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Introduction

Dynamic forest biogeochemical models are useful 
tools to understand, evaluate, and predict the interactive 
effects of climate change, atmospheric CO2 increases, 
and atmospheric deposition of anthropogenic pollutants 
on the hydrology and water quality of watersheds. 
Models have the ability to simulate the dynamics of 
energy, water, and element cycles in terrestrial ecosystems 
over spatio-temporal scales that are difficult to achieve 
through direct observation and experimentation.

Any model analysis is subject to multiple sources of 
uncertainty. For biogeochemical models, uncertainties 
stem from simplifications and assumptions regarding the 
hydrological, biological, and geochemical processes 
depicted in the model (structural uncertainty) (Gupta et al. 
2012), as well as inaccurate parameterizations due to lack 
of data or uncertain observations (parametric uncertainty) 
(Wellen et al. 2015). When models are used to assess the 
potential impacts of climate change on a terrestrial eco-
system, uncertainties in climate projections enter the analy-
sis. These include uncertainties in estimates of future 
emissions due to human activities (human or scenario 
uncertainty) (Stott and Kettleborough 2002), the ability 
of the atmosphere–ocean general circulation models 
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(AOGCMs), or global climate models, to simulate the 
response of the climate system to human forcings (struc-
tural and parametric uncertainty) (Andrews et  al. 2012), 
and uncertainties in the methods and/or models used to 
translate large-scale change into high-resolution projec-
tions (downscaling uncertainty) (Gutiérrez et  al. 2012, 
Gutmann et al. 2014). The latter is the focus of this study.

Application of biogeochemical models to assess cli-
mate change impacts on forest ecosystems necessitates 
inputs of high-resolution simulated climatic variables 
covering a historical and future time period. Due to their 
coarse resolution (typically ~1–2° in latitude and longi-
tude) and recognized biases in the absolute values of 
temperature and precipitation, direct AOGCM projec-
tions are usually inadequate to assess climate change 
impacts on small watersheds, particularly in complex 
mountainous terrain that may be affected by highly 
localized topography and weather patterns. Often, sta-
tistical techniques have been applied to downscale coarse 
resolution AOGCM output to a finer spatial resolution, 
matching long-term observations (Hayhoe et  al. 2004, 
2007, 2008, Stoner et al. 2012). Numerous studies have 
evaluated the effect of different statistical downscaling 
techniques on hydrological model output (e.g., Chen 
et al. 2011, 2013, Liu et al. 2011, Gutmann et al. 2014), 
but we are not aware of previous studies that have con-
sidered the influence of different downscaling techniques 
on productivity and biogeochemical processes of for-
ested watershed ecosystems or the effects of the choice 
of observations for training downscaling models.

We assessed the effects of three different downscaling 
methods and two sets of observations, which were used 
to train those techniques, on simulations of hydrology, 
water quality, and forest growth under potential future 
changing climate using a forest biogeochemical watershed 
model (PnET-BGC). Previous work has shown that 
PnET-BGC simulations are relatively sensitive to 
changes in meteorological inputs (temperature, precipita-
tion, and photosynthetically active radiation [PAR]; 
(Pourmokhtarian et al. 2012). The goals of this study were 
to: (1) evaluate variability in climate change projections 
associated with the application of different downscaling 
techniques and sets of observations, which were used to 
train those techniques; (2) assess this variability in the 
context of other sources of variability in climate projec-
tions (i.e., AOGCM variability, scenario variability); and 
(3) quantify the implications of this variability in simula-
tions of the response of a forest ecosystem in montane 
terrain to future climate change. PnET-BGC was applied 
at an intensively studied northern hardwood forest water-
shed at the Hubbard Brook Experimental Forest (HBEF) 
in New Hampshire, USA to characterize the sensitivity 
of projected climate change impacts resulting from the 
downscaling approach selected and the observations used 
for training, and to compare the magnitude of this vari-
ability to other sources of climate projection variability. 
This analysis improves understanding of the strengths and 
limitations of common statistical downscaling techniques 

and selected data set for training, and helps guide the 
application of biogeochemical watershed models in 
climate change research.

Methods

Site description

This study was conducted using long-term data from 
a relatively undisturbed reference watershed (watershed 
6) at the Hubbard Brook Experimental Forest (HBEF) 
in the White Mountains of New Hampshire, USA 
(43°56′ N, 71°45′ W) (Likens and Bormann 1995). The 
HBEF was established as a center for hydrological 
research in 1955 by the U.S. Forest Service, and joined 
the National Science Foundation Long-Term Ecological 
Research (LTER) network in 1987. The HBEF (http://
www.hubbardbrook.org/data/dataset_search.php) has 
one of the longest and most extensive records on mete-
orology, hydrology, and biogeochemistry in the U.S. 
(Likens and Bormann 1995, Campbell et al. 2011). The 
climate is cool-temperate, humid continental, with an 
annual mean precipitation of ~1400 mm that is distrib-
uted evenly over the year. Watershed 6 is 0.13 km2 and 
has complex terrain with an elevation range of 549–
792  m. Soils are largely well-drained Spodosols, with 
bedrock at an average depth of 1–2  m. Vegetation is 
mostly northern hardwoods (Johnson et  al. 2000). A 
detailed description of the site and long-term monitoring 
program is provided by Likens and Bormann (1995).

Ecosystem model PnET-BGC

PnET-BGC is a deterministic forest-soil-water model 
that simulates energy, water, and element fluxes at the 
small watershed scale. PnET-BGC has been used to 
assess climate change impacts on northern hardwood 
forests (Campbell et  al. 2009, 2011, Wu and Driscoll 
2009, Pourmokhtarian et al. 2012) as well as atmospheric 
deposition and land disturbance on soil and surface 
waters across northern forest ecosystems (Chen and 
Driscoll 2005). The model was developed by linking a 
water, carbon, and nitrogen model (PnET-CN) (Aber 
and Driscoll 1997, Aber et al. 1997) to a biogeochemical 
(BGC; Gbondo-Tugbawa et al. 2001) sub-model, which 
enables the simultaneous simulation of major biotic and 
abiotic processes of major elements (Ca2+, Mg2+, K+, 
Na+, C, N, P, S, Si, Al3+, Cl−, and F−) (Gbondo-
Tugbawa et  al. 2001). Climatic inputs to the model 
include meteorological data (PAR, precipitation, maxi-
mum and minimum temperature), atmospheric CO2 
concentration, and atmospheric deposition (wet and 
dry). PAR was derived from solar radiation with the 
method described by Aber and Freuder (2000). A 
detailed description of model inputs and parameters are 
provided by Aber and Driscoll (1997), Aber et al. (1997), 
and Gbondo-Tugbawa et al. (2001), including a sensitiv-
ity analysis of parameters. A monthly time-step was used 
for model simulations. The model spin-up period started 
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at the year 1000 in order for the soil and vegetation 
pools to reach steady state. Methods for reconstruction 
of historical (hindcast) meteorological values are pro-
vided by Aber and Federer (1992), and Driscoll et  al. 
(2001). The atmospheric deposition for 2012–2100 was 
assumed to not change from current conditions (business 
as usual). The dry-to-wet deposition ratios were assumed 
to be constant during the entire simulation period (Yanai 
et  al. 2013) and wet deposition inputs are from the 
National Atmospheric Deposition Program (NADP) 
station (NH02) at the HBEF. Note that for these simula-
tions we did not consider the effects of potential CO2 
on forest vegetation (Curtis et al. 1995, Lewis et al. 1996, 
Saxe et  al. 1998, Ellsworth 1999, Ainsworth and Long 
2005). Pourmokhtarian et al. 2012 used PnET-BGC to 
model the effects of atmospheric CO2 on forest produc-
tivity, hydrology, and water quality. Although invoking 
CO2 effects in this study would change the absolute 
forest ecosystem response under each climate change 
scenario, the relative differences within the ensembles of 
simulations would be similar; therefore, the findings of 
this study are independent of CO2 effects.

Climate scenarios and models

The magnitude of future climate change depends on 
human emissions of CO2 and other greenhouse gases. 
These in turn depend on a broad range of social, tech-
nological, and economic factors that affect energy use. 
To capture the range of plausible future scenarios, we 
compared projected climate change under the Intergovern
mental Panel on Climate Change (IPCC-AR4) Special 
Report on Emissions Scenarios (SRES) higher (A1fi, or 
fossil-intensive) vs. the lower (B1) emissions scenarios 
(Nakicenovic et  al. 2000). Under the higher scenario, 
atmospheric CO2 levels reach nearly 970 ppm by 2100, 
while under the lower scenario, CO2 concentrations sta-
bilize around 550  ppm by 2100. Since the time of the 
analyses in this study, the more recent IPCC-AR5 sce-
narios have become available; however, use of these data 
would not affect the outcome since this work evaluates 
the influence of the downscaling techniques on forest 
ecosystem responses, rather than the scenarios used.

These scenarios were used as inputs to four AOGCMs: 
the Community Climate System Model version 3 (CCSM3) 
from the National Center for Atmospheric Research 
(NCAR) (Collins et al. 2006), the U.K. Meteorological 
Office Hadley Centre Coupled Model, version 3 (HadCM3) 
(Pope et  al. 2000), the U.S. Department of Energy/
National Center for Atmospheric Research Parallel 
Climate Model (PCM) (Washington et al. 2000), and the 
U.S. National Oceanographic and Atmospheric Adminis
tration/Geophysical Fluid Dynamics Laboratory (GFDL) 
model CM2.1 (Delworth et  al. 2006). These AOGCMs 
were selected to provide a plausible range across AOGCMs 
with different climate sensitivities. We used output from 
each of the four AOGCMs corresponding to the fossil 
fuel-intensive, high-end A1fi scenario, as well as the 

resource-efficient, low-end B1 scenario, as described in 
the Special Report on Emissions Scenarios (SRES) 
(Nakicenovic et al. 2000). In total, eight scenarios were 
developed for this application (two emissions scenarios 
applied to four AOGCMs), which cover the upper and 
lower range of values for future climate projections.

Downscaling approaches

Atmosphere–ocean general circulation models output 
for four daily variables (maximum and minimum tem-
perature, precipitation, and solar radiation converted to 
PAR) were statistically downscaled using three methods 
in order to translate coarse-scale projections down to 
the small watershed-scale. Statistical downscaling 
accomplishes this translation by combining past obser-
vations with AOGCM simulations of  historical condi-
tions to calibrate a statistical model at the local scale. 
Historical observations can consist of  individual station-
based time series, specific to a certain weather station, 
or processed observations that have been interpolated 
onto a regular grid (e.g., Maurer et al. 2002). The sta-
tistical model “trains” a relationship between observed 
climate and model output to correct for biases in the 
climate model (Hayhoe et  al. 2008). The relationship 
between AOGCM output and measured climate varia-
bles is then used to downscale future AOGCM outputs 
to the same scale (grid or weather station). The resulting 
time series is intended to match the statistics for the 
simulated historical output with observed climate over 
a relatively long period (at least 20 yr). Individual days 
or years do not match observations, as downscaled pro-
jections are based on AOGCM simulations, which are 
not constrained to match observed natural variability, 
but rather are allowed to develop their own patterns of 
variability based on initial conditions when the model 
simulation begins, typically prior to 1900 (NECIA, 2006, 
Hayhoe et al. 2008). Statistical downscaling is based on 
the assumption that the relationships between large and 
small scale processes remain constant over time. 
Although this assumption of constant relationship over 
time has been shown to vary by downscaling method 
and by quantile (Hayhoe et al. 2012), the statistical tech-
nique has a substantial time and cost benefit over 
dynamical downscaling and therefore is often more prac-
tical (Hayhoe et al. 2008). In this study we focused on 
statistical downscaling methods, rather than dynamical, 
because of  their widespread use in ecological applica-
tions. Here, we compared results of  forest biogeochemi-
cal model simulations using three different statistical 
downscaling approaches: the delta method (or the 
change factor method); monthly quantile mapping (Bias 
Correction-Spatial Disaggregation, or BCSD); and daily 
quantile regression (Asynchronous Regional Regression 
Model, or ARRM). Each method was trained on two 
sets of  observations: interpolated gridded observations 
at a scale of 1/8º and individual weather station records. 
In total, we developed 48 runs (four AOGCMs, two 
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emissions scenarios, three downscaling methods, and 
two sets of  observations).

The delta method is relatively simple and therefore 
widely used (e.g., in the U.S. Global Change Research 
Program National Assessment; USGCRP, 2001). The two 
main underlying assumptions for the delta method are: 
changes in climate occur only over large areas, compara-
ble to the size of the AOGCM grid cell or larger, and 
existing relationships between climate variables will 
remain constant in the future (Hay et al. 2000). Therefore 
AOGCM accuracy in simulating changes in climate vari-
ables over the grid cell dictate the “delta” method output 
(Hay et al. 2000). The difference of the means between a 
future period and a historical period is calculated for an 
AOGCM simulation. This change or “delta” is added to 
observed mean monthly values to create future projections 
(Hay et al. 2000). Therefore the exact shape of the monthly 
distributions is retained, and the values are shifted by 
“delta” (for precipitation, the delta value is multiplicative 
rather than additive). Consequently, although the delta 
method is easy to compute, it is more limiting than other 
approaches because it does not account for changes in 
the frequency of extreme events (Hay et  al. 2000) and 
assumes that AOGCMs are more reliable in simulating 
relative change than absolute change (Hay et al. 2000).

The BCSD is a relatively simple and commonly used 
method based on an empirical statistical technique 
known as quantile mapping, whereby probability density 
functions (PDFs) for modeled monthly temperature, 
precipitation, and solar radiation for a period of time 
(in this application, 1960–1999 for the ensemble members 
using gridded observations and 1964–2011 for ensemble 
members using station observations) are mapped by 
quantile onto historical observations (Maurer et al. 2002) 
(e.g., 90th percentile of historical AOGCMs are mapped 
on 90th percentile of historical observations) to create 
simulated monthly temperature and precipitation projec-
tions (Maurer and Hidalgo 2008). Monthly projections 
are disaggregated to the daily scale by sampling from 
observed months and scaling those daily values by the 
difference between the observed and simulated monthly 
mean (Maurer and Hidalgo 2008). The BCSD technique 
was originally developed to downscale ensemble climate 
model forecasts as input to a macro-scale hydrologic 
model, the Variable Infiltration Capacity (VIC) model, 
to simulate streamflow at spatial and temporal scales 
appropriate for large-scale water management (Wood 
et al. 2002). Following successful applications of the VIC 
model to forecast hydrological responses to climate change 
(e.g., Liang et  al. 1994, Hamlet and Lettenmaier 1999, 
Wood et al. 2002, VanRheenen et al. 2004), the 1/8° grid, 
known as VIC grid, has become popular among hydrolo-
gists and climate scientists. A more detailed description of 
the BCSD downscaling method is provided by Hayhoe 
et  al. (2004, 2007, 2008); Northeast Climate Impact 
Assessment (NECIA) (2006); and Campbell et al. (2011).

The ARRM is a more complex statistical method 
that uses quantile regression to determine relationships 

between two quantities which have approximately nor-
mal distributions. These quantiles do not have temporal 
correspondence, but are expected to have similar statisti-
cal properties such as mean and variance (O’Brien et al. 
2001). Although daily observations and daily AOGCM 
simulations do not have temporal correspondence, over 
climatological timescales (a minimum of 20  yr) they 
should theoretically have similar probability distribu-
tions for the historical period if the AOGCM simulates 
the climate effectively. However since this is not always 
the case, a downscaling model can be used to correct 
major dissimilarities. Assuming stationarity between 
observations and the AOGCM, simulations for the 
future require the same amount of correction for each 
quantile as historical periods. In ARRM, daily historical 
observations and AOGCM simulations are sorted by 
month, reordered by rank, and transformed into a near-
normal distribution if necessary (e.g., wet-day precipita-
tion is transformed using a log function). An independent 
piecewise linear regression is then derived for each 
month (Stoner et  al. 2012) and used to correct future 
AOGCM output to match site-specific conditions in the 
future. The relationship between measured values and 
AOGCM simulations is improved further by additional 
steps such as pre-filtering the AOGCM output by prin-
cipal component analysis (PCA) to remove low-level 
noise (meaning very small portions of the variability that 
do not contribute to the signal or trend in the data; 
(Jackson 2004), spatially interpolating the AOGCM 
observations to the scale of the observations, and includ-
ing information generated by the climate models for 
convective and large-scale precipitation (Stoner et  al. 
2012). A more detailed description of the ARRM 
method is provided by Stoner et al. (2012). The ARRM 
model has been used to generate gridded projections for 
the entire U.S. as used in The Third U.S. National 
Climate Assessment (Melillo et  al. 2014), as well as 
station-based projections for individual climate impact 
studies for Chicago (Illinois, USA), Mobile (Alabama, 
USA), the state of Delaware (USA), and other locations 
(e.g., Hayhoe et al. 2010, 2014, U.S. DOT, 2012).

Observations used in training the downscaling method

The training component of the downscaling approach 
using station data was performed with observations 
obtained directly from the Hubbard Brook Experimental 
Forest (HBEF) weather stations: meteorological station 
1 for maximum and minimum temperature, watershed 
6 for precipitation (areal weighting of three precipitation 
collectors located in the vicinity of the watershed), and 
the HBEF headquarters building for solar radiation. The 
training period is based on available data for the histori-
cal period, which was 1964–2011 for temperature and 
precipitation variables, and 1959–2011 for solar radia-
tion. A detailed description of the instrumentation and 
methods used to collect these data are presented in Bailey 
et  al. (2003). Temperature and precipitation data for 
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1950–1999 from Maurer et  al. 2002, which is observa-
tional data that has been interpolated to a 1/8° rectan-
gular grid, were used to train the downscaling model for 
the gridded versions of the downscaled output. Solar 
radiation (http://maps.nrel.gov/prospector) grid-scale 
downscaling was trained on daily averaged hourly solar 
radiation from 1998–2009, for the center of a 10-km grid 
cell from the National Renewable Energy Laboratory.

Statistical tests

A Fisher’s Least Significant Difference (LSD) test was 
used to determine statistically significant differences 
(α  level of 0.05) in modeled streamflow, net primary 
productivity (NPP), and nitrate for each downscaling 
method/emissions scenario (e.g., ARRM-A1fi) over the 
three future periods (2011–2040, 2041–2070, and 2071–
2100). The same statistical method was used to deter-
mine statistically significant differences among all six 
combinations of downscaling approaches/emissions sce-
nario (ARRM-A1fi, ARRM-B1, Delta-A1fi, Delta-B1, 
BCSD-A1fi, and BCSD-B1) within each time period 
(e.g., 2011–2040). For each time period, an analysis of 
variance (ANOVA; α level of 0.05) and eta squared (η2) 
effect size were performed for each downscaling method 
and emissions scenario (e.g., BCSD-A1fi and BCSD-B1 
over 2071–2100). Similarly, for each time period, 
ANOVA (α = 0.05) and eta squared (η2) effect size were 
also applied to each downscaling technique for different 
sets of observations (e.g., ARRM-A1fi grid based [VIC] 
vs. ARRM-A1fi station based over 2011–2040).

Results

Observations used in training the downscaling method

We had two a priori expectations for these analyses. 
First, since both the individual station and gridded data 
are based on observations, we expected a relatively high 
correspondence between values at the daily time scale. 
Secondly, we anticipated that interpolation over a grid 
would smooth topographical features that might pro-
duce more extreme conditions (warmer or colder tem-
peratures, higher rainfall amounts) at any given location 
within a grid cell as compared to a given station that 
falls inside that cell. Hence, the mean values of the 
station-based observations could be offset relative to the 
gridded values, and furthermore, the variance or 
extremes of the station-based observations would likely 
be greater than those for the entire grid cell.

Monthly and seasonal means and standard deviations 
(SDs) are shown in Table 1 for both data sets over the 
same historical period (1964–2000 for maximum and 
minimum temperature and precipitation and 1998–2009 
for solar radiation). The maximum temperature for grid-
ded observations compared to station-based values is 
higher over both monthly and seasonal time scales, while 
the minimum temperature is higher for station-based 
observations. The SDs for both maximum and minimum T
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temperature are similar, indicating that both data sets 
have similar variability across months and seasons. The 
mean and SD of precipitation values for station-based 
observations are higher compared to gridded values. The 
observed gridded solar radiation data are greater com-
pared to station-based, although the variability in both 
sets of observations is similar.

To further test these comparisons, we performed a 
regression analysis between observations from the 
~10 km2 grid cell located over the HBEF stations and the 
station observations (Fig. 1). Observations from the grid 
cell on the x-axis were compared with station observations 
on the y-axis for (Fig.  1a) maximum temperature (°C), 
(Fig. 1b) minimum temperature (°C), and (Fig. 1c) pre-
cipitation (mm). There was a strong correlation for both 
maximum and minimum temperature (r = 0.91; β = 0.94; 
SE = 0.003; P < 0.001 and r = 0.90; β = 0.96; SE = 0.003; 
P < 0.001, respectively). Maximum temperature shows a 
slight offset from the 1:1 line, which indicates that the 
station values are slightly cooler than the value for the 
entire grid cell. For minimum temperature, the values for 
the station are consistently slightly warmer than the grid 
cell values, suggesting that a local topographical influence 
(e.g., south-facing aspect) causes the station to be warmer 
than its surroundings within the 1/8° grid cell. The rela-
tionship for precipitation was not as strong (r  =  0.68; 
β  =  1.33; SE  =  0.008; P  <  0.001), suggesting that the 
relationship between precipitation amounts over the 
entire grid is not consistently correlated with the amount 
of precipitation falling at the station. This result is not 
surprising in an area with complex topography, but it 
does have important implications for the observations 
used to represent the hydrology of the small watershed. 
In addition, station-based precipitation amounts were 
generally greater than the grid-based values, especially for 
extreme events (Fig. 1c). Again, this pattern was expected, 
as spatial averaging has a tendency to smooth out local 
extremes. This result is illustrated by comparing time 
series of precipitation from the station-based observations 
(red) and the grid cell (blue) (Fig. 2).

It appears that using gridded vs. station-based obser-
vations results in little effect on mean maximum tem-
peratures, slightly cooler mean minimum temperatures, 
and slightly damped daily extreme values of tempera-
ture. However, it has a profound effect on precipitation 
by altering the day-to-day distribution of precipitation 
as well as quantity. Therefore, there may be substantial 
differences in precipitation between the spatial average 
and an individual watershed location.

Future climate projections

Statistically downscaled AOGCM temperature projec-
tions for the HBEF, using all combinations (i.e., 
AOGCM, emissions scenario, downscaling method, 
training data set), indicated increases above the mean 

Fig.  1.  Regression analysis between measured (a) 
maximum temperature (°C), (b) minimum temperature (°C) at 
HBEF station #1, and (c) measured precipitation (mm) at the 
Hubbard Brook Experimental Forest (HBEF; New 
Hampshire, USA) watershed (WS) #6 and values for the 
variable infiltration capacity (VIC) grid over the period 1964–
2000.
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long-term annual measured air temperature of 5.7°C, 
ranging from +0.6°C to +4.9°C by the end of the century 
under the BCSD-VIC-B1 and Delta-A1fi, respectively 
(Table  2; VIC refers to gridded data). The choice of 
emissions scenario (higher A1fi vs. lower B1) and set of 
observations used for training the downscaling model 
had nearly equivalent impact on projected changes in 
temperature. The projected changes in temperature using 
station-based observations were higher compared to 
grid-based projections across all downscaling methods 
and emissions scenarios. The higher emissions scenario 
(A1fi) showed greater increases in temperature compared 
to the lower emissions scenario (B1). Differences due to 
downscaling technique were not significant (i.e., ARRM-
A1fi, Delta-A1fi, and BCSD-A1fi projected changes are 
similar). These results are consistent with Hayhoe et al. 
(2012), who found that different statistical downscaling 
models produce nearly identical changes in mean 
temperature.

The projected changes in precipitation were much 
more variable, ranging from a 243  mm decrease to a 
327 mm increase above the long-term annual measured 
mean of 1440 mm (Table 1). The choice of training data 
for downscaling had a large impact on future projections 
of precipitation. Here, station-based projected changes 
in annual precipitation for all combinations of ARRM, 
delta, and BCSD were significantly greater than grid-
based projections. Station-based projections for all 
downscaling methods projected increases in precipita-
tion, in contrast to the consistent decreases for grid-
based downscaling. The station-based projections also 
showed higher mean precipitation, and more frequent 
extreme rainfall events during summer and fall compared 
to grid-based values. This pattern might be expected, 
considering downscaling trained on the station observa-
tions has higher mean precipitation and higher 

precipitation extremes compared with the gridded obser-
vations. The impact of emissions scenarios on future 
projections of precipitation was not pronounced with 
the exception of ARRM.

Projections of PAR were highly variable and indicated 
both increases and decreases ranging from −52 to 
41  mmol·m−2·s−1 compared to the long-term annual 
mean PAR of 566 mmol·m−2·s−1 (Table 2). The changes 
in PAR were small though (9% decrease to 7% increase) 
and there was no pattern of change associated with the 
choice of downscaling method, set of observations, and 
emissions scenario.

Hydrology

When projected changes in temperature, precipitation, 
and solar radiation were used as input to PnET-BGC, 
simulations for all combinations (i.e., AOGCM, emissions 
scenario, downscaling method, training data set) indicate 
future changes in the timing of streamflow compared to 
the historical period (1981–2010), consistent with previ-
ous analyses (Campbell et  al. 2011, Pourmokhtarian 
et  al. 2012). All projections show that the current dis-
charge regime of snowmelt-driven spring-flows that peak 
in April will likely shift to larger fall/winter streamflows 
under changing climate. In contrast to changes in the 
timing of streamflow, future projections of the overall 
amount of annual streamflow vary significantly depend-
ing on the AOGCM, downscaling method and training 
data used.

The 30-yr means (± SD) of projected annual stream-
flow for four AOGCMs with two emissions scenarios 
(A1fi and B1) using three downscaling methods and 
both  sets of training observations are shown in Fig.  3. 

Fig.  2.  Comparison of time series for measured monthly 
precipitation at the HBEF WS#6 and VIC grid (mm) over the 
period 1964–2000.

Table 2.  Summary of projected changes in mean annual tem-
perature, precipitation, and PAR for three statistical downs-
caling techniques, two emissions scenarios, and two sets of 
training observations. 

Downscaling/
emissions

Temperature 
(°C)

Precipitation  
(mm)

PAR 
(mmol·m−2·s−1)

ARRM-A1fi 4.7 (5.0) 327 (135) 8.3 (7.3)
ARRM-B1 2.3 (4.9) 168 (114) 25.2 (10.4)
ARRM-VIC-A1fi 3.1 (6.1) −163 (70) −32.1 (13.8)
ARRM-VIC-B1 0.7 (6.3) −236 (75) −2.5 (12.1)
Delta-A1fi 4.9 (4.6) 233 (234) −62.7 (49.7)
Delta-B1 2.5 (4.7) 192 (231) −37.6 (52.2)
Delta-VIC-A1fi 3.3 (6.1) −218 (173) 40.0 (21.4)
Delta-VIC-B1 0.8 (6.2) −243 (169) 41.0 (21.5)
BCSD-A1fi 4.8 (4.4) 173 (109) −51.8 (9.6)
BCSD-B1 2.3 (4.7) 198 (102) −19.6 (12.7)
BCSD-VIC-A1fi 3.0 (6.1) −218 (92) −51.3 (11.9)
BCSD-VIC-B1 0.6 (6.3) −195 (84) −20.4 (15.3)

Notes: Each value shows the difference between the average 
of four AOGCMs for the period of 2070–2100 and the mean of 
measured values for the reference period of 1970–2000. Values 
in parentheses represent SD.
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Fig. 3.  Future projections of mean (± standard deviation; SD) annual streamflow over three 30-yr periods for three downscaling 
techniques and two sets of observations used for downscaling training. Lowercase letters shows the result of the Fisher’s least 
significance difference (LSD) test with 95% confidence intervals for each downscaling method/emissions scenario (e.g., ARRM-
A1fi) over the three projected time periods (2011–2040, 2041–2070, and 2071–2100). Uppercase letters indicates the Fisher’s LSD 
results with 95% confidence interval among all six combinations (ARRM-A1fi, ARRM-B1, Delta-A1fi, Delta-B1, BCSD-A1fi, and 
BCSD-B1) within each time period (e.g., 2011–2040). The asterisk indicates significant differences (α  =  0.05) determined with 
analysis of variance (ANOVA) between two emissions scenarios (A1fi and B1) at each time period for each downscaling method 
(e.g., BCSD-A1fi and BCSD-B1 over 2071–2100) (Table 2). Hatching indicates significant ANOVA test (α = 0.05) between different 
sets of observations (grid vs. station) for each downscaling technique at similar time step (e.g., ARRM-A1fi grid based vs. ARRM-
A1fi station based over 2011–2040) (Table 3). The notations and symbols are the same for Figs. 4 and 5; net primary production 
(NPP) and streamwater nitrate, respectively.
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Streamflow results using three downscaling methods 
were not statistically different over each time period, 
although toward the end of 21st century some statistical 
differences emerged without any specific pattern.

Compared to gridded training observations, use of 
station-based observations led to higher annual stream-
flow for all downscaling techniques under all emissions 
scenarios as well as higher SDs across all AOGCMs. 
Results indicated that the choice of emissions scenario 
(A1fi or B1) had the smallest effect size on future 
projected annual streamflow and differences were only 
significant for BCSD downscaling (Fig. 3, Tables 3 and 
Appendix S1: Table S1). Sets of training observations 
used for downscaling had the greatest effect size on pro-
jected annual streamflow compared to emissions sce-
narios and downscaling method (Tables 4 and Appendix 
S1: Table S2). The combination of different downscaling 
techniques, sets of training observations, and emissions 
scenarios showed a wide range of projected future annual 
water yield, ranging from a decrease of 342 mm per year 
to an increase of 122 mm, averaged across all AOGCMs. 
Projected changes in mean annual streamflow under 
BCSD showed greater variability, expressed as normal-
ized projected percentage changes (SD divided by mean), 
when using grid-based observations compared to station-
based (Appendix S1: Table  S3). Patterns for the delta 
method and ARRM differed, in that projected variabili-
ties were higher under the high emissions scenario (A1fi) 
compared to the low emissions scenario (B1) across all 
downscaling methods over the later two periods.

Model simulations using grid-based observations, pro-
jected lower flows during the summer (July–September) 
and higher flows in winter (January–March) compared 
to the historical period. The station-based simulations 

projected higher flows compared to grid-based during 
the early winter and spring snowmelt, as well as summer. 
Model projections under both sets of observations 
showed an increase in future streamflow in late fall 
(October–December) and early winter, consistent with 
warmer air temperatures, less snow pack accumulation, 
and a decrease in the ratio of snow to rain. The use of 
station-based training observations led to a deeper snow-
pack and associated greater snowmelt-derived stream-
flow compared to grid-based observations.

Future model projections (i.e., 2011–2040, 2041–2070, 
2071–2100) of soil moisture indicated a decline com-
pared to 1981–2010 values (Appendix S1: Figure S1A). 
Soil moisture projections using station-based observa-
tions were higher than those derived with gridded obser-
vations (Appendix S1: Figure  S1B). Model projections 
showed that under all simulations, decreases in soil mois-
ture started earlier in the spring (April–June) due to 
earlier loss of snowpack, and wet-up occurred later into 
the fall. This phenomenon was more pronounced under 
the grid-based simulations.

Net primary productivity (NPP)

Future model projections of NPP using station-based 
observations were significantly greater than grid-based 
for all downscaling techniques (Fig. 4, Table 4). Model 
simulations using grid-based observations showed a 
decline in annual NPP for all downscaling methods. 
Simulations for ARRM-B1 and BCSD-B1 using grid-
based observations remained relatively constant and 
there was no statistically significant difference over time. 
Results under ARRM-A1fi for grid-based showed sta-
tistically significant differences only for the 2011–2040 

Table 3.  Summary of effect size for analysis of variance (ANOVA) between two emissions scenarios (A1fi and B1) for combina-
tions of three downscaling techniques and two sets of observations over three 30-yr periods and throughout the century for 
stream discharge, net primary production (NPP), and stream water NO3

− concentrations. 

Time, by state variable ARRM ARRM-VIC Delta Delta-VIC BCSD BCSD-VIC

Stream discharge
  2011–2040 0.00 0.00 0.00 0.01 0.01 0.01
  2041–2070 0.00 0.04 0.01 0.03 0.05 0.09
  2071–2100 0.04 0.00 0.01 0.02 0.15 0.12
  2011–2100 0.00 0.00 0.01 0.01 0.05 0.05
NPP
  2011–2040 0.00 0.01 0.00 0.00 0.03 0.00
  2041–2070 0.06 0.05 0.00 0.00 0.31 0.08
  2071–2100 0.02 0.00 0.10 0.01 0.01 0.12
  2011–2100 0.00 0.01 0.01 0.00 0.03 0.00
Stream nitrate
  2011–2040 0.12 0.04 0.02 0.00 0.13 0.01
  2041–2070 0.65 0.53 0.12 0.56 0.78 0.52
  2071–2100 0.61 0.70 0.14 0.61 0.78 0.82
  2011–2100 0.42 0.22 0.07 0.18 0.55 0.24

Notes: Values less than 0.01 are considered as small effect, values above 0.06 are medium effect, and values greater than 0.13 are 
large effect size. Values above 0.13 mean choice of emissions scenarios has a significant effect on the results for a selected state 
variable over the same time period.
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and 2071–2100 periods and BCSD-A1fi only showed a 
significant difference over the later future period (2071–
2100) compared to the two earlier future periods (2011–
2040 and 2041–2070). The delta method under both 
emissions scenarios showed a statistically significant dif-
ference only for the 2011–2040 and 2041–2070 periods. 

The Fisher’s LSD test results indicated that the most 
significant difference under different grid-based downs-
caling techniques and emissions scenarios occurs over 
2071–2100 (Fig.  4a). The future projected NPP using 
station observations were significantly greater than grid-
based projections for all downscaling methods, and the 

Fig.  4.  Future projections of mean (± SD) net primary production (NPP) over three 30-yr periods for three downscaling 
techniques and two sets of observations used for downscaling training.
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effect size of station-based training data was large (>0.5) 
(Fig.  4b, Table 4, and Appendix S1: Table S2). The 
results indicated an increase in projected means and SDs 
of annual NPP for each time period compared to the 
historical period of 1981–2010 under station-based 
downscaling. The Fisher’s LSD test showed that under 
ARRM-B1 and BCSD-B1, changes in NPP throughout 
the 21st century did not differ significantly among the 
three periods. The remaining four station-based downs-
caling simulations indicated statistically significant, but 
inconsistent, changes among these three periods, with 
BCSD-A1fi exhibiting the greatest change over time 
(Fig. 4b). The choice of emissions scenario did not have 
a large effect size during 2011–2040 for all downscaling 
methods/training observations used, but showed some 
significant differences for the later time periods, espe-
cially for the BCSD method (Table 3). Model projections 
of water use efficiency (WUE) indicated a significant 
decline using the grid-based observation (data not 
shown). In contrast, the station-based downscaling simu-
lations showed higher WUE compared to grid-based 
projections for all scenarios. Overall, the set of observa-
tion used for training of the downscaling technique had 
the most profound effect on future projections of NPP, 
compared to emissions scenarios and downscaling tech-
nique. Projected changes in mean NPP under BCSD and 
ARRM showed higher variability (with the exception of 
ARRM-B1 over the 2071–2100 time period), when using 
grid-based observations compared to station-based 
(Appendix S1: Table  S3). The delta method exhibited 
the opposite trend. Across all downscaling methods, 
projected variabilities were generally higher (with a few 
exceptions under delta method) under the high emissions 
scenario (A1fi) compared to low emissions scenario (B1).

Stream nitrate

All future simulations using grid-based observations 
showed significant increases in annual volume-weighted 
NO3

− concentrations over the next century, although the 
magnitude and variability depend on the emissions sce-
nario and downscaling technique (Fig.  5a). The use of 
station-based data in projections of mean annual volume-
weighted NO3

− concentrations had a large effect size 
compared to those of the grid-based downscaled simula-
tions for all, with the exceptions of ARRM-A1fi and B1, 
BCSD-B1 over the 2011–2040 period and the Delta-B1 
over the 2041–2070 period (Table 4 and Appendix S1: 
Table S2). Nitrate simulated with the station-based obser-
vations was lower than grid-based observations (Fig. 5b). 
The Fisher’s LSD test revealed that future projections of 
streamwater NO3

− concentrations for every downscaling 
method and each training observation data set used, 
changed significantly in at least one of the 30-yr periods 
compared to the other two periods throughout the 21st 
century, with the exception of ARRM-B1 under station-
based observation downscaling. The choice of emissions 
scenario had a more pronounced impact on streamwater 
NO3

− compared to stream discharge and NPP (Table 3, 
and Appendix S1: Table S1). In most cases, the B1 sce-
narios led to lower stream NO3

− concentrations for all 
downscaling methods and observation training data set 
combinations. The exceptions were all three methods dur-
ing the 2011–2040 time period using grid-based observa-
tions and the delta method using station-based 
observations, which did not show any significant differ-
ences over the three periods (Fig.  5, Table 3 and 
Appendix S1: Table S1). Similar to water yield and NPP, 
the choice of training observation data set had the most 

Table 4.  Summary of effect size for analysis of variance (ANOVA) for two sets of observations used for three downscaling tech-
niques over three 30-yr periods and throughout the century for stream discharge, NPP, and stream water nitrate 
concentrations. 

Time, by state variable ARRM-A1fi ARRM-B1 Delta-A1fi Delta-B1 BCSD-A1fi BCSD-B1

Stream discharge
  2011–2040 0.64 0.63 0.41 0.40 0.60 0.57
  2041–2070 0.78 0.80 0.60 0.59 0.76 0.68
  2071–2100 0.77 0.80 0.60 0.60 0.73 0.79
  2011–2100 0.71 0.73 0.54 0.53 0.69 0.67
NPP
  2011–2040 0.72 0.79 0.53 0.55 0.78 0.79
  2041–2070 0.92 0.86 0.35 0.33 0.91 0.91
  2071–2100 0.84 0.90 0.47 0.31 0.87 0.91
  2011–2100 0.82 0.85 0.41 0.35 0.83 0.87
Stream nitrate
  2011–2040 0.03 0.05 0.14 0.11 0.00 0.15
  2041–2070 0.54 0.63 0.18 0.00 0.47 0.68
  2071–2100 0.79 0.87 0.70 0.34 0.83 0.91
  2011–2100 0.29 0.43 0.11 0.02 0.26 0.54

Notes: Values less than 0.01 are considered as small effect, values above 0.06 are medium effect, and values greater than 0.13 are 
large effect size. Values above 0.13 indicates using different sets of observations has a significant effect on the results for a selected 
state variable over the same time period.
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significant impact on future projections of streamwater 
NO3

− concentrations.
The selection of observation data set used for down-

scale training had the smallest impact on stream NO3
− 

during the 2011–2040 period, and became more significant 

over the last two periods. The Fisher’s LSD test showed 
that over each period the choice of training observation 
had a more significant impact on stream NO3

− concen-
trations compared to streamflow and NPP (Fig.  5). 
Projected changes in streamwater NO3

− concentrations 

Fig.  5.  Future projections of mean (± SD) annual streamwater NO3
− concentrations over three 30-yr periods for three 

downscaling techniques and two sets of observations used for downscaling training.
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under the delta method showed lower variability using 
grid-based observations compared to station-based 
(Appendix S1: Table S3). The BCSD and ARRM meth-
ods had an opposite pattern, with the exception of the 
2071–2100 time period and for ARRM-B1 over 2041–
2070. Across all downscaling methods, projected varia-
bilities were higher (with the exception of Delta-VIC over 
2011–2040) under the low emissions scenario (B1) com-
pared to high emissions scenario (A1fi).

Discussion

Future climate projections

Overall, average temperature projections under the 
three downscaling techniques were similar for a given 
emissions scenario. This pattern was expected, as there 
is generally a good match between the gridded observa-
tions and HBEF station measurements of temperature. 
However, projected increases in temperature using 
station-based observations had a tendency to be higher 
than grid-based. This difference is likely due to not only 
the mean, but also the shape of the daily distribution of 
temperature, which is projected to shift toward higher 
temperatures in the future, with extreme high tempera-
ture days becoming relatively more frequent compared 
to the same quantile in the past, regardless of the mean 
value. Since there is generally a good match between 
sets of grid observations and HBEF station measure-
ments of temperature, overall, temperature projections 
under the three downscaling techniques were relatively 
similar compared to precipitation projections. The 
station-based projections of precipitation were signifi-
cantly higher than grid-based values, which affected 
modeled streamflow.

Streamflow forecasting

There is a strong relation between precipitation and 
streamflow at the HBEF (Campbell et  al. 2011) there-
fore, not surprisingly the modeled streamflow was sensi-
tive to differences in precipitation associated with the 
downscaling method and observations used to train that 
method. Streamflow modeled with station-based train-
ing data was significantly higher than that generated 
using grid-based data for BCSD and ARRM. This dif-
ference is attributed to differences in the precipitation 
observations that were used for training the three down-
scaling techniques. Daily precipitation for watershed 6 
(0.13 km2) at the HBEF is calculated with the Theissen 
weighting method based on three rain gauges located 
along an elevational transect in the vicinity of the water-
shed. In contrast, grid-based downscaling uses a regional 
retrospective gridded observational database to train the 
downscaling model. Measured temperature and precipi-
tation for a 1/8° grid cell (~10 km2) are not from a single 
station, but rather are statistical interpolations among 
multiple stations, not all of which are necessarily in the 
grid cell of interest. Therefore, in a relatively small 

watershed in a mountainous region like watershed 6 at 
the HBEF, measurements of precipitation from on-site 
stations would be more representative of actual precipi-
tation compared to values for the entire 1/8° grid. Note 
that a comparison of observations (graph not shown) 
by rank showed that the biases are rank- and not time-
dependent. High precipitation amounts at the HBEF are 
always underestimated by the VIC grid regardless of the 
day they occur, presumably because precipitation is 
influenced by elevation, and the elevation for the entire 
grid is lower than the elevation for the site.

For the gridded projections, the annual discharge 
decreased under all simulations, due to the projected 
higher temperature and associated increase in evapo-
transpiration, coupled with the fact that the gridded 
observations underestimated historical (and therefore 
future) local precipitation patterns and extreme events. 
In contrast, with station-based downscaling, model 
simulations showed an increase in annual streamflow. 
This projected increase in streamflow occurs because the 
station, on which station-based downscaling is trained, 
better captures the magnitude of extreme events and 
local precipitation. As a result, the use of station-based 
observations more accurately depicts changes in the 
daily distribution of average and extreme events, result-
ing in significantly greater streamflow than grid-based 
observations. Extreme events are important in assess-
ment of climate change impacts. There is a growing body 
of literature that focuses on climate variability, changes 
in return period, and the intensity of extreme events 
rather than “soft” extremes (Klein Tank and Können 
2003), which are typically in the 90–95th percentile 
(Fowler et al. 2007). Changes in precipitation variability 
and extreme events have a strong impact on the hydro-
logical cycle. Model simulations of future stream dis-
charge indicate the increased importance of individual 
storms during summer and fall due to more frequent 
and intense extreme rainfall. Therefore, use of a station-
based downscaling approach that is more capable of 
resolving daily extremes (e.g., ARRM), had a profound 
effect on modeled forest hydrological responses. ARRM 
is able to capture simulated changes in large precipita-
tion events on a daily basis, by accurately resolving the 
relationship at the tails of the distribution (Stoner et al. 
2012). Although this method is not useful if trained on 
grid-based observations, in which case it produces results 
that are similar to BCSD and the delta method. These 
results highlight the need to correctly characterize the 
quantity and distribution of future precipitation for 
accurate streamflow forecasting.

Forest growth and biomass

Projected increases in precipitation and associated 
higher soil moisture and WUE under station-based 
downscaling resulted in increased tree growth compared 
to grid-based. In PnET-BGC, the length of growing 
season is determined by the minimum temperature, while 
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the maximum temperature affects photosynthesis and 
respiration. The difference between maximum and mini-
mum temperatures determines vapor pressure deficit 
(VPD), which affects the WUE. In the absence of water 
stress, projected future forest growth should be higher 
than 20th century values due to the warmer, wetter cli-
mate and a longer growing season. An increase in both 
maximum and minimum temperature results in a longer 
growing season and higher VPD, causing water stress 
that offsets the enhancement of tree growth to some 
extent. Repeated water stress and drought during the 
growing season, results in decreases in projected 
maximum leaf area index, decreasing NPP. Increasing 
temperature can increase forest growth in two ways: by 
increasing the number of days with optimum photosyn-
thetic temperature, or by alleviating N limitation 
through higher rates of soil N mineralization. However, 
the extent of these effects is limited by precipitation 
quantity and the seasonal pattern in soil moisture. This 
example illustrates the important interplay between pro-
jections of changing temperature and precipitation and 
their effects on the growth of the Northern Forest.

Nutrient export from watersheds

The export of elements from forested watersheds is 
strongly influenced by stream discharge (Likens and 
Bormann 1995), therefore future changes in the hydro-
logical cycle, especially the seasonality and quantity of 
discharge, will likely affect water quality and nutrient 
loss. Soils at the HBEF have low base saturation and 
are sensitive to inputs of strong acid anions (Driscoll 
et al. 2001). Therefore, projections of elevated leaching 
of NO3

− could re-acidify soil and stream water in acid-
sensitive regions that have been impacted by acid deposi-
tion like the HBEF (Driscoll et  al. 2003). Moreover, 
elevated export of NO3

− from forest lands could alter 
the nutrient status of adjacent N-growth limited coastal 
waters (Driscoll et  al. 2003). The simulated decline in 
soil moisture induced mid-summer drought stress on 
vegetation, which could decouple the linkage between soil 
and vegetation. Midsummer droughts and water stress 
decreases N uptake by trees and increases N availability, 
which leads to elevated loss of NO3

− (Pourmokhtarian 
et al. 2012). For model runs using station-based down-
scaling, plant WUE increased and midsummer drought 
did not occur to the same extent as with grid-based 
simulations. Under station-based simulations, higher pre-
cipitation and associated increases in soil moisture and 
WUE offset the effect of higher temperatures, thereby 
minimizing future NO3

− loss. In PnET-BGC, the decom-
position rate of soil organic matter increases exponen-
tially with increases in temperature, but increases linearly 
with increasing soil moisture. Therefore, under station-
based downscaled scenarios of higher projected soil 
moisture and temperature, it might be anticipated that 
NO3

− leaching would exceed projections compared to the 
grid-based approach. However, the absence of midsummer 

drought and water stress due to higher precipitation, 
allowed plant demand for N to keep pace with the rate 
of soil N mineralization. As a result, the assimilation of 
the additional N produced under warmer temperatures, 
limited NO3

− leaching. Nevertheless under the A1fi sce-
nario during the second and third periods evaluated, the 
optimum temperature for photosynthesis is exceeded 
under all downscaling techniques, resulting in similar 
NO3

− leaching. Seasonal patterns of annual N export 
varied with the downscaling technique and sets of obser-
vations used; with grid-based training data, elevated con-
centrations were projected in fall and with station-based, 
NO3

− peaked during winter and spring snowmelt.
The ARRM method uses all the information provided 

by AOGCMs regarding projected changes in day-to-day 
variability and allows the shape of the probability dis-
tribution to change over time, shifting the mean, vari-
ance, and even the skewness (symmetry) of the 
distribution (Stoner et  al. 2012). In contrast, the delta 
method derives the shape of the daily distribution from 
historical observations and therefore does not simulate 
projected changes in the shape of the distribution that 
affect the variance, compared with the historical period. 
We expected that these differences for delta compared 
to BCSD and ARRM would result in different projected 
biogeochemical responses, but interestingly, the differ-
ences were not as profound as expected and the selection 
of the set of observations used to train the downscaling 
method had a greater influence on the results.

Quantifying variabilities

Our study quantified different sources of variability 
in climate change projections, including AOGCMs, 
emissions scenarios, downscaling techniques, data used 
for training downscaling models, and quantified the 
manifestation of these variabilities in projected responses 
of a forest ecosystem in a montane terrain (Figs.  3–5, 
Table 2, and Appendix S1: Table S2). Our findings indi-
cate that there is large variability across different 
AOGCMs. This variability demonstrates the importance 
of using multiple AOGCMs in climate impact assess-
ments in order to capture a plausible range of responses. 
Additionally, a comparison of variability between two 
different emissions scenarios showed the profound 
effects of how policy choices on controlling future green-
house gases influences forested ecosystems. Surprisingly, 
our analysis showed limited differences among the three 
downscaling approaches. The similarity in results from 
different downscaling techniques is likely due to the 
monthly time step considered (Hayhoe 2010). If the time 
step was at a finer interval (e.g., daily), differences in 
downscaling methods would have likely been more evi-
dent, especially for extreme events. This work did illus-
trate that the set of observations used for downscaling 
training can significantly impact variability in projected 
ecosystem responses to future climate change, particularly 
for precipitation in mountainous landscapes.
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Implications

This study provides new insights into the selection of 
statistical downscaling techniques and appropriate 
observations for “training” those techniques. It also 
introduces new sets of uncertainties beyond those gener-
ally associated with models used for climate change 
impact assessments in small forested watersheds. The 
choice of observational data compared to downscaling 
method had a much more profound effect on hydrology, 
which in turn affected forest growth and stream chem-
istry. These projected changes were directly related to 
the ability of the downscaling technique to mimic 
observed precipitation, emphasizing the need for careful 
selection of observations for “training” the downscaling 
technique at a scale that appropriately suits the scale 
and topography of watershed, as well as selection of a 
downscaling method that appropriately captures aspects 
of the distribution that contribute to observed impacts. 
In developing climate projections for small watersheds, 
particularly in areas with complex, mountainous terrain, 
it is important to use a downscaling technique that relies 
on measurements from the station within the watershed 
boundaries that can resolve projected changes at the 
sub-monthly scale. These measurements capture the 
actual variability of meteorological conditions for that 
watershed which improves the ability of the downscaling 
process (including both model and observations) to 
mimic the local climate patterns.

The findings of this study may be applicable to other 
ecosystems and modeling studies that use downscaled 
climatic input to project future climate change impacts. 
However, results may differ for larger basins because 
climate data from a single station may not adequately 
represent broad regions. At larger spatial scales, grid-
based climate data may be preferable to station-based 
data. Grid-based data may also be suitable in flatter 
terrains, where climate is more uniform. When using 
grid-based data at the small basin scale, if weather sta-
tions are not located within or in close proximity to the 
study area, care should be taken to ensure that the grid-
ded data represent the study area reasonably well. This 
is particularly important for precipitation, because 
smoothing within the grid cell tends to misrepresent 
extremes and underestimate volume.
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