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contagion between populations of susceptible hosts and  
vectors through the use of transmission kernels (Keeling 
et al. 2001).

In both ecology and epidemiology, the use of mechanistic 
models generally requires a detailed understanding of key 
life-history parameters. Some of these can be inferred from 
historical invasions or epidemics through inverse modelling 
in which ranges of parameter values are tested to identify  
values that optimize the fit of the model to the observed 
data. But when the number of parameters increases, the  
volume of parameter space to be explored becomes high and 
the search for optimal combinations of parameters is thus 
computationally intensive. In contrast, empirical statistical 
models characterize the spatio-temporal patterns of invasions 
in order to quantify some of their key features (e.g. rate of 
spread, correlation between date of first invasion and external 
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The spread of invading organisms has historically attracted 
considerable attention. Interest has often focused on char-
acterizing geographical patterns of spread, and with it, the 
speed of invasion (Hengeveld 1989, Bosch et  al. 1992). 
One of the first mechanistic (mathematical) models describ-
ing invasion spread was proposed by Skellam (1951); this 
reaction-diffusion model coupled exponential growth with 
diffusive movement of invader populations. Several subse-
quent mathematical formulations built upon this model by 
accounting for elements such as a limited carrying capacity, 
different dispersal kernels (e.g. fat-tailed dispersal kernels; 
Kot et al. 1996), modes of dispersion (e.g. stratified disper-
sal; Shigesada and Kawasaki 1997), or the incorporation of 
density-dependent processes (e.g. Allee effect; Lewis and 
Kareiva 1993). In epidemiology, mechanistic models have 
a long history, with spatial models accounting for spatial  
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Invading species rarely spread homogeneously through a landscape and invasion patterns typically display irregular frontal 
boundaries as the invasion progresses through space. Those irregular patterns are generally produced by local environmental 
factors that may slow or accelerate movement of the frontal boundary. While there is an abundant literature on species 
distribution modelling methods that quantify local suitability for species establishment, comparatively few studies have 
examined methods for measuring the local velocity of invasions that can then be statistically analysed in relation to spatially 
variable environmental factors. Previous studies have used simulations to compare different methods for estimating the 
overall rate of spread of an invasion. We adopted a similar approach of simulating invasions that resemble two real case-
studies, both in terms of their spatial resolution (i.e. considering the size of one cell as one km) and their spatial extent 
( 600 000 km²). Simulations were sampled to compare how different methods used to measure local spread rate, namely 
the neighbouring, nearest distance and Delaunay methods, perform for spatio-temporal comparisons. We varied the assess-
ment using three levels of complexity of the spatio-temporal pattern of invasion, three sample sizes (500, 1000 and 2000 
points), three different spatial sampling patterns (stratified, random, aggregated), three interpolation methods (generalized 
linear model, kriging, thin plate spline regression) and two spatio-temporal modelling structures (trend surface analysis 
and boundary displacement), resulting in a total of 486 different scenarios. The thin plate spline regression interpolation 
method, in combination with trend surface analysis, was found to provide the most robust local spread rate quantification  
as it was able to reliably accommodate different sampling conditions and invasion patterns. This best approach was  
successfully applied to two case-studies, the invasion of France by the horse-chestnut leafminer Cameraria ohridella and  
by the bluetongue virus, generally in agreement with previously published values of spread rates. Potential avenues for 
further research are discussed.
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Figure 1. Summary of methods employed to evaluate different 
spread rate estimators.

predictor variables). These models are generally more diffi-
cult to interpret in biological or epidemiological terms, but 
have the comparative advantage of being much easier to fit  
to observed spatio-temporal data describing the invasion.  
The debate over the relative merits of process-based vs. 
empirical models has been on-going for a long time in  
ecology, in particular in the context of species distribution 
models (SDM; Kearney and Porter 2009, Buckley et  al. 
2010, Dormann et  al. 2012). The careful application of 
empirical statistical modelling to quickly characterize an 
invasion pattern followed by the use of process-based models 
to test and validate more explicit hypotheses often represents 
a pragmatic and efficient approach (Dormann et al. 2012).

Quantifying the local spread of species from empirical 
data can provide valuable information about specific inva-
sion systems. For example, estimates of local spread rate 
may be useful in species distribution modelling by provid-
ing inputs to hybrid models (Dormann et  al. 2012) or to 
identify how environmental factors may influence the range 
expansion of a species. However, surprisingly few studies, 
either in ecology and epidemiology, have focused on the 
comparison of spread rate estimation methods. Of the few 
comparison studies, most have focused on the estimation of 
the general rate of spread i.e. the average rate of spread of 
an invasion over its entire duration and range (Gilbert and 
Liebhold 2010), rather than the velocity of the invasion at 
different locations within the invaded spatial domain.

However several studies have quantified local rates of 
spread using two general types of spatio-temporal analysis 
approaches. First, boundary displacement (BD) methods 
are based on the division of the invasion into discrete time 
steps and the offset of the invasion front between time steps 
is compared. The local spread rate is then estimated as the 
distance separating the invasion boundary between two 
successive time steps (Sharov and Liebhold 1998, Morin 
et al. 2009). By contrast, trend-surface analysis (TSA) uses 
the date of initial establishment as dependent variable at 
a set of locations and fits a spatial interpolation model to 
predict that date across the spatial domain as a function of 
spatial coordinates. The slope of the fitted surface can then 
be considered as a friction (units of time space1), and the 
local spread rate estimate can be calculated as the inverse of 
the friction (Farnsworth and Ward 2009, Pioz et al. 2011). 
These approaches have largely been developed independently, 
with implementation varying among specific studies where 
they were applied. For example, the TSA implementation 
of Farnsworth and Ward (2009) differed from that of Pioz 
et al. (2011) or of Firestone et al. (2011) by the method used 
to interpolate the date of first establishment. Several ques-
tions arise about these spread rate approaches. How should 
the observations be interpolated? How should one estimate 
the local spread rate once the spatio-temporal distribution of 
invaded areas is quantified? In addition, other questions arise 
about how best to sample invasion spread, including selec-
tion of sample density and spatial distribution of sampling.

Recently, several studies have compared the performance 
of various species distribution modelling methods based 
upon simulated data sets where predictor variables influenc-
ing the species occurrence are known a priori. Outputs from 
the different models are compared in their capacity to iden-
tify the effect of predictor variables (Dormann et al. 2007). 

In this paper, we adopted a similar strategy to investigate how 
various methods compare in their ability to quantify known 
local spread rates and evaluate their applicability to real case-
studies. We first simulate the pattern of spread of a hypo-
thetical invasive species according to a specific distribution 
of local spread, using a model similar to that used by Gilbert 
and Liebhold (2010). We then sampled simulation output 
as input to test various implementations of the BD and TSA 
approach and compared their outputs in term of accuracy 
and precision. In order to provide a more comprehensive data 
representation, we evaluated the various methods according 
to different sampling designs and levels of complexity in the 
simulated invasion process. The best performing method was 
applied to two real case-studies, the invasion of France by 
the horse-chestnut leafminer Cameraria ohridella and by the 
bluetongue virus.

Methods

Our analyses involved a series of five sequential steps,  
illustrated in Fig. 1, which were applied both to synthetic 
simulated data as well as to data from two case-studies of 
historical invasions. The first step involved simulating the 
invasion of an organism in a heterogeneous environment 
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Figure 2. Illustration of the three patterns of invasion, ranging from 
simple to intermediate and complex. Each pattern was generated  
by varying the spatial contagion of the growth parameter, r, (a),  
and controlling the location(s) where founding populations were 
initialized (one location in the simple and intermediate pattern  
and three locations in the complex pattern). Simulations thus  
initialized generated markedly different patterns of the date of first 
invasion (b).

consisting of a surface of random but autocorrelated growth 
rates (r). The simulations were designed to share patterns of 
invasions similar to those of the two real case-studies, both 
in terms of spatial resolution and in terms of spatial extent.  
The second step involved the sampling of the simulated spa-
tio-temporal invasion data and use of these data to estimate 
the spatio-temporal distribution of the invasion front using 
different interpolation methods. The third step involved 
quantifying the local spread rate based on three estimators. 
The fourth step involved comparing the methods in their 
ability to estimate true spread rates under varying conditions 
(different sampling plans, interpolation methods, invasion 
patterns). The fifth step illustrates the application of the 
modelling framework to the two case-study applications. 
Each of these steps is detailed below.

Step one: simulated invasions

We used a simple coupled map lattice simulation model, 
described in Gilbert and Liebhold (2010). The advantage 
of this approach over similar models (Merow et  al. 2011, 
Engler et al. 2012, Nobis and Normand 2014), was that the 
local expected theoretical spread rate could be directly calcu-
lated. This enabled us to assess the performance of various 
estimation methods (presented hereafter) to match the local 
theoretical spread rates.

The model is based on a deterministic formulation of 
Fisher’s model (Fisher 1937), and includes two parts: 1) a 
discrete logistic population growth model (Eq. 1), and 2) 
a dispersal component assuming diffusion with a Gaussian 
dispersal kernel (Eq. 2). The model is discrete in time and 
space and operates over a matrix of 1000 by 1000 cells, as :
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Where Nt and Nt  1 are population sizes at time t and t  1, 
D is the diffusion coefficient, K is the carrying capacity, di,j is 
the distance between the point i and j, and ri is the growth 
rate at cell i. The model was run along 240 times steps, 
but for the purpose of the analysis the simulations outputs 
were saved every 10 time-steps, resulting in the recording of  
24 time-steps in the invasion process.

Three simulations of varying levels of spatial complexity 
in the spatio-temporal pattern of invasion were performed; 
they were designed to mimic realistic invasion patterns  
(Fig. 2) similar to those from the two case-studies described 
below. The focus of the model was not to fit the specific 
parameters of a particular invasion, but rather to produce 
invasions with varying degrees of spatial complexity in inva-
sion pattern, based on varying theoretical local spread rates. 
Parameters having little influence on the spatio-temporal  
pattern of invasion (e.g. initial population, carrying capac-
ity, diffusion coefficient) were hence kept constant. The 
simulation model parameter values (i.e. the variogram 
parameters defining the spatial autocorrelation structure 
in the growth parameter, r, the time and location of the 

initial colonization, general population model parameters) 
are reported in Table 1. In the ‘simple’ invasion scenario, the 
population was founded at a single, central point and the  
spatial autocorrelation of r was set to produce a relatively 
homogeneous spread pattern. The second simulation, referred 
to as the ‘intermediate’ scenario, was similar to the simple 
invasion, except that r exhibited a strong spatial autocorre-
lation structure, resulting from the combination of nested 
variogram models (Issaks and Srivistava 1990) with range 
parameters set empirically to 100 cells and 300 cells, respec-
tively. The ‘complex’ invasion scenario used the same spa-
tial autocorrelation structure as the ‘intermediate’ invasion 
scenario, but three different populations were introduced at 
different times and different locations. Multiple realisations 
of simulations were tested for each set of parameter values. 
They produced similar results and are not reported here.

The theoretical rate of invasion spread (i.e. number  
of cells per unit time) produced by the Fisher model is 
approximated by Shigesada and Kawasaki (1997):

SR rDtheo  2 � (3)

where r is the growth rate and D is the diffusion coefficient. 
This equation was used to estimate the theoretical (‘true’) 
invasion spread rate in each cell. Although most ecological 
invasions are known to result from both local and long- 
distance dispersal processes, it should be noted that the Fisher 
theoretical spread rate estimate used here only accounts 
for local dispersal processes. It is generally not possible to 
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Table 1. Simulations parameters.

Simple Intermediate Complex

Population models
Number of individuals at start (N0) 1000 1000 1000
Carrying capacity (K) 1000 1000 1000
Diffusion (D) 1 1 1

Location and time initial colonization
x (cell) 544 544 544 632 252
y (cell) 544 544 544 354 650
Time step (t/240) 1 1 1 40 80

Variogram parameters used to generate spatial autocorrelation 
structures in r growing parameter
(Partial) sill 1 1 1
Model type Spherical Spherical Spherical
Range (cell) 10 100–300 100–300
Nugget component 0 0 0

derive a theoretical constant spread rate from models that 
incorporate stochastic long-distance dispersal. Without such 
theoretical ‘true’ spread rates, cross-comparison with differ-
ent spread rate estimation methods would not be possible 
and therefore we limited our study to the estimation of local 
spread rates driven by local dispersal.

Step two: sampling, interpolating and predicting the 
date of first invasion

We used three levels of sampling density (‘low’ for n  500; 
‘medium’ for n  1000; and ‘high’ for n  2000 sampling 
sites), in combination with three spatial patterns of sam-
pling spatial distribution: 1) ‘stratified’, where one single 
random location was selected within the n windows split-
ting the geographical space; 2) ‘random’, for completely 
random spatial sampling, and 3), ‘clustered’, combining 
both random sampling and spatial sampling around 20 
focal points (Supplementary material Appendix 1, Fig. A1). 
Those sampling schemes were designed to mimic hypotheti-
cal, but realistic, surveillance programs such as in the case-
study of Cameraria ohridella (n  1470). In the case-study 
of bluetongue epidemics, the number of observation loca-
tions was exceptionally high (n  12 620), which provided a 
remarkably detailed spatio-temporal description of epidemic 
spread.

Each set of samples from each simulation was analysed 
using the BD and TSA methods. The BD method requires 
spatial interpolation of presence/absence from data sampled 
at each time step, whereas TSA uses a single spatial interpo-
lation of the date of first invasion observed at each sample 
point. The typical output of the BD method is thus a tempo-
ral sequence of n presence/absence distribution maps coded 
as 1 and 0. These can be pooled into a single map by sum-
ming values from the sequence of presence/absence layers, 
with the value of each pixel representing the number of time 
steps for which the pixels was part of the invaded area. The 
typical output of the TSA interpolation is a map where each 
pixel value represents the time when it was first invaded. By 
taking n minus the pooled output map of the BD meth-
ods, where n is the total number of time steps, the output of  
the BD method becomes analogous to the TSA output, 
i.e. each pixel contains the time when it was first invaded. 

It is noteworthy that the output of the TSA is continuous 
whereas the output of the BD method is discrete.

Three interpolation methods were applied to each type of 
analysis of each set of samples of each set of simulated data. 
Several previous studies utilizing TSA conducted spatial 
interpolation using a generalized linear model (GLM) that 
fits linear, quadratic, cubic, and higher order trend-surfaces 
to data (Moore 1999, Lucey et al. 2002, Maidana and Yang 
2009, Pioz et al. 2011). For spatial interpolation as part of 
the BD method, the GLM predicts a binomial response at 
each time step, whereas for the TSA method, the dependent 
variable was assumed to follow a Gaussian distribution. The 
BD method produces a continuous surface of probabil-
ity of presence at each time step, which was converted to 
a binary presence/absence outputs using a fixed threshold 
of 0.5. In addition to GLMs, two other interpolation tech-
niques were implemented: universal local kriging (Firestone 
et al. 2011), referred hereafter as ‘Kriging’, and generalized 
additive models using thin plate regression splines (Wood 
2003, Farnsworth and Ward 2009), referred hereafter as 
‘TPRS’. The spatial structure used in the Kriging model 
was estimated by fitting an experimental variogram (using 
generalized least squares regression) to data located within a  
300 cells radius. The smoothing parameter in the TPRS 
model was estimated from sample data using generalized 
cross-validation, following the general procedure imple-
mented in the ‘fields’ R packages (Furrer et al. 2013).

Step three: estimate the spread rate in each pixel

Three spread rate estimators were implemented to measure 
the local rate of spread for each pixel on the map of first 
date of invasion (illustrated in Fig. 3). In the first method, 
‘neighbouring’ (NB), the spread rate is simply estimated 
as the inverse of the local slope of the date of first invasion 
surface (Fig. 3a). However, since the BD method produces 
discrete first dates of invasion, smoothing is applied using a 
local inverse distance weighting interpolation with a radius 
of 25 cells. Although the TSA produces continuous outputs, 
we applied the same smoothing filter so as to ensure compa-
rability of the BD and TSA outputs. In the second method, 
called ‘nearest distance’ (ND), the distance of each pixel to 
the nearest previous and subsequent invasion front (border of 
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Figure 3. Illustration of the three spread rate estimators: (a) neighbouring; (b) nearest distance; (c) Delaunay.
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Figure 4. Hierarchical partitioning results showing the variance explained (adjusted R²) by six factors (spread rate estimator, interpolation 
model, spatio-temporal modelling structure, sample spatial distribution, numbers of samples and pattern of invasion) on the two validation 
metrics: Spearman correlation (a) and the RMSE (b).

presence and absence) was estimated and summed. The ND 
method can be thought as the length of the line that con-
nects two sequential invasion front lines passing through a 
given pixel (Fig. 3b). Finally, in the third method, ‘Delaunay’ 
(DE), the space between two sequential invasion front lines 
was divided into geometric shapes using Delaunay trian-
gulation (Fig. 4c). The triangles were built with two points 
located on the invasion front line at time t as the basis of 
the triangle, and connected to the nearest point of the next 
invasion front line at time t  1. The length of the triangle 
median was used as a direct estimate of the local spread rate 
between two successive time steps.

Step four: evaluation

The overall validation step involved comparing the theo-
retical (‘true’) spread rates to the 486 estimated spread rates 
for each combination of the different varying factors in the 
analysis – i.e. the spread rate estimators (NB, ND or DE), 
the three types of invasion patterns (simple, intermediate, 
complex), the sampling density (low, medium, high), the 
sampling patterns (stratified, random, clustered), the spatio-
temporal modelling structures (TSA or BD), and the inter-
polation methods (GLM, TPRS, Kriging). Theoretical and 
estimated spread rates were compared using two goodness-
of-fit metrics, the Spearman r correlation coefficient (COR) 
and the root mean square error (RMSE), which assessed the 
precision and accuracy of predictions, respectively. Both 
metrics were replicated with a bootstrap procedure in which 
1000 points were sampled randomly 10 times in the spatial 
domain (increasing the number of replicates up to 1000 did 

not notably impact the outputs results), both metrics calcu-
lated for each sample were then averaged over all bootstrap 
replicates.

The overall goodness-of-fit results were combined into 
a single database and hierarchical partitioning was used 
to quantify the relative influence of six distinct factors i.e. 
1) spread rate estimators, 2) invasion pattern, 3) sampling 
density, 4) sampling pattern, 5) spatio-temporal modelling 
structure and 6) interpolation method, in explaining the 
variability of the two goodness-of-fit metrics (Chevan and 
Sutherland 1991). Hierarchical partitioning enables dis-
entangling unique from joint effects among the different 
factors. It is thus possible to assess mutually non-exclusive  
interactions between factors. As long as the number of  
tested factors does not exceed nine, hierarchical partitioning 
provides reliable results (Olea et al. 2010).

Step five: case-studies

The optimal spread rate estimation method identified based 
upon simulations was applied to two case-studies to demon-
strate the applicability of the method in different ecological 
systems: an epidemic of bluetongue virus (BT) and the inva-
sion by the horse-chestnut leafminer Cameraria ohridella, 
both occurring in France during the 2000s. The aim was 
to demonstrate examples of how the spread rate analysis 
performs rather than to present a detailed analysis of each 
study-case. Both invasions shared spatial scales similar to 
those of the theoretical simulations, both in terms of spatial 
resolution (i.e. considering the size of one cell as one km) 
and spatial extent ( 600 000 km²), which facilitated the 
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transferability of observations. Visually, the two case-studies 
exhibited patterns of invasions (Fig. 7) similar to the inter-
mediate and complex theoretical scenarios generated by the 
simulation models (Fig. 2).

The first case-study was derived from Pioz et al. (2011), 
which analysed a bluetongue (BT) epidemic that occurred 
in France from July 2007 to December 2008. A case was 
defined as a bovine herd or an ovine or goat flock in which 
BT was clinically suspected and later confirmed by sero-
logical or virological analyses. The analysis was performed 
on a municipality basis (the smallest administrative unit in  
France) and cases with a missing date or location were dis-
carded, leaving 33 042 cases in 12 620 municipalities. Spread 
analysis was based upon the first week of BT detection in 
each municipality. The spatial and temporal resolutions of 
the analyses were 1 km and 1 week, respectively.

The second case-study was taken from Gilbert et  al. 
(2005) who analysed the invasion of the horse chestnut  
leafminer Cameraria ohridella (Lepidoptera, Gracillariidae) 
in France between 2000 and 2004. This leafminer is an inva-
sive species first observed and identified in Macedonia in 
1984, which has subsequently invaded much of central and 
western Europe over the following 30 yr at an approximate 
rate of 60 km yr–1. In total, 5272 municipalities with pres-
ence/absence data were recorded, of which 1470 locations 
recording presence only were retained for the spread rate 
analysis on an annual basis.

Data available from the Dryad Digital Repository: 
 http://dx.doi.org/10.5061/dryad.c1d06  (Tisseuil et al. 
2015).

Results

Sources of variability in RMSE and correlation results

On average, goodness-of-fit metrics yielded relatively low 
performance values with a high variability across the 486 
scenarios (COR  0.20  0.22 SD; RMSE  10.38  1.87 
SD). Hierarchical partitioning enabled disentanglement of 
the main sources of variability among the scenarios with 
slightly different results between the two metrics (Fig. 4). 
The correlation metric was predominantly affected by the 
invasion pattern (R²  0.32), followed by the choice of 
interpolation method (R²  0.21), and the spatio-temporal 
structure (R²  0.10). In contrast, the RMSE metric was 
mainly affected by the spread rate estimator (R²  0.38). For 
both metrics, sampling patterns and density accounted for a 
minor part of the variability (R²  0.05).

Cross-relationships between RMSE and correlation 
results

Analysing the relationships between correlation and RMSE 
metrics across the 486 scenarios provided further insights 
into hierarchical partitioning results (Fig. 5; Supplementary 
material Appendix 1, Table A1). On average, the three  
spread rates estimators displayed concordant results,  
although better metric values were obtained with the NB than 
the DE and ND estimator (Fig. 5a). The dominant effect of 
interpolation method on spread rate correlation metrics was 
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also revealed by the lowest performances of GLM methods, 
in comparison to TPRS and Kriging methods (Fig. 5b). 
With regard to the different invasion patterns, RMSE values 
were similar regardless of the pattern complexity, whereas 
the lowest correlation values were found for the simplest 
invasion pattern (Fig. 5c). Regarding the spatio-temporal 
modelling structure, TSA provided better goodness-of-fit 
than BD approaches (Fig. 5d). Increasing sampling density 
noticeably improved correlation and RMSE metric values 
(Fig. 5e), while the different sampling patterns did not result 
in substantial disparities in correlation and RMSE metrics 
(Fig 5f ).

Optimal combination of methods to predict local 
spread rate

The optimal combination of spread rate estimator, spatio-
temporal structure and interpolation method was selected 
as the one that maximized the correlation and minimized 
the root mean square error in the results (Fig. 6; bottom 
left area). The best results were obtained with the use  
of the NB spread rate estimator, in combination with a  
TSA spatio-temporal modelling structure and as spatial 
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Figure 7. Analysis of historical spread across France from the two 
case-studies. The epidemic of bluetongue (BT) virus (a) and the 
invasion by Cameraria ohridella (b), using the best combination of 
spatio-temporal structure (i.e. TSA), interpolation method (i.e. 
TPRS) and spread rate estimates (i.e. NH).

interpolation method, either TPRS (COR  0.45  0.27 
SD; RMSE  7.92  0.31 SD) or Kriging (COR   
0.44  0.27 SD, RMSE  7.71  0.34 SD). Excluding 
GLM-based combination results, TSA results (in white) 
were more stable than BD results (in grey), in terms of 
reducing the variability in goodness-of-fit metrics among 
the different combinations of approaches. This conclusion 
was also reinforced by the pattern observed in Fig. 5d, 
showing that TSA results provided better goodness-of-fit 
metrics than BD results.

Case-studies

The optimal spread rate methods identified from the simula-
tion studies (i.e. NH spread rate estimator based on TSA 
results using the TPSR interpolation method) were applied 
to the two case-studies (Fig. 7).

Application of the TSA method to the BT epidem-
ics showed an overall north-east to south-west gradient of 
invasion. Although averaging 10 km week–1, the spread rate 
of BT displayed high spatial heterogeneity (Fig. 7a). Local 
spread rate values were noticeably lower in the winter season 

presumably due to unfavorable environmental conditions  
constraining virus development, such as sub-optimal  
temperature or humidity.

From 2000 to 2004, Cameraria ohridella was gradually 
invading the western portion of France at an averaged speed  
of 63 km yr–1 (Fig. 7b). All areas with a year of first inva-
sion extrapolated before 2000 or after 2004 were excluded 
from the spread rate calculation. Again, the local inva-
sion spread rate displayed high heterogeneity in space that  
probably related to environmental heterogeneity in factors 
influencing dispersal or reproduction (e.g. weather, land 
cover, host density).

Discussion

Spread rate results from the simulation-based analysis are 
contrasted in terms of goodness-of-fit, as both the correla-
tion and RMSE metrics displayed relatively weak and high 
variability across the 486 scenarios (COR  0.20  0.22 SD;  
RMSE  10.38  1.87 SD), and even the best scenarios 
provided relatively modest goodness-of-fit results (COR   
0.4; RMSE  10). Six major issues should be addressed to 
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the same reason, TPRS may represent a desirable alternative 
as it requires relatively little experience in spatial modelling 
and a priori little knowledge of the underlying ecological 
processes. Our results suggest that TPSR had a slightly better 
goodness of fit and was approximately 20 times faster than 
Kriging. This may become a particularly important practi-
cal issue for studies covering wide spatial extents with high 
spatial resolution. As a recommendation, the user may wish 
to base their selection of spatial interpolation methods based 
upon practical matters.

Fourth, the main source of variability in RMSE values 
was related to the differences between the three spread rate 
estimators (ND, NB and DE). It is noteworthy that the 
choice of spread rate method is closely linked to that of the 
previous modelling options. For example, the DE and ND 
methods are more appropriate to the BD spatio-temporal 
modelling structure that provides a presence/absence bound-
ary line at each time step (i.e. discrete modelled time of inva-
sion), because they will each quantify the distance between 
two isolines. Similarly, the NB method is more appropriately 
applied to the outputs of TSA that predict the time of inva-
sion on a continuous scale. Because the combination of TSA 
and TPRS had the best goodness of fit metrics, the most 
suited spread rate estimator appears to be the NB, which 
also showed the highest goodness of fit metrics. However, 
the NB method has some unique problematic features that 
would need to be filtered out. For example, if adjoining 
pixels have identical estimated times of invasion, the local 
slope is null, and the rate of spread, which is estimated as the 
inverse of the slope becomes locally infinite. These artefacts 
can be reduced by increasing the size of the windows used to 
estimate the slope, but this is done at the expense of loosing 
spatial detail. Application of this method also requires that 
uninvaded areas must be removed from the spatial domain  
of the analysis, which could be done, for instance, by  
modelling first the spatial distribution of invasion prior 
and then deriving the spread rate estimates to the restricted 
invaded area.

Five, the spatio-temporal structure (i.e. BD vs TSA) 
accounted for less than 10% of the variability in the good-
ness-of-fit metrics, indicating that the selection of one 
approach had less influence on local spread rate estimates 
than previously expected. Surprisingly, the TSA approach 
displayed noticeably better goodness-of-fit results than the 
BD approach which was anticipated to provide a more 
detailed analysis of spread at each time step of the invasion. 
Furthermore, because of the need to interpolate the presence/
absence distribution at each time step, the BD method requires 
much more processing time than the TSA approach. Thus, 
TSA combined with interpolation of the time of establish-
ment using TPRS appears as the best combination of methods 
both from accuracy and processing time perspectives.

Finally, the numbers of sampling points and spatial  
pattern of samples also had a comparatively low impact on 
spread estimates, although results from higher sampling 
density displayed slightly better goodness-of-fit metrics than 
those with a lower density. This may have resulted from the 
limited range of sampling procedures that was tested (i.e. 
one would have degraded estimates with very low sampling 
densities). Perhaps more surprising was the relatively minor 
influence of the spatial pattern of the sampling points. It is 

understand the relatively low performances and high vari-
ability in the results to draw meaningful conclusions.

First, the overall low performances values are based upon 
the reliability of the theoretical spread rate values, from 
which the estimated spread rate comparison is built upon. 
The theoretical spread rate is a mathematical approximation 
from the Fisher’s model in a continuous space (Shigesada 
and Kawasaki 1997) and, to our knowledge, no theoretical 
study has investigated this in a spatially autocorrelated land-
scape. Therefore, what we consider as a ‘theoretical’ spread 
rate might in fact differ from what we could measure with 
a perfect method. This could explain some of the deviations 
observed between the estimated and theoretical spread rates, 
and support the idea that the goodness of fit metrics need to 
be interpreted and compared in relative rather than absolute 
terms.

Second, low correlation values should be interpreted with 
caution. The differences between the invasion patterns repre-
sent the major source of variability in the correlation values, 
mainly because the simple pattern of invasion resulted in 
the lowest correlation values on average. Concluding hastily  
that the spread rate methods have a weak ability to fit simple 
patterns of invasion would be misleading. Since a simple  
pattern of invasion is characterized by very homogeneous 
spread rates values in space, assessing spatial correspondence 
in such homogeneous space is difficult and tend to lead to 
poor correlation values. The analysis of spread rates results 
in simple invasion patterns should thus be considered using 
RMSE metrics only. In contrast, while complex patterns of 
invasion make them more difficult to predict, in terms of  
date of first invasion, their spread rate patterns are more struc-
tured in space than those from simple patterns. Therefore, 
correlation and RMSE values tend to increase as the pattern 
of invasion become more complex, which make the use of 
correlation metrics relevant for analysing sufficiently com-
plex invasion patterns only. Filtering out the simplest pattern 
of invasion reveals that the more complex invasion pattern 
was sensibly more difficult to predict and generally resulted 
in lower goodness of fit metrics than the moderately complex 
invasion pattern. In conclusion, the comprehensive analysis 
of results suggests that the various spread rate methods have 
a relatively good ability to fit patterns of invasions of varying 
complexity.

Third, the method used to interpolate presence/absence 
data or the date of first invasion (GLM vs Kriging vs TPRS) 
was shown to be a secondary source of variability in the cor-
relation metric, mainly due to GLM-based combinations of 
scenarios that tended to reduce the overall goodness-of-fit 
metrics. Even when incorporating high-order polynomial  
terms and spatial auto-correlation, GLM models are gener-
ally not effective interpolation methods and our results con-
firm that a much better fit can be obtained with TPRS and 
Kriging, with slightly better results for the TPRS method. 
However, the implementation of both methods involved 
unsupervised model fitting procedures. For Kriging, the 
semi-variogram model can strongly influence the qual-
ity of the interpolation, and better outputs could possibly 
be obtained through more supervised models i.e. based on 
knowledge of underlying ecological processes, to ensure that 
the semi-variance model adequately fits the experimental 
semi-variogram (Issaks and Srivistava 1990). However, for 
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observed invasions, noting differences in numbers of initial 
populations, estimates for initial population sizes, mecha-
nisms of spread, etc.

To conclude, this study is the first attempt, to our knowl-
edge, to evaluate different methods for estimation of local 
spatial spread rates, while previous studies have compared 
methods for estimation of global rates of spread (Tobin 
et  al. 2007, Gilbert and Liebhold 2010). Based upon our 
results, we recommend the use of any one of several spatial 
interpolation methods followed by the application of a local 
estimator of slope to derive estimates of local spread rate, 
which appears robust to varying patterns of invasions and 
sampling conditions. The method was successfully applied to 
the two case-studies yielding global spread rate estimates that 
were consistent with previous estimates from the literature. 
Further research could apply the set of methods tested here 
to other empirical data sets to shed light on their practical 
ease of implementation, conditions of use, and capacity to 
produce meaningful local spread rate estimates that could 
then be analyzed against factors influencing spread.
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