutrient and water conditions encapsulated by soil and

landform at intermediate landtype scale within a

subsection were unique and could lead to different

species responses from those under similar climate but

Fig. 2 The similarity

(1-Bray–Curtis

dissimilarity) between the

forest composition from

current climate modeling

scenario versus PCM B1

(a) and GFDL A1FI (b) for

Central Hardwood Forest

Region (CHFR) (a), oak-

hickory forest sub-region

(b), west mesophytic forest

sub-region (c), and mixed

mesophytic forest sub-

region (d) at year 2050,

2100, and 2300
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with different soils and landforms. We suggest this is

important to include the intermediate-scale factors and

controls in regional scale modeling.

We showed that it will take a long time (i.e.

300 years) for substantial shifts in forest composition

to occur in response to climate change. The long time

frame for effects of climate change and the over-

whelming importance of population dynamics in

driving forest change suggest that stand dynamics

cannot be ignored when planning management for

resilience or adaptation and that other management

related issues may be more pressing (Churchill et al.

2013; Kerhoulas et al. 2013). For example, oak decline

is a wide-spread problem and potentially more an

urgent concern in the CHFR that can be addressed by

management to reduce stand density and change

species composition (Shifley et al. 2012, Wang et al.

2013b). Forest management that favors species that

are expected to be better adapted to future climate

conditions may promote resilience and adaptation to

climate change; for example, planting southern

species such as loblolly pine, whose seed sources are

currently limited in the CHFR, might facilitate forest

adaptation to a warming climate (Brandt et al. 2014).

Tree species importance value under climate

change

We showed that forest composition shifts at section

level may be similar (toward the same direction)

under PCMB1 and GFDL A1FI modeling scenarios.

However, the responses of individual tree species

varied greatly resulting from complex interactions

between climate, soil, species biological traits, com-

petition, and harvest. For example, the general

reduction of oak species’ IVs in many ecological

sections may be related to harvest as harvest was

simulated in all scenarios and oaks were the most

harvested species in the region according to FIA

(Woudenberg et al. 2010). Harvest may facilitate

response to climate change by accelerating species

turnover. We showed that the changes in tree species

Fig. 3 The similarity

(1-Bray–Curtis

dissimilarity) between the

forest composition from

current climate modeling

scenario versus PCM B1

(a) and GFDL A1FI (b)

for each ecological

subsection at year 2300

in the Central Hardwood

Forest Region (CHFR),

U.S.A
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IVs in many ecological sections had similar trends

under both PCM B1 and GFDL A1FI modeling

scenarios, but the degree of changes in IVs varied

greatly. For example, in the Northern Ridge and

Valley ecological section, the increase of IVs for

yellow-poplar was from 707.0 % under PCM B1

scenario to 1122.2 % under GFDL A1FI scenario.

Northern red oak was the only oak species gaining IV

whereas other oak species lost IV under both climate

warming scenarios in this ecological section. North-

ern red oak is a northern species compared to other

oak species (Little 1971). Because the novel warming

climate was close to optimum growth temperature for

northern red oak, thus its growth rate was maximized

under climate change. Northern red oak was also a

stronger competitor than other oak species that were

outcompeted by warming climate-favored species

such as yellow-poplar and red maple in the novel

habitats. This result reinforced that biotic interactions

occurring at pixel-scale affected forest compositions

at broad spatial scales (revealed here at the ecological

section scale) (Araújo and Luoto 2007; Pigot and

Tobias 2013).

In many cases, tree species showed opposite

responses under PCM B1 and GFDL A1FI scenarios.

For example, sugar maple was generally a declining

species under warming climate. However, with mod-

erate temperature increase in PCM B1 scenario and

increase in precipitation, it showed an increase in IV in

some ecological sections. However, sugar maple had

substantial decreases in IV under warmer and dryer

conditions in the GFDL A1FI scenario. We suggest

that consideration of seasonal temperature and pre-

cipitation patterns along with species’ biological traits

in assessing forest composition shift under warming

climate was important (Webb et al. 2010).

Fig. 4 Nonmetric

multidimensional scaling

ordination showing

a ecological sections and

b 23 tree species in

ordination space indicating

forest composition shifts

among three climate

modeling scenarios through

time (2000–2300). Final

ordination included two

axes; stress = 0.107. Each

point in the ordination

represents one ecological

section at one date; data for

each section include tree

species importance value
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Caveats and limitations

Several factors not included in our study may

contribute to uncertainty in our predictions. We

assumed that forest area in the region would not

change. However, land use change, primarily urban

growth in the CHFR may result in less forested area,

fragmented forest, and barriers to dispersal (Kubisch

et al. 2011). Fire, insect, and disease outbreaks may

increase under climate change and significantly affect

forest composition (Weed et al. 2013). We assumed

that the primary effects of climate change could be

represented by daily temperature and precipitation

effects on growing season length, drought, and tree

species establishment and early growth. We did not

consider nitrogen deposition and CO2 fertilization.

Conclusions

We presented a landscape modeling approach to

project forest composition for the CHFR at multiple

levels of a spatial and ecological hierarchy. Changes in

tree species density, basal area, and IV at each pixel

resulted from the interactions of population dynamics

at pixel level, dispersal and harvest at landscape scale,

soil water and nutrient variation at the intermediate

landtype scale, and regional climate patterns down-

scaled to a subsection scale. Our approach allowed us

to account for population and landscape level pro-

cesses at the level of a pixel (270 m) that are not usually

accounted for in regional simulations of species

distributions by niche and biophysical process models.

We believe our approach resulted in more realistic

projections of changes in species IV at the scale of

subsections, sections, sub-regions, and regions.

The magnitude of shifts in forest composition were

greatest under the most extreme climate warming

scenario. Shifts in forest composition were greatest at

the scale of ecological sections followed by forest sub-

regions and the whole CHFR. Forest composition shift

under climate change was small in the short term but

large in the medium and long term. We suggest it is

essential to include site- and landscape-scale pro-

cesses in models and to evaluate changes at multiple

spatial and temporal scales when evaluating changes

in species composition due to climate change and

disturbance.
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Araújo MB, Rahbek C (2006) How does climate change affect

biodiversity. Science 313(5792):1396–1397

Bachelet D, Lenihan J, Drapek R, Neilson RP (2008) VEMAP

versus VINCERA: a DGVM sensitivity to differences in

climate scenarios. Glob Planet Chang 64:38–48

Bohlman S, Pacala S (2012) A forest structure model that

determines crown layers and partitions growth and mor-

tality rates for landscape-scale applications of tropical

forests. J Ecol 100:508–518

Brandt L, He HS, Iverson LR, Thompson FR, Butler P, Handler S,

Janowiak M, Shannon DP, Swanston C, Tirpak J, Walk J,

Wang W, Watts L, Weigel D, Westin S (2014) Central hard-

woods ecosystem vulnerability assessment and synthesis: a

report from the central hardwoods climate change response

framework project. General Technical. Reports. NRS-124.

Newtown Square, PA: U.S. Department of Agriculture, Forest

Service, Northern Research Station, p 254

Braun EL (1950) Deciduous forests of Eastern North America.

Philadelphia: Blakiston

Burns RM, Honkala BH (tech. Coords.) (1990) Silvics of North

America: 1. Conifers; 2. Hardwoods. Agriculture Hand-

book 654, USDA Forest Service, Washington, D.C., USA

Butler PR, Iverson L, Thompson FR, Brandt L, Handler S, Jano-

wiak M, Shannon PD, Swanston C, Karriker K, Bartig J,

Connolly S, Dijak W, Bearer S, Blatt S, Brandon A, Byers E,

Coon C, Culbreth T, Daly J, Dorsey W, Ede D, Euler C, Gillies

N, Hix DM, Johnson C, Lyte L, Matthews S, McCarthy D,

Minney D, Murphy D, O’Dea C, Orwan R, Peters M, Prasad

A, Randall C, Reed J, Sandeno C, Schuler T, Sneddon L,

Stanley B, Steele A, Stout S, Swaty R, Teets J, Tomon T,

Vanderhorst J, Whatley J, Zegre N (2015) Central

Appalachians forest ecosystem vulnerability assessment and

synthesis: a report from the central Appalachians climate

change response framework project. General Technical.

Reports. NRS-146. Newtown Square, PA: U.S. Department of

Agriculture, Forest Service, Northern Research Station, p 310

Cleland DT, Freeouf JA, Keys JE, Nowacki GJ, Carpenter C,

McNab WH (2007) Ecological subregions: sections and

subsections of the conterminous United States

[1:3,500,000] [CD-ROM]. In: Sloan AM (ed), Cartography

General Technical Report WO-76. Washington, DC: U.S.

Department of Agriculture, Forest Service

Corlett RT, Westcott DA (2013) Will plant movements keep up

with climate change? Trends Ecol Evol 28:482–488

Landscape Ecol (2016) 31:149–163 161

123



Dijak W (2013) Landscape builder: software for the creation of

initial landscapes for LANDIS from FIA data. Comput

Ecol Softw 3(2):17–25

Doxford SW, Freckleton RP (2012) Changes in the large-scale

distribution of plants: extinction, colonization and the

effects of climate. J Ecol 100:519–529

Elith J, Leathwick JR (2009) Species distribution models: eco-

logical explanation and prediction across space and time.

Annu Rev Ecol Evol Syst 40:677–697

Faith DP, Minchin PR, Belbin L (1987) Compositional dis-

similarity as a robust measure of ecological distance. Plant

Ecol 69:57–68

Fraser JS, He HS, Shifley SR, Wang WJ, Thompson FR (2013)

Simulating stand-level harvest prescriptions across land-

scapes: LANDIS PRO harvest module design. Can J Forest

Res 43:972–978
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