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Abstract

Context Golden-cheeked warblers (Setophaga chry-

soparia), an endangered wood-warbler, breed exclu-

sively in woodlands co-dominated by Ashe juniper

(Juniperus ashei) in central Texas. Their breeding

range is becoming increasingly urbanized and habitat

loss and fragmentation are a main threat to the species’

viability.

Objectives We investigated the effects of remotely

sensed local habitat and landscape attributes on point

occupancy and density of warblers in an urban preserve

and produced a spatially explicit density map for the

preserve using model-supported relationships.

Methods We conducted 1507 point-count surveys

during spring 2011–2014 across Balcones Canyon-

lands Preserve (BCP) to evaluate warbler habitat

associations and predict density of males. We used

hierarchical Bayesian models to estimate multiple

components of detection probability and evaluate

covariate effects on detection probability, point occu-

pancy, and density.

Results Point occupancy was positively related to

landscape forest cover and local canopy cover; mean

occupancy was 0.83. Density was influenced more by

local than landscape factors. Density increased with

greater amounts of juniper and mixed forest and

decreased with more open edge. There was a weak

negative relationship between density and landscape

urban land cover.

Conclusions Landscape composition and habitat

structure were important determinants of warbler

occupancy and density, and the large intact patches

of juniper and mixed forest on BCP ([2100 ha)

supported a high density of warblers. Increasing

urbanization and fragmentation in the surrounding

landscape will likely result in lower breeding density

due to loss of juniper and mixed forest and increasing

urban land cover and edge.

Birds were banded under Bird Banding Lab Permit Number

23615 and University of Missouri ACUC Number 8383. Other

activities were covered under U.S. Federal Permit TE798920-4

and Texas State Permit SPR1111378.
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Introduction

Habitat loss and fragmentation due to increasing

urbanization is a leading cause for endangered and

threatened species listing (Wilcove et al. 1998; Czech

et al. 2000). Urban sprawl is an increasingly important

source of land use change as human populations become

more urban (Marzluff 2001). Urban sprawl often

progresses as exurban development, or low-density

residential development. This results in loss or frag-

mentation of native vegetation and habitat structure,

depending on the severity of the land use changes. The

impact to wildlife populations is difficult to generalize

because some species thrive while others languish in

response to increasingly urbanized landscapes (Mar-

zluff 2001; Rodewald et al. 2013). However; native,

forest-interior, insectivorous, and ground-nesting birds

tend to respond negatively to greater urban land cover

(Marzluff 2001; Chace and Walsh 2006) and there is

evidence that forest birds are negatively affected by

urbanization even within forest remnants (Rodewald

et al. 2013; Suarez-Rubio et al. 2013). Urban areas are

increasingly likely to encroach upon or surround

protected areas as they expand and undermine the

capability of these preserves to buffer effects of human

disturbance (McDonald et al. 2009; Wade and Theobald

2010). Conservation planning for endangered species

requires reliable knowledge of distribution, abundance,

and habitat and landscape associations and should

include impacts of land use change caused by human

disturbance and development.

The golden-cheeked warbler (Setophaga chryso-

paria) is a federally endangered Neotropical migrant

songbird that breeds exclusively in the Ashe juniper

(Juniperus ashei) and oak (Quercus spp.) woodlands

of central Texas (USFWS 1992; Ladd and Gass 1999).

Greater than 90 % of the global population of golden-

cheeked warblers breeds on private land (Collier et al.

2010; North American Bird Conservation Initiative

2013), which renders this species especially vulnera-

ble to increasing land use change, habitat loss, and

fragmentation. The entire breeding range is rapidly

becoming urbanized and substantial amounts of

potential habitat have been converted to other land

uses since 2000 (Duarte et al. 2013). The human

population of the Austin metropolitan area, where we

conducted our study, has more than doubled since the

golden-cheeked warbler was listed under the Endan-

gered Species Act in 1990 (U. S. Census Bureau

2012). These changes emphasize the need to under-

stand relationships between abundance and landscape

features affected by urbanization. Despite substantial

research on this species since its listing, there is a

dearth of information regarding the response of

golden-cheeked warblers to urbanization. Coldren

(1998) investigated golden-cheeked warblers’

response to various habitat edges and found that

territory size and distance to edge were greatest for

territories closest to human disturbance (compared to

other habitat features); within small patches (\32 ha),

golden-cheeked warblers selected against edges of

medium- to high-human use, including residential

development. Reidy et al. (2009) documented nega-

tive effects of open edge but not urban land cover, road

density, or building density on nest survival. Robinson

(2013) reported a greater minimum patch size thresh-

old for territory establishment, pairing success, and

territory success in an urban landscape than a rural

landscape. DeBoer and Diamond (2006) reported

higher occupancy rates of golden-cheeked warblers

in wooded patches away from human development.

Previous studies investigating habitat associations

of golden-cheeked warblers have typically focused on

coarse landscape measures such as patch size and total

amount of woodland cover (Magness et al. 2006;

Butcher et al. 2010; Mathewson et al. 2012; Collier

et al. 2013), likely because these data are remotely

sensed, readily updateable, and cover large spatial

scales. However, coarse-scale landscape attributes

may fail to identify important habitat relationships at

finer scales and may result in erroneous density

estimates if substantial within-patch heterogeneity

exists that is not addressed through sampling or

modeling. Recent work has shown golden-cheeked

warblers respond to differences within forest types and

forest structure broadly considered to be golden-

cheeked warbler habitat. Golden-cheeked warbler

density and productivity were greater in mixed

juniper–oak forest than in juniper-dominated forest

on Fort Hood, Texas (Peak and Thompson 2013,

2014). Golden-cheeked warbler density on Balcones

Canyonlands National Wildlife Refuge, Texas, peaked

at a local *70:30 ratio of juniper to broadleaf canopy
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cover (Steve Sesnie, USFWS, unpublished data).

Additionally, golden-cheeked warbler occupancy

was better predicted by coarse-scale forest structure

measures that were refined by inclusion of LiDAR

data (Farrell et al. 2013). DeBoer and Diamond (2006)

reported golden-cheeked warbler occupancy was

positively related to slope steepness, forest interior,

and canopy height. Of the few published studies

reporting density of golden-cheeked warblers, none

has focused on density–habitat relationships in an

Fig. 1 a Point count locations (black circles) and intensive

monitoring plots (black outline) surveyed for male golden-

cheeked warblers across Balcones Canyonlands Preserve (BCP;

color-coded to show 9 patches used for spatially balanced

sampling) during April and May 2011–2014. The BCP is located

in golden-cheeked warbler recovery region 5 (asterisk in inset of

Texas with recovery regions outlined), along the eastern edge of

the Balcones escarpment; b dominant land cover categories in

and around the BCP; and c predicted density across the BCP.

Scale bar in km
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urban landscape. On Fort Hood, situated in a rural

landscape, golden-cheeked warbler predicted density

was reported as 0.39 males ha-1 (95 % CI 0.34–0.45)

within wooded vegetation types co-dominated by

Ashe juniper (Peak and Thompson 2013), whereas

Collier et al. (2013) reported an average predicted

density of 0.14 males ha-1 (95 % CI 0.08–0.23) for

the live-fire region within Fort Hood across all

vegetation types sampled. Mathewson et al. (2012)

predicted an average range-wide density of

0.23 males ha-1 (95 % CI 0.20–0.25) based on rela-

tionships between occupancy and coarse landscape

attributes within wooded habitat patches delineated

across the known breeding range. Our understanding

of density distribution across habitats within the

breeding range is hindered by the differences in

sampling and analytical approaches employed by

these studies.

Obtaining unbiased and broadly applicable esti-

mates of density and habitat associations of golden-

cheeked warblers, and songbirds in general, has been

hampered by the difficulty in applying models to

counts of breeding birds (Peak 2011; Hunt et al. 2012;

Warren et al. 2013). Monitoring forest songbirds often

requires counting primarily acoustic signals from

individual territorial breeding males to estimate male

density in an area (Brewster and Simons 2009; Hunt

et al. 2012). Counts based on point-count surveys are

considered an index of the actual population present at

a given site because some portion of the population is

not present on the breeding grounds during the time of

the survey (i.e., probability of presence), is present but

does not signal its presence during a survey (i.e.,

availability bias), or signals but is not detected by the

surveyor (i.e., perceptibility bias) (Rosenstock et al.

2002; Elphick 2008; Nichols et al. 2009). This

‘‘imperfect detection’’ may not affect the interpreta-

tion of results as long as the ratio of detection and

counts are unbiased or relatively constant (Johnson

2008), but several studies have shown that detection

probability often varies by observers (Diefenbach

et al. 2003; Alldredge et al. 2007; Simons et al. 2007;

Reidy et al. 2014), by habitat (Pacifici et al. 2008;

Amundson et al. 2014), with weather conditions

(Simons et al. 2007; Amundson et al. 2014), and

through time (Selmi and Boulinier 2003; Diefenbach

et al. 2007). Further, if detection probability differs

between habitats but is not accounted for, differences

in detection may be misattributed to species habitat

associations (Amundson et al. 2014). Monitoring

programs are increasingly incorporating various meth-

ods to account for detection bias (e.g., double

observer, distance sampling, repeated surveys;

Nichols et al. 2000; Buckland et al. 2001; Royle

2004; Nichols et al. 2009), and recent analytical

advancements, namely hierarchical N-mixture mod-

eling (Royle 2004), have facilitated simultaneous

estimation of detection probability and population

density from spatially replicated wildlife surveys.

However, evaluation of model performance is typi-

cally non-existent or based on simulated data because

the underlying quantity being estimated (i.e., true

abundance or density) is usually not known (Cassey

and McArdle 1999; Royle 2004; Amundson et al.

2014). Peak (2011) and Hunt et al. (2012) demon-

strated point-count surveys may be unreliable predic-

tors of actual observed density of golden-cheeked

warblers. Thus, any estimate of density should be

interpreted with caution and careful attention should

be paid to model validation.

We assessed effects of local habitat and landscape

factors on the distribution and density of golden-

cheeked warblers on the Balcones Canyonlands Pre-

serve (BCP), Texas, which is located in a rapidly

urbanizing landscape. Our objectives were to: (1)

determine relationships between occupancy and den-

sity of golden-cheeked warblers with remotely sensed

habitat and landscape attributes; and (2) produce a

spatially explicit density map for the BCP to provide

baseline data for population modeling. Our approach

was novel and an improvement over previous studies

because we accounted for multiple sources of detec-

tion bias and compared predicted density with actual

density determined from re-sighting color-banded

birds on intensively monitored plots as part of our

model validation.

Methods

Study area and study species

We conducted this study across the BCP, situated

along the eastern edge of the Edwards Plateau (Fig. 1).

The BCP is a system of preserves located in western

Travis County, Texas, and encompasses approxi-

mately 12,294 ha (based on ownership as of May

2014). The BCP is the result of a multi-agency
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conservation effort operating to preserve and protect

habitat of endangered and rare species while allowing

for urban expansion and development on surrounding

unprotected land. The BCP represents the largest

protected area and *18 % of total protected potential

habitat in the golden-cheeked warbler recovery region

5 (USFWS 1992; Fig. 1), which covers the area west

of Austin, Texas (Groce et al. 2010). This region

experienced the greatest rate of habitat fragmentation

range-wide from 2000 to 2010, resulting in increased

edge and smaller forest patches (Duarte e al. 2013).

While much of the BCP is closed to the public, some

areas allow public access and trails. Land use history

across the BCP includes extensive logging with

subsequent goat and cattle ranching (Travis County

and City of Austin 2015). Currently, management for

the golden-cheeked warbler within the BCP includes

protecting and restoring soils and plant diversity, hog

and deer control, invasive plant removal, preventing

the spread of oak wilt, and protecting and monitoring

boundaries and internal infrastructure corridors (Tra-

vis County and City of Austin 2015). The preserve

consists primarily of Ashe juniper and juniper–oak

woodlands. Dominant tree species include Ashe

juniper, Texas red oak (Q. buckleyi), plateau live oak

(Q. fusiformis), shin oak (Q. sinuata var. breviloba),

cedar elm (Ulmus crassifolia), escarpment black

cherry (Prunus serotina var. exima), and Texas ash

(Fraxinus texensis). Common understory species

include Carolina buckthorn (Frangula caroliniana),

yaupon holly (Ilex vomitoria), red buckeye (Aesculus

pavia var. pavia), Mexican buckeye (Ungnadia

speciosa), Lindheimer silk-tassel (Garrya ovata var.

lindheimeri), and elbowbush (Forestiera pubescens)

(City of Austin et al. 2014).

Golden-cheeked warblers breed in the juniper and

juniper–oak (mixed) forests found in central Texas

(USFWS 1992; Ladd and Gass 1999) and spend the

winter in pine-oak woodlands in montane areas of

Central America (Rappole et al. 2000; Komar et al.

2011). Females build nests primarily composed of

peeling bark from mature Ashe junipers, hence the

presence of mature junipers is required for nesting

habitat. However, golden-cheeked warblers are not

found across the range of Ashe junipers, which

extends into Oklahoma, Arkansas, and Missouri in

discrete populations. They are confirmed to breed in

only 27 counties in the Edwards Plateau and Cross

Timbers ecoregions (Groce et al. 2010). Golden-

cheeked warblers forage in a variety of tree species,

including junipers and a variety of oaks (Ladd and

Gass 1999). Golden-cheeked warbler occupancy is

highest in the eastern and southern portion of their

range (Collier et al. 2013), and this area experienced

the highest human growth rate in the United States

since 2010 (US Census Bureau 2012).

Avian surveys

We randomly placed a point grid with 250-m spacing

over the entire BCP in ArcMap (ver. 9.3, ESRI,

Redlands, CA, USA), resulting in random-systematic

coverage of the study area. We eliminated points that

were\50 m from major roads because the survey plot

would be partly composed of roadway and this

proximity decreased our ability to hear singing birds

over road noise. We did not exclude points based on a

priori expectations of habitat suitability or occupancy.

We divided our point grid into non-overlapping

transects consisting of 8–15 points based on topogra-

phy and access. We divided the BCP into nine patches

based on patch connectivity (patches were defined by

watersheds and highways; Fig. 1) and randomly

selected a similar portion of transects each year from

each patch to ensure spatially balanced sampling

across BCP occurred each year. Each transect was

surveyed only once during the study period.

We conducted 5-min, unlimited-radius point count

surveys from mid-April to mid-May, 2011–2014. We

chose this sampling period because it allowed the

entire population to arrive and settle on territories and

males were still singing frequently. It also minimized

potential population fluctuations that occur within the

breeding season due to intraseasonal movement (J.

Reidy, University of Missouri, and City of Austin,

unpublished data), which would have violated the

assumption of population closure needed for estimat-

ing density (Nichols et al. 2009). Surveys were

conducted from 10 min post-sunrise until *1100

CDT when temperatures were [10 �C, winds

\19 kph, and there was no or light precipitation. We

recorded weather information (wind speed using the

Beaufort scale, temperature, cloud cover, and an index

of precipitation) and point locations in Universal

Transverse Mercator (UTM) coordinates prior to

starting surveys; this brief delay served as a settling

down period for any observer-induced movement. We

recorded time of, distance to, and type of (e.g., song,
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call, visual) initial detections of male golden-cheeked

warblers during surveys. We measured distances to

each detected bird with laser range-finders (Bushnell

Yardage Pro, Bushnell, Overland Park, Kansas, USA),

but occasionally estimated distance due to dense

vegetation or steep topography. Points were surveyed

once by one of eight observers (two per year). All

observers were trained in species identification and

distance estimation. Observers recorded multiple

individuals at a point only if they were confident they

were unique individuals (e.g., simultaneous detec-

tions) to avoid double-counting.

Landscape and habitat metrics

We derived covariates from two remotely sensed

products, the Texas Ecological Systems Phase 1

Vegetation Classification (TESP1) and light detection

and ranging imagery (LiDAR), because we needed

spatially continuous maps of covariate values and we

desired products that could be readily updated and

easily replicated for future comparisons. TESP1

provides detailed vegetation classification for central

Texas; it was derived from 10-m resolution satellite

imagery from 2005 and 2006 by refining land cover

categories with ancillary data such as slope and aspect,

landscape position, hydrology, soil, roads, and cities

data (Texas Parks and Wildlife 2012). LiDAR is a

remote sensing technology that measures distance by

illuminating a target with a laser and analyzing the

reflected light (Sexton et al. 2009) and can be used to

determine vegetation height (Hill and Thomson

2005; Sexton et al. 2009). We obtained 2-m resolution

LiDAR data acquired during 206 flight lines of

standard density (1.4 m ground sample distance) from

20 missions in January 2012. The overlap between

flight lines was removed to provide a homogeneous

coverage and the coverage was classified to extract a

bare earth digital elevation model (DEM). Canopy

height was calculated by subtracting the minimum

elevation values (at 2.5 m resolution) from the max-

imum elevation values (at 1 m resolution) (W. Simper,

Travis County Natural Resources, unpublished data).

We calculated landscape metrics in ArcMap (ver.

10.0, ESRI, Redlands, CA, USA). We intersected the

LiDAR and TESP1 data layers to create a higher

resolution (2 m) and more current map (2012) of land

cover. We considered a 10-m pixel to be wooded or

tree canopy if it was classified as a wooded habitat in

the TESP1 layer and C50 % of 2-m pixels in the

LiDAR layer had vegetation height C3 m. We chose

3 m because habitat on the preserve is typified by trees

averaging *5 m tall (Table 1), but across the breed-

ing range, suitable canopy may be shorter; thus, based

on our knowledge, we considered 3-m to be the

minimum height used as breeding habitat. We calcu-

lated the proportion of land cover types within a 100-m

and 1-km radius of each point. We evaluated variables

in a 100-m radius (local habitat factors) to correspond

with the area surveyed by a point count and because it

is approximately the size of a birds’ territory and at a

1-km radius (landscape factors) to measure landscape-

level habitat composition and structure. We also chose

these scales to correspond with a similar study

conducted on Fort Hood (Peak and Thompson 2014).

We computed mean canopy cover, mean canopy

height, and open edge density within the 100-m radius

around points, and urban edge density within the 1-km

radius around points. We considered urban edge to be

the interface between urban land cover and all wooded

habitats; we defined open edge as the interface

between all wooded and all non-wooded habitat types

(excluding urban). We chose to evaluate urban edge

density at the 1-km scale only because there was very

little urban edge within 100 m of points. We chose to

examine open-edge density at the 100-m scale because

we were interested in evaluating local effects of

fragmentation within wooded habitat, and preliminary

examination of the aggregation index, a measure that

describes the connectedness of landscape classes (He

et al. 2000), indicated that at large scales our forests

were continuous rather than patchy or fragmented.

Actual density

We intensively monitored golden-cheeked warblers

on 18 plots distributed across the BCP and that

represented a diversity of habitat types within the

BCP. Most plots (67 %) were *40 ha and established

as part of a long-term monitoring program prior to this

study. Six additional plots, ranging in size from 27 to

180 ha, were surveyed to capture additional variation

in landscape composition and habitat structure; these

plots were mostly constrained by property boundaries.

We captured territorial adult golden-cheeked warblers

in 6-m mist-nets using pre-recorded playback of

golden-cheeked warbler songs. We placed 2–3 colored

bands and a numbered aluminum band issued by the
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U.S. Geological Survey on legs of unbanded individ-

uals. We re-sighted color-banded birds, recorded

locations of banded and unbanded birds, and docu-

mented reproductive activity at least twice a week

from 15 March through 25 May, and at least once per

week from 25 May through 15 June 2011–2014.

Survey effort was *5.37 h/ha (range 0.4–9.0 h/ha)

and survey intensity was based on plot density such

that similar effort was expended per territory. We

considered a male territorial if it was present on the

plot for C3 weeks and delineated territories by

bounding territorial observations as minimum convex

polygons in ArcMap 10.0 (City of Austin et al. 2014).

The number of territorial males present on each plot

reached an asymptote by the first week of April;

therefore, we have high confidence in the number of

territorial males present on our plots. We calculated

plot density as the number of territories fully within

the plot boundaries plus one-half of the territories

partially within the plot boundaries divided by the area

of the plot (Verner 1985; City of Austin et al. 2014).

We compared the mean actual density for each plot

from the 4 years (2011–2014) to model-based pre-

dicted density for each plot to inform model selection

and base inference.

Data analyses

Amundson et al. (2014) created a hierarchical exten-

sion of a combined distance-sampling and time-

removal model (Farnsworth et al. 2005) that can

simultaneously estimate detection probability and

density, and incorporate covariates for each model

component. We used this approach to create a

hierarchical Bayesian N-mixture model to evaluate

the effects of landscape factors on golden-cheeked

warbler density and predict density across the BCP

(cf., Royle 2004; Amundson et al. 2014). We included

distance from the observer to each bird detection (i.e.,

distance sampling; Buckland et al. 2001) and time

elapsed between the beginning of the survey and each

unique detection (i.e., time removal; Farnsworth et al.

2002, 2005) to adjust counts for multiple sources of

detection bias. The ability of an observer to hear a bird

song decreases as distance to the bird increases and

this heterogeneity in detection is referred to as

perceptibility bias (pd; Nichols et al. 2009). Percep-

tibility bias can lead to severe underestimation of

actual density and often varies by the hearing ability ofT
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the observer, habitat at the survey point, and wind and

weather conditions during the survey (Alldredge et al.

2007; Simons et al. 2007; Pacifici et al. 2008;

Amundson et al. 2014). Traditional distance sampling

assumes each individual is available to be detected,

i.e., all males present within the focal area sing at some

point within the count period. However, there is ample

evidence that availability (pa), the probability a male

sings during a survey, is less than one, is not constant

across time and space, and should therefore be

included in models predicting density (Wilson and

Bart 1985; Scott et al. 2005; Diefenbach et al. 2007;

Amundson et al. 2014). We accounted for availability

bias using Farnsworth et al.’s (2002) time-removal

method that divides the survey period into discrete

time intervals and counts the number of unique

individuals that initially sing during each interval.

Similar to the population removal model of Zippin

(1958), counts in each time interval are fit in a

regression; thus, the proportion of the population that

never sang during the survey can be estimated. We

modeled density (bD; abundance per point divided by

area surveyed) adjusted for detection (pa 9 pd) using a

Poisson regression. We incorporated a zero-inflation

term, z, to reduce bias that can result from a large

number of zero counts (Martin et al. 2005; Kéry and

Schaub 2012; Amundson et al. 2014). Zero counts can

arise if the species did not occur at the point during the

study (i.e., true zeros) or if the species occurs at the

point but was not present or detected during the study

(i.e., false zeros; Martin et al. 2005). Zero-inflation

first models counts as a Bernoulli draw to estimate the

proportion that are true zeros. Counts not assigned as

true zeros are then modeled using a Poisson distribu-

tion and may take a zero value. This approach allowed

us to separate zero counts arising from surveys in areas

likely unsuitable for golden-cheeked warblers and

model the density related to our variables of interest

(Rathbun and Fei 2006).

We truncated bird observations at a maximum

distance of 100 m and binned remaining observations

into 4 unequal distance bins (40, 60, 80, 100 m) such

that each bin would have a similar number of

detections (Buckland et al. 2001; Amundson et al.

2014). We modeled the scale parameter r, and shape

parameter c, using a hazard rate function because

preliminary analyses indicated greater support for the

hazard function than a uniform or half-normal

function for estimating pd (Buckland et al. 2001).

We included each observer (OBS) as a random effect,

and fixed effects for wind (WIND; B or [2 on the

Beaufort scale) and the proportion of the surveyed area

that contained juniper woodland within a 100-m radius

of the point (JUN100m) because we hypothesized

increasing wind or juniper density (due to the thick-

ness of the foliage) decreased pd. We modeled

availability using 5 equal 1-min time intervals and

included time of day at the start of the survey (TOD),

day of year (DOY), and temperature at the start of the

survey (TEMP) as potential effects on pa.

To address the issue that two points along the same

transect are more likely to have similar densities than

points on different transects, we partially accounted

for spatial autocorrelation among points within tran-

sects within sites using transect-specific intercepts

nested within sites. We originally evaluated random

and fixed year effects on N, but found that including

these effects resulted in poor model fit (Bayesian

P[ 0.9). Each year, two novel observers conducted

surveys, thus, because the model is hierarchical,

observer effects on the perceptibility portion of the

model were confounded with temporal variation in

density. We omitted year effects on density, but

recognize that some temporal variation accounted for

in the observation components of the model (i.e.,

temporally varying covariates) is likely due to unac-

counted for variation in density from year to year.

We constructed six candidate models that included

landscape and local habitat covariates for the zero-

inflation and density portions of the model that we

hypothesized were important and that received sup-

port in other studies (DeBoer and Diamond 2006;

Magness et al. 2006; Farrell et al. 2013; Peak and

Thompson 2013) and in our preliminary analyses (City

of Austin et al. 2014). We evaluated multi-collinearity

of covariates and did not include variables in individ-

ual models that resulted in tolerance values \0.4

(Allison 1999). We included two linear covariates that

represented generic forest characteristics to evaluate

factors influencing point occupancy in all six candi-

date models: the proportion of area within a 1-km

radius composed of juniper and mixed wood-

land/forest (TOTFOR1km) and the percent of forest

canopy cover in a 100-m radius (CC100m). We chose

these broad metrics because point occupancy is likely

more associated with general forest cover whereas
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density may be related to the relative proportion of

forest types. We included different combinations of

landscape and local effects on density in the six

candidate models. We evaluated linear and quadratic

effects of proportion of area in juniper forest

(JUN1km) and mixed forest (MIX1km), and linear

effects of proportion of area in urban land cover

(URBAN1km) or urban edge density (URBAN-

EDGE1km) in a 1-km radius. We considered linear

effects of open edge density (OPENEDGE100m),

proportion of area in juniper (JUN100m) and mixed

woodland (MIX100m), and mean canopy height

(HT100m) in a 100-m radius (Table 1). We a priori

predicted that density may peak at some intermediate

value of each forest type at the landscape scale

because golden-cheeked warblers require junipers for

nesting material and oaks for foraging; therefore, we

chose to include quadratic effects of JUN1km and

MIX1km at the landscape scale. We predicted that

golden-cheeked warbler density would respond lin-

early to the other variables (positively to JUN100m,

MIX100m, and HT100m, and negatively to

URBAN1km, URBANEDGE1km, and OPEN-

EDGE100m) based on previous studies (DeBoer and

Diamond 2006; Peak and Thompson 2013).

We implemented the models using JAGS version

3.4.0 (Plummer 2003) called remotely from the JagsUI

package in R (vers. 3.1.1 Patched, R Core Team 2014).

We standardized all continuous variables to a

mean = 0 and SD = 1 to facilitate model conver-

gence. We assigned uninformative priors to random

and fixed effects and assessed convergence of model

parameters similar to Amundson et al. (2014). We

assigned the hazard function shape parameter c to a

uniform prior distribution between 0.01 and 20.

Models reached convergence after 50,000–100,000

iterations from 3 Markov chains with the first 80 %

discarded as burn-in. We retained every 10th remain-

ing iteration (i.e., thin). We evaluated fit of the pd and

pa portions of the model using Bayesian P values

(Gelman et al. 1996) where values near 0 or 1 indicate

poor fit (Kéry 2010). We present mean parameter

estimates ±95 % credible intervals (CI).

Density distribution map

We compared our model-based predictions of density

to mean actual densities on the 18 plots for which we

mapped territories of color-banded birds to inform

selection of the best model to produce a spatially

explicit density map for the BCP. We resampled the

10-m resolution GIS layers for each covariate to

represent mean values of covariates for 180 9 180 m

pixels (3.2 ha). These pixels approximated the area

surveyed during point counts and the average golden-

cheeked warbler territory size (City of Austin, unpub-

lished data) and therefore avoided any bias that could

result from applying models derived from the point

counts to finer resolution pixels. We generated density

estimates for each pixel using the model of interest,

intersected pixel estimates with the boundaries of the

18 plots, and calculated mean predicted densities and

95 % confidence intervals for each plot. We evaluated

models by comparing predicted densities to mean

actual densities based on R2, mean squared error, and

mean absolute error for each model and then selected a

best model for inference based on these multiple

criteria. We used the best model to predict density for

all pixels in the BCP and mapped density values to

demonstrate geographic patterns. We plotted loess-

smoothed lines (a = 1.0, k = 1; Jacoby 2000) repre-

senting the relationships of predicted occupancy or

density and observed values of supported covariates

across all pixels in the BCP to visually demonstrate

landscape relationships.

Results

We conducted point count surveys at 1507 points and

censused 18 plots annually from 2011 to 2014 (Fig. 1).

We surveyed a wide range of local and landscape

conditions with total forest cover ranging from 4 to

100 % within 100 m of points and 12–72 % within

1 km of points. Our survey points and plots were

generally representative of the BCP landscape with

similar means and ranges among survey points,

monitoring plots, and the 3766 180 9 180 m pixels

that made up the entire BCP (Table 1). The intensive

plots had slightly greater canopy cover and canopy

height, and less open edge on average than the survey

points and the entire BCP.

We detected 603 singing male golden-cheeked

warblers (n2011 = 122, n2012 = 134, n2013 = 135,

n2014 = 212) within a 100-m radius of all points. At

least one golden-cheeked warbler male was detected at

500 points and zero males were detected at the

remaining 1007 points. We banded 70 % (range
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0–100 %) of known territorial males on 18 plots from

2011 to 2014. We mapped 0–28 territories/plot and a

total of 247, 191.25, 180.5, and 181 territories in 2011,

2012, 2013, and 2014, respectively. Mean actual plot

densities across the 4 years were

0.01–0.48 males ha-1 (Fig. 2). Mean actual density

across all 18 plots ranged from 0.22 to 0.23 (coefficient

of variation = 1.5 %) while variation within plots

across years was more substantial (mean coefficient of

variation = 31 %); nevertheless the rank order of

plots ranked by density did not change among years.

The fit of the models varied but all six models

generally fit the data adequately (Bayesian P val-

ues = 0.66–0.90). Our comparison of model-pre-

dicted densities for pixels within the 18 plots and

actual plot densities resulted in R2[0.67, mean

absolute error \0.105, and mean squared error

\0.012 across the six models (Table 2). Parameter

estimates from all six models generally represented the

same landscape and habitat effects on golden-cheeked

warbler density; density was positively associated with

mature forest habitats and negatively associated with

open edge density within 100 m, had mixed relation-

ships with forest habitats (mixed forest = positive,

juniper forest = negative), and was negatively asso-

ciated with measures of urban edge and total urban area

within 1-km of survey points (Table 3). We chose

model 3 for further inference because it had the greatest

R2 with actual densities, lower than average prediction

error, and inclusion of JUN100m, MIX100m, and

HT100m made it the most relevant of the top three

models to managers (the other models did not include

all three of these variables; Table 2). Credible intervals

for densities derived from model 3 overlapped mean

actual densities at 15 of the 18 plots and predicted

densities within 0.05 males ha-1 for eight plots;

predicted densities for three plots were higher than

mean actual densities (Fig. 2). There was a tendency to

overestimate density more at lower density plots than

higher density plots; mean absolute error based on

plots below and above the median observed density

was 0.11 and 0.04, respectively.

Mean survey point occupancy was 0.83 (95 % CI

0.78, 0.90), indicating the majority of our survey

points were considered suitable for golden-cheeked

warblers. Point occupancy was positively associated

with the amount of CC100m (b = 1.93, 95 % CI 1.14,

2.96; Fig. 3a) and TOTFOR1km (b = 3.73; 95 % CI

2.10, 5.98; Fig. 3b). Mean availability (pa) was 0.90

(95 % CI 0.87, 0.93) and did not vary by TOD

(b = -0.04; 95 % CI -0.22, 0.15) or TEMP

(b = 0.12; 95 % CI -0.08, 0.32). Availability

increased marginally with DOY (b = 0.18; 95 % CI

-0.01, 0.36). Mean detectability (pd) was 0.60 (95 %

CI 0.53, 0.65) and varied by OBS (Table 4), but not

JUN100m (b = 0.02, 95 % CI -0.01, 0.06) or WIND

(b = 0.03, 95 % CI -0.05, 0.10).

Predicted density was strongly influenced by local

habitat features, increasing with a greater amount of

JUN100m (b = 0.24, 95 % CI 0.07, 0.43; Fig. 4a) and

MIX100m (b = 0.24, 95 % CI 0.06, 0.44; Fig. 4b),

and greater HT100m (b = 0.19, 95 % CI 0.04, 0.33;

Fig. 4c), and decreasing with OPENEDGE100m

(b = -0.14, 95 % CI -0.27, -0.01; Fig. 4d). Rela-

tionships between predicted density and landscape

scale factors were weaker. Density had a weak positive

relationship with the amount of MIX1km (b = 0.07,

95 % CI -0.15, 0.30), and a weak negative relation-

ship with JUN1km (b = -0.17, 95 % CI -0.39, 0.05)

and URBAN1km (b = -0.18, 95 % CI -0.42, 0.06;

Fig. 5) at the 1-km scale.

Mean predicted golden-cheeked warbler density

was 0.23 males ha-1 (95 % CI 0.19, 0.28) for all

pixels in the BCP but averaged 0.32 males ha-1 for

pixels dominated ([70 %) by mixed and juniper

woodland. Predicted densities were greatest in the

northeastern portion of the BCP and lowest in the

southwestern (Fig. 1). Mean golden-cheeked warbler

density on BCP for 2011–2014 based on the actual

observed plot densities, weighted by plot area, was

Fig. 2 Comparison of predicted densities of male golden-

cheeked warblers from the landscape model (model 3) to mean

actual densities on 18 plots from 2011 to 2014. The line

represents a perfect 1:1 relationship between predicted and

actual density
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0.17 (95 % CI 0.14, 0.20), which was similar to our

predicted density by model 3 minus mean absolute

error, or 0.23–0.07 = 0.16 males ha-1.

Discussion

We provided a rigorous evaluation of landscape and

habitat relationships for predicted density of golden-

cheeked warblers and demonstrated a hierarchical

pattern of habitat use in an urban landscape. Our

estimate of point occupancy was high (83 %), indi-

cating the majority of our points, and hence the BCP,

were considered suitable for golden-cheeked warblers.

However, we only detected singing males at approx-

imately one-third (33 %) of our points, leaving 50 %

of our points as suitable but not known to be occupied.

Our overall detection probability was *54 % (pd 9 -

pa), so it is likely some unoccupied sites had

undetected males present. This result suggests that

habitat within the BCP is not be saturated, and either

could support more golden-cheeked warblers or that

the population is being limited by something other

than the local and landscape features we evaluated.

We found strong support for effects of landscape

composition and local structure on point occupancy.

The total amount of juniper and mixed woodlands at the

landscape scale and canopy cover at the local scale were

highly predictive of habitat occupancy. Local canopy

cover and total landscape forest cover averaged 79 and

48 %, respectively for survey points with at least 0.5

probability of occupancy. Conversely, the probability of

golden-cheeked warbler occupancy in the southern

portion of the breeding range did not exceed 0.5 until

forest cover was at least 80 % at multiple spatial scales

(Magness et al. 2006). Golden-cheeked warbler occu-

pancy at Fort Hood was similarly related to local canopy

cover derived from LiDAR, although they used 1-m

high to define canopy cover because they were

modelling golden-cheeked warbler and black-capped

vireo (Vireo atricapilla; an endangered shrub-nesting

songbird) occupancy (Farrell et al. 2013).

Predicted density was influenced most strongly by

forest composition and fragmentation at the local

scale. Although the amount of mixed woodland and

juniper woodland had similar estimated effects on

density, we found that density showed a much stronger

positive response to increasing amounts of mixed

woodlands than juniper across the landscape (Fig. 4).T
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The differential response to the two forest types was

likely a result of the community composition of

habitats dominated by each forest type. For example,

juniper woodlands generally had lower canopy height

and more open edge than mixed woodlands. Canopy

height also exerted a strong influence on golden-

cheeked warbler density, indicating more mature

woodlands attract more males. We also documented

a strong negative effect of open edge density on

golden-cheeked warbler density. This may be due to

perceived lower habitat quality, fewer nest sites,

foraging trees or optimal trees to sing from, or lower

nest success because of increased abundance of edge-

adapted predators (Reidy et al. 2008; Peak and

Thompson 2014).

We were unable to estimate annual variation in

density with our model due to confounding with

observer effects. Despite variation in density in

individual plots among years (CV = 31 %), we found

little variation in mean actual density (1–3 % change

in mean density per year). This suggests that there was

movement of birds within the BCP from year to year,

but that annual variation in population size during our

study was relatively low. Because sampling intensity

was similar across all 4 years of our study, golden-

checked warbler density likely responded, on average,

to the landscape and habitat factors we studied.

Regardless, seasonal and annual factors affecting

warbler density warrant further consideration.

We provide further evidence that golden-cheeked

warblers benefit from large, contiguous patches of

mature woodlands, which corroborates the strong

effect of forest types and edge documented on Fort

Hood (Peak and Thompson 2013). We expect that

large-scale landscape composition was less influential

on golden-cheeked warbler density because our model

accounted for landscape effects on point occupancy.

We did find a trend for golden-cheeked warbler

density to decrease with greater urban land cover and

this effect is likely to become more pronounced as the

area around the BCP continues to develop. As the

human population within the Austin, Texas,

metropolitan area continues to expand west into the

area surrounding the BCP, juniper and mixed wood-

lands are rapidly being replaced by urban development

and USFWS (1996) projects a loss of [70 % of the

golden-cheeked warbler’s habitat in western Travis

Fig. 3 Loess-smoothed trends in predicted occupancy (solid black line) for 1507 points surveyed for singing male golden-cheeked

warblers relative to a local canopy cover (100 m) and b landscape forest cover (1 km). Dashed lines represent 95 % credible intervals

Table 4 Number of points (n), number of singing golden-

cheeked warbler males detected within 100 m of point (K),

perceptibility (pd) and 95 % credible limits, and the effective

detection radius (EDR) by observer for 1507 points surveyed

for golden-cheeked warblers across Balcones Canyonlands

Preserve, Texas, from April–May, 2011–2014

Observer n K pd (95 % CL) EDR (m)

1 184 68 0.745 (0.673, 0.818) 90

2 183 69 0.670 (0.582, 0.743) 77

3 157 66 0.584 (0.509, 0.645) 65

4 206 53 0.697 (0.624, 0.759) 91

5 191 54 0.409 (0.341, 0.478) 48

6 199 81 0.492 (0.430, 0.551) 55

7 198 103 0.657 (0.615, 0.693) 74

8 189 109 0.596 (0.523, 0.653) 66
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County. Our results suggest the large intact patches of

juniper and mixed forest in the BCP currently buffer

the effects of landscape-level urbanization on golden-

cheeked warbler density, but as urbanization and

fragmentation intensify, negative impacts to breeding

density will likely increase.

Our observed habitat associations and range of

predicted densities were similar to those documented

in Peak and Thompson (2013), which reported golden-

cheeked warbler density was positively related to

mixed forest cover and juniper forest cover in the

100-m radius and total forest cover in the 1-km radius

and negatively related to edge density around points.

Despite differences in design and analysis between our

study and theirs, we believe strong inference can be

made at broad spatial scales between golden-cheeked

Fig. 4 Loess-smoothed trends in predicted densities (solid

black line) of male golden-cheeked warblers in relation to

a proportion of juniper forest cover, b proportion of mixed forest

cover, c canopy height, and d open edge density; all measures

are at the 100-m scale. Dashed lines represent 95 % credible

intervals

Fig. 5 Loess-smoothed trends between predicted densities of

male golden-cheeked warblers (solid black line) and the

proportion of urban land cover within 1 km of surveyed points.

Dashed lines represent 95 % credible intervals
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warbler density and landscape metrics based on the

patterns that emerged from these different landscapes.

Our mean predicted density for wooded habitat within

BCP was lower than predicted density for wooded

habitat within Fort Hood (Peak and Thompson 2013).

The woodland composition at Fort Hood was also

characterized by greater amounts of mixed forest

cover (68 %) and less juniper cover (16 %) at the local

scale and more total forest cover (73 %) at the

landscape scale than our study area (Peak and

Thompson 2013), so we might expect their landscape

to support more birds. However, it is difficult to make

a direct comparison due to differences in data

collection and analysis.

Density estimation accounting for detection prob-

ability has become increasingly common over the past

decade, and model development has resulted in a

novel framework that allows simultaneous modeling

of availability, perceptibility, occupancy, and density

and allows covariates to be modelled on each portion

(cf., Royle 2004; Amundson et al. 2014). However, for

most studies it is unknown if density estimates

accounting for detection probability approximate

actual breeding population size better than raw counts.

Our estimate of availability was high and not affected

by day of year, time of day, or temperature. Our

sampling window was designed to ensure the golden-

cheeked warbler population had arrived on the breed-

ing grounds (takes approx. 1 month), was during the

period of high site fidelity (territorial behavior is

reduced beginning in mid-May), and occurred during

optimal singing conditions (moderate weather and

morning hours). However, our estimate of pa is

calculated from the 5-min survey data, which may

not give a true, unbiased estimate if singing probabil-

ity is not a random process. Availability of golden-

cheeked warblers based on singing within a 5-min

sample was 0.64 (SD = 0.26) in a separate study that

recorded per-minute singing probability of territorial

males for 30–120 min periods, which is much lower

than 0.90 arrived at from decomposition of the survey

min in this study; further, singing occurred in bouts, or

strings, of singing and silence (J. Reidy, unpublished

data). Perceptibility was not affected by wind speed

(which we also controlled for in our sampling design)

or total amount of juniper cover at the local scale, but

was influenced by the observer, a well-documented

source of detection bias (Simons et al. 2007; Reidy

et al. 2014). Our results suggest careful study design

reduced several sources of detection bias (e.g., day of

year, wind), but spatio-temporal variation in detection

still occurred due to surveys being conducted by

multiple observers across multiple years and individ-

ual heterogeneity in singing rates. Thus, surveys

should be designed to minimize sources of detection

bias (e.g., conducting surveys at peak breeding so that

100 % of the breeding population is likely present at

the point), but for large-scale, multi-year studies

utilizing many observers, employing methods that

account for one or more sources of detection bias may

further improve accuracy of density estimates (Hefley

et al. 2013; Kellner and Swihart 2014).

Studies rarely test model performance against sites

with known abundance. Although mean predicted

density was *35 % greater than mean actual density

measured on 18 plots, actual densities fell within the

credible intervals of our predicted densities for 83 % of

the intensively monitored plots. Our model performed

well at predicting densities in plots within large,

contiguous patches of woodland that supported

[0.20 males ha-1. Our model validation revealed an

interesting trend to overestimate at plots with low

densities (\0.20 males ha-1). Overestimation could

have occurred because birds are not saturating the

habitat at the level expected given landscape relation-

ships or because we were unable to model biological

phenomena such as conspecific attraction (Farrell et al.

2012) or forest health. For example, two plots with

inflated model-predicted densities supported a network

of trails and one of these experienced substantial tree

mortality as a result of extreme drought from 2011 to

2012. While we attempted to update land use changes

that occurred after the 2005–2006 land cover classi-

fication and create a finer-resolution of woodland

composition by combining it with the 2012 LiDAR

layer, we still used relatively coarse-level metrics in

our model. Additional urban effects that we did not

model included public access, trail density, trail use,

and effects of non-native vegetation. Plots that were

overestimated the most tended to be small, isolated,

internally fragmented by trails and other canopy gaps,

and externally surrounded by low- to medium-density

human development. While we identified some plot-

specific characteristics that may explain some of the

observed overestimation of density, we believe there

may be some more general factors that explain

differences in intensive plot-based territory mapping

versus model-based estimates of pixel densities
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summarized over a large landscape. Overestimation

could partly be because points or pixels that are not

suitable are always assigned some non-zero density

estimate due to the uncertainty in the Bernoulli

realization of the probability of occupancy. While

these non-zero estimates are typically very small at the

point or pixel-level, estimates are non-trivial when

summed across a larger area. Similarly, the model

could predict very low densities for pixels that are

actually unsuitable habitat and that become non-trivial

when summed over a large area. O’Donnell et al. (in

press) similarly compared densities estimated from

three independent point count studies to actual densi-

ties from territory mapping at the plot level within BCP

and found all three studies tended to overestimate

density, particularly at low density plots. There are a

number of factors that could contribute to differences

in model-based estimates of density from point counts

compared to territory counts from intensive monitor-

ing that are not the result of poor model fit and we

consider this is an area for future investigation.

Additionally, we believe incorporating finer-scale

measures of landscapes and vegetation structure may

improve model performance for low density areas.
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