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Inferences for forest-related spatial problems can be enhanced using remote sensing-based maps con-
structed with nearest neighbours techniques. The non-parametric k-nearest neighbours (k-NN) technique cal-
culates predictions as linear combinations of observations for sample units that are nearest in a space of
auxiliary variables to population units for which predictions are desired. Implementations of k-NN require four
choices: a distance or similarity metric, the specific auxiliary variables to be used with the metric, the number
of nearest neighbours, and a scheme for weighting the nearest neighbours. The study objective was to com-
pare optimized k-NN configurations with respect to confidence intervals for airborne laser scanning-assisted
estimates of mean volume or biomass per unit area for study areas in Norway, Italy, and the USA. Novel fea-
tures of the study include a new neighbour weighting scheme, a statistically rigorous method for selecting
feature variables, simultaneous optimization with respect to all four k-NN implementation choices and com-
parisons based on confidence intervals for population means. The primary conclusions were that optimization
greatly increased the precision of estimates and that the results of optimization were similar for the k-NN con-
figurations considered. Together, these two conclusions suggest that optimization itself is more important
than the particular k-NN configuration that is optimized.

Introduction
For forest-related spatial problems, the ultimate objective is often
an inference in the form of a confidence interval for a population
parameter. Prime examples are strategic forest resource assess-
ments conducted by national forest inventories (NFI) that require
confidence intervals for large suites of variables including most
prominently forest area and growing stock volume (Tomppo
et al., 2010). Such inferences can be enhanced using spatial pre-
dictions in the form of remote sensing-based maps as auxiliary
information. Nearest neighbours techniques are non-parametric,
multivariate approaches to spatial prediction. Population unit pre-
dictions are calculated as linear combinations of observations for
sample units that are nearest or most similar in a space of auxil-
iary variables to units for which predictions are desired. Nearest
neighbours techniques have received considerable attention for
mapping and areal estimation of forest attributes, particularly
when used with forest inventory and remotely sensed data.
Chirici et al. (2016b) documented more than 250 forestry applica-
tions for more than 25 countries on 6 continents.

McRoberts (2012) reviewed multiple factors that contribute
to the appeal of nearest neighbours techniques including use
with both continuous and categorical response variables, use
for both univariate and multivariate prediction, and lack of dis-
tributional assumptions. In addition, recent advances have
included both guidance and examples for the use of these tech-
niques for inference rather than just prediction.

Most efforts to optimize nearest neighbour algorithms have
focused on prediction accuracy and the distance metric. For pre-
dicting forest stand attributes using auxiliary variables obtained
from aerial photography, LeMay and Temesgen (2005) reported
that a metric based on canonical correlation analysis was
superior with respect to prediction accuracy than the Euclidean
and Manhattan distance metrics. For predicting forest attributes
from Landsat-based variables, Chirici et al. (2008) reported that
distance metrics giving greater weights to reference units
whose response variable observations were closer to the mean
of the observations were superior to Euclidean, Mahalanobis
and two other metrics. Latifi et al. (2010) compared Euclidean,
Mahalanobis, canonical correlation analysis and Random Forest
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distance metrics for predicting forest volume and biomass using
lidar, Landsat and aerial image data. The results were mixed
with different metrics producing more optimal results for differ-
ent response variables. Gagliasso et al. (2014) compared dis-
tance metrics based on canonical correlation analysis and
canonical correspondence analysis (Ohmann and Gregory,
2002), and reported that the former metric produced smaller
values of root mean square error when predicting biomass and
basal area from lidar data. Packalén et al. (2012) reported the
most comprehensive comparative analysis of k-nearest neighbours
(k-NN) distance metrics. Their analyses included comparisons of
results for distance metrics based on canonical correlation ana-
lysis, Random Forest and simulated annealing using all feature
variables and, in addition, selected subsets of feature variables.
Their primary conclusions were that the metric based on simulated
annealing with a selected subset of feature variables produced the
greatest accuracy and specifically that use of selected subsets pro-
duced greater accuracy than use of all feature variables. The only
general conclusion that can be drawn from all these studies is
that metrics that are optimized using observations of the response
variable produce the most accurate predictions.

The number of nearest neighbours, k, is often arbitrarily
selected as k = 1 or k = 5 but may also be selected to optimize
a criterion such as root mean square error. Neighbours are often
equally weighted although they are also often weighted
inversely to the distances in feature space between units requir-
ing predictions and sample units. The number of literature
reports on optimizing k and neighbour weighting schemes is so
small that no generalizations are possible.

Implementation of a nearest neighbours algorithm requires
four choices: selection of a distance or similarity metric, selection
of the particular auxiliary variables to be used with the metric,
selection of the number of neighbours and selection of a scheme
for weighting the neighbours. No reports are known of com-
prehensive efforts to optimize a nearest neighbours configuration
by simultaneously considering all four choices. Furthermore,
although the accuracies of predictions corresponding to sample
observations are useful for optimization purposes, they are gener-
ally only an intermediate step enroute to an inference in the form
of a confidence interval for a large area inventory parameter
such as mean volume or biomass per unit area. Few authors
other than Baffetta et al. (2009, 2011), McRoberts (2012) and
McRoberts et al. (2002, 2007, 2015) have reported such infer-
ences based on k-NN predictions. The primary study objective
was to compare k-NN configurations consisting of combinations
of the four k-NN choices with respect to the widths of confidence
intervals for airborne laser scanning (ALS)-assisted estimates of
mean forest volume or biomass per unit area for large area popu-
lations such as are reported by NFIs. Data were used for three
study areas, one in Norway, one in Italy and one in the USA.

The novel features of the study are fourfold: (1) the paper
introduces the Dudani neighbour weighting scheme, which has
not previously been reported for forestry applications, (2) the
paper introduces a statistically rigorous method for selecting
feature variables, (3) the k-NN technique is optimized simultan-
eously with respect to all four choices and (4) k-NN configura-
tions are statistically rigorously compared with respect to the
ultimate estimation objective, an inferences in the form of confi-
dence intervals for large area means rather than simply predic-
tion accuracies.

Data
Hedmark County, Norway
The 1259-km2 study area in the municipalities of Åmot and
Stor-Elvdal in Hedmark County, Norway, is dominated by
Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus
sylvestris L.). Field measurements were acquired for 250-m2

Norwegian NFI field plots located at the intersections of a 3-km
× 3-km grid (Tomter et al., 2010). Data for 145 plots measured
within 1 year of the ALS acquisition dates were used for this
study. Thus, the study area was defined as the geographic area
represented by the portion of the Latin Square sampling design
inventoried by the Norwegian NFI between 2005 and 2007
(Figure 1). Plot locations were determined using global position-
ing system (GPS) receivers with accuracies on the order of
0.05m. All plot trees with diameters at-breast-height (dbh,
1.3m) of at least 5 cm were callipered. For each tree, stem vol-
ume to the top of the tree including bark was predicted using
species-specific volume models with dbh and either measured
or predicted height (ht) as predictor variables (Braastad, 1966;
Brantseg, 1967; Vestjordet, 1967). Volume predictions for indi-
vidual trees were added to produce plot-level predictions, which
were then scaled to a per unit area basis (m3 ha–1).

Wall-to-wall ALS data were acquired between 15 July 2006
and 12 September 2006 with average point density of 0.7 pulses
per m2. Data for only single echoes or the first of multiple
echoes were used. For each plot and population unit, ALS height
distributions were estimated for first echoes with heights greater
than 2m. Echoes with heights less than 2m were considered to
be from non-tree objects such as shrubs, grass or the ground.
For each plot and population unit, heights corresponding to
the 10th, 20th, …, 100th percentiles of the distributions were cal-
culated and denoted as h1, h2, …, h10, respectively. Canopy dens-
ities were calculated as the proportions of echoes with heights
greater than 0, 10, …, 90 per cent of the range between 2m
above ground and the 95th height percentile and were denoted
as d0, d1, …, d9, respectively (Gobakken and Næsset, 2008).
McRoberts et al. (2013) provide additional details for the data set.

Molise Region, Italy

The 363.6-km2 study area is in the southwestern part of the
Molise Region in central Italy (Figure 2). Approximately 56 per
cent of the area, or 20 518 ha, is covered by forests of which
~60 per cent is dominated by deciduous oaks (Quercus cerris L.,
Quercus pubescens Willd), ~18 per cent is dominated by hop
hornbeam (Ostrya carpinifolia Scop.) and ~9 per cent is domi-
nated by unmanaged beech (Fagus sylvatica L.) forests with
structures approaching natural, old-growth forest status. The
study area was tessellated into 437 hexagons, each with area
of 1 km2. A point was randomly selected in each hexagon and
classified as ‘forest’ or ‘non-forest’ using high-resolution aerial
ortho-photography. From the 197 points classified as forest, 62
were randomly selected and served as centres for 13-m radius
field plots. Plot centres were determined using GPS receivers
with sub-metre accuracy. For each plot, dbh (1.3m) was mea-
sured for all trees with dbh of at least 5.0 cm. Height was mea-
sured for a sub-sample of ~10 plot trees and predicted for the
remaining trees. Above ground biomass was predicted for all
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trees using national models (Tabacchi et al., 2011), added to
produce plot-level predictions and scaled to a per unit area
basis (Mg ha–1).

Wall-to-wall ALS data with mean pulse density of 1.5 pulses
per m2 were acquired in June 2010. For first or single echoes,
the ALS metrics included heights corresponding to the 10th,

20th, …, 90th, 99th percentiles of the height canopy distribution
and the maximum, average, standard deviation, coefficient of
variability, skewness and kurtosis of the distribution of echo
heights. All metrics were calculated for 23-m × 23-m cells that
mimicked the plot area of ~531m2 and that served as population
units. Chirici et al. (2016a) provide more details for the data set.

Figure 1 Hedmark study area in Norway.

Figure 2 Molise study area in Italy.
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Itasca County, Minnesota, USA

The 7583-km2 study area was located in north central
Minnesota in the USA (Figure 3), and was characterized as
~80 per cent forest land. Species compositions include upland
deciduous mixtures, pines (Pinus spp.) spruce (Picea spp.) and
balsam fir (Abies balsamea (L.) Mill.) and lowlands with spruce
(Picea spp.), tamarack (Larix laricina (Du Roi) K. Koch), white
cedar (Thuja occidentalis) and black ash (Fraxinus nigra
Marshall). Data were obtained for 115 field plots established by
the Forest Inventory and Analysis (FIA) programme of the U.S.
Forest Service (McRoberts et al., 2010). Data were restricted to
the central subplot of the four 7.32-m (24-ft) radius circular
subplots to avoid issues of spatial correlation among subplot
observations. Data were further restricted to plots measured in
2014, the only year for which GPS receivers with sub-metre
accuracy were available. Field crews measure dbh (1.37m,
4.5 ft) and ht for all trees with dbh of at least 12.7 cm (5 in).
These data were used with statistical models to predict individ-
ual tree stem volumes, which were aggregated at subplot-level
and scaled to a per unit area basis (m3 ha–1).

Wall-to-wall ALS data were acquired in April 2012 with a
nominal pulse spacing of 1.5m using Leica ALS 60 or ALS
70 sensors. The average flying height above ground was 2100–
2300m, the field of view was 40°, and the vertical accuracy
was 11–15 cm. Ground returns were classified by the provider
and used to construct a digital terrain model via interpolation
using the Tiffs (Toolbox for Lidar Data Filtering and Forest
Studies) software (Chen, 2007). Distributions of all first and

single echo heights were constructed for the 168.3-m2 plots
and 169-m2 square cells that tessellated the study area. For
each plot and cell, the mean, standard deviation, skewness and
kurtosis of the distributions were calculated as was quadratic
mean height (Lefsky et al., 1999; Chen et al., 2012). In addition,
heights corresponding to the 10th, 20th, …, 100th percentiles of
the distributions were calculated, and canopy densities were
calculated as the proportions of echoes with heights greater
than 0, 10, …, 90 per cent of the range between 1.3m above
ground and the 95th height percentile (Gobakken and Næsset,
2008).

Nearest neighbours techniques
Terminology and notation
For notational purposes, Y denotes a possibly multivariate vec-
tor of response variables observed for a sample, and X denotes
a vector of auxiliary variables with observations for the entire
population. In the terminology of nearest neighbours techni-
ques, the auxiliary variables are designated feature variables;
the space defined by the feature variables is designated the fea-
ture space; the sample of population units for which observa-
tions of both response and feature variables are available is
designated the reference set with size denoted n; and the set of
population units for which predictions of response variables are
desired is designated the target set with size denoted N.

Figure 3 Itasca study area in Minnesota, USA.
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For continuous response variables such as forest volume and
biomass, the nearest neighbours prediction, ŷi, for the ith target
unit is calculated as,

∑ˆ = ( )
=

y w y , 1i
j

k

ij j
i

1

where { = }y j k, 1, 2, .. ,j
i is the set of response variable obser-

vations for the k reference units that are most similar or nearest
to the ith target unit in feature space with respect to a distance
metric, d, and wij is the weight assigned to the jth nearest
neighbour with ∑ == w 1.j

k
ij1

Distance metrics

Many familiar nearest neighbours distance metrics can be
expressed in matrix form as,

( ) ( )= − − ( )
′

d XX XX MM XX XX , 2ij i j i j

where i denotes a target unit for which a prediction is desired,
j denotes a reference unit, Xi and Xj are vectors of observations of
feature variables and M is a square, positive semi-definite matrix. A
recent study conducted under the auspices of Action FP1001 of the
European programme Cooperation in Science in Technology (COST,
2015) identified the Euclidean metric, the Mahalanobis metric and
the canonical correlation analysis metric (Section 3.2.4) as the
most frequently used metrics (Chirici et al., 2016b). These three dis-
tance metrics, including a weighted variation of the Euclidean met-
ric, were investigated for this study.

Euclidean distance metric

With the Euclidean distance metric (EUCL), the M matrix
from equation (2) is the identity matrix, I, and distance is
expressed as

( ) ( )= − − ( )
′

d XX XX II XX XX . 3ij i j i j

The EUCL metric is the simplest, most intuitive, and probably
the most frequently used metric.

Weighted Euclidean distance metric

The weighted Euclidean distance metric (WEUCL) is similar to
the EUCL metric, except M from equation (2) is a diagonal, non-
identity matrix, D, and distance is expressed as

( ) ( )= − − ( )
′

d XX XX DD XX XX . 4ij i j i j

Optimization of the metric entails selection of optimal values for
the matrix diagonal elements and can be computationally
intensive, even for relatively small numbers of feature variables.

Genetic algorithms (GAs) have emerged as an increasingly use-
ful technique for optimizing selection of the diagonal elements of
the D matrix. GAs are search heuristics that mimic natural selec-
tion to solve optimization problems (Holland, 1975). The process is
iterative and starts from a population of randomly generated indi-
viduals with the population in each iteration called a generation.

In each generation, an individual in the population consists of a
set of diagonal elements for the D matrix. Individuals are evalu-
ated with respect to their fitness, which, for k-NN applications, is
typically a criterion related to the sum of squared errors for con-
tinuous response variables. Each subsequent generation consists
of the individuals from the previous generation that are character-
ized as more fit relative to a selected criterion. These individuals
are modified by combining and randomly mutating to produce
new individuals. The new generation of individuals is then used in
the next iteration of the algorithm. The algorithm terminates
when either a maximum number of generations has been pro-
duced or a satisfactory fitness level has been reached for at least
one individual in the population. For this study, GAs were used to
optimize only the WEUCL metric. Tomppo and Halme (2004),
Tomppo et al. (2009), Holopainen et al. (2010) and McRoberts
(2012, 2015) all used GAs to select diagonal elements as a means
of optimizing the WEUCL distance metric, and McRoberts (2008)
and Latifi et al. (2010) used GAs to select feature variables.

Mahalanobis distance metric

With the Mahalanobis distance metric (MAHA), M, from equa-
tion (2) is the inverse of the feature variable covariance matrix, V,
and distance is expressed as

( ) ( )= − − ( )
′ −d XX XX VV XX XX , 5ij i j i j

1

(Mahalanobis, 1936). The MAHA metric is often used for com-
parison purposes, but seldom is selected as the optimal metric
for forestry applications (Maltamo et al., 2003; Latifi et al., 2010;
Ver Hoef and Temesgen, 2013).

Canonical correlation analysis distance metric

With the canonical correlation analysis distance metric (CCA), a
system of linear models is solved to obtain estimates of coeffi-
cient vectors, α and β, that maximize the correlation between

α α= ⋅ + ⋅⋅⋅ + ⋅U Y Yp p1 1 and β β= ⋅ + ⋅⋅⋅ + ⋅V X Xq q1 1 where Yj
denotes the jth response variable, Xj denotes the jth feature variable,
and p and q are the numbers of response and feature variables,
respectively. The solutions are obtained using canonical decomposi-
tions for which the eigenvectors, also designated canonical correl-
ation coefficients, are denoted Γ, and the corresponding
eigenvalues, also designated canonical correlations, are denoted λ.
Feature space distances with this metric are expressed as

( ) ( )Γ Λ Γ= − ′ − ( )
′

d X X X X , 6ij i j i j
2

where the elements of the diagonal matrix, Λ, are the squares,
λ2, of the canonical correlations.

The CCA metric assumes a linear relationship between each
of the response variables and the feature variables. The user has
no control over the α and β vectors, and although the β vector is
of little consequence, the α vector may not combine the
response variables in a relevant manner. The metric was first pro-
posed for nearest neighbours applications by Moeur and Stage
(1995) who used only a single neighbour and characterized the
combination of the CCA metric and k = 1 as the ‘Most Similar
Neighbour’ technique (LeMay and Temesgen, 2005). However,
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the metric has also been used with multiple neighbours
(Maltamo et al., 2003, 2009; Packalén and Maltamo, 2007).

Feature variable selection

When considering nearest neighbours distance metrics, two fea-
ture space properties are particularly relevant. The first property,
characterized by Bellman (1961) as the ‘curse of dimensional-
ity’, is that the multi-dimensional size of feature space increases
exponentially as the number of feature variables increases
linearly. Three important detrimental consequences follow:
(1) nearest neighbours are at greater distances from target
units (Schaal et al., 1998); (2) the distance to the nearest neigh-
bour approaches the distance to the farthest neighbour (Beyer
et al., 1998) and (3) extrapolations beyond the ranges of the
feature variables in the reference set are more probable
(McRoberts, 2009). McRoberts et al. (2015) showed that when
using ALS data to predict above ground biomass, and presum-
ably also related response variables such as forest volume, the
effects of the first two consequences are not severe. The second
property is that inclusion of feature variables that are unrelated
to the response variables has detrimental effects. Langley and
Iba (1993) and Blum and Langley (1997) characterized such fea-
ture variables as ‘irrelevant’. Irrelevant feature variables introduce
randomness into distance calculations and contribute to selec-
tion of spurious neighbours and less accurate predictions. Thus,
optimization of nearest neighbours distance metrics should focus
on simultaneously eliminating irrelevant feature variables and
weighting feature variables in proportion to their relevance.

Neighbour weighting

Inverse distance weighting

The most common approach to weighting neighbours when cal-
culating k-NN predictions is to weight neighbours inversely pro-
portionally to a power of the distance, dij, between the ith target
unit and the jth reference unit,

= ( )
−

w
d

W
, 7ij

ij
t

where = ∑ =
−W dj

k
ij
t

1 and t ≥ 0. Commonly, t = 0, t = 1 or t = 2 is
arbitrarily selected where t = 0 corresponds to weighting all
neighbours equally. For this study, the special case of t = 0 is
characterized as ‘c-weighting’, whereas weighting schemes cor-
responding to t > 0 are characterized as ‘t-weighting’. Other
than McRoberts (2012), McRoberts et al. (2015) and Wilson et al.
(2012), no reports of attempts to optimize the selection of t are
known. For small numbers of feature variables and/or large ref-
erence sets, dij = 0 may occur in which case equation (7) leads
to computational errors. For this study, if dij = 0 for j = 1, …, k,
then all distances are arbitrarily reset to 1, i.e., dij = 1 for all
neighbours. If dij = 0 for j = 1, ..., k′ where k′ < k, then all
0-distances are arbitrarily reset to half of the smallest non-zero
distance, i.e.,

= ( )′+d
d
2

, 8ij
ik 1

for j = 1, ..., k′.

Dudani weighting

Dudani (1976) proposed a weighting scheme that bases the
weight for the jth neighbour on the ratio of two distances, the
distance between the jth and kth neighbours and the distance
between the first and the kth neighbours. Because this scheme
gives 0 weight to the kth neighbour, it was modified for this
study by using the k + 1st neighbour instead of the kth neighbour
to,

( )) (
=

− −
( )

+ +
w

d d d d

W
, 9ij

ik ij ik i1 1 1

where = ∑ (( − ) ( − ))= + +W d d d d/j
k

ik ij ik i1 1 1 1 . For notational pur-
poses, this metric is characterized as ‘d-weighting’. With the
formulation of equation (9), calculation of weights for k neigh-
bours requires distances for k + 1 neighbours. For small num-
bers of feature variables and/or large reference sets, dik′ = dik+1
for k′ < k + 1 may occur in which case, wij = 0 for j = k′,…, k.
For this study, if di1 = dik+1, then all distances are reset to 1, i.e.,
dij = 1 for all neighbours. If dik′ = dik+1 for j = k′,…, k where
1 < k′< k + 1, then all such distances are reset to the mean of
the k + 1st distance and the greatest distance that differs from
the k + 1st distance,

= + ( )′− +d
d d

2
, 10ij

ik ik1 1

for j = k′,…, k. For example, suppose k = 5 and the six smallest
distances for the ith target unit are di1 = 1, di2 = 2, di3 = 3,
di4 = 5, di5 = 5 and di6 = 5. Using only equation (9), the weights
for the fourth and fifth neighbours would be wi4 = wi5 = 0, which
would exclude the observations from the fourth and fifth neigh-
bours when calculating the k-NN prediction. However, by apply-
ing equation (10), the fourth and fifth distances are reset to
di4 = di5 = 4.0 with the result that W = 2.75 and wi1 = 0.364,
wi2 = 0.272, wi3 = 0.182, wi4 = 0.091 and wi5 = 0.091.

Number of nearest neighbours, k

The value of k may be selected to optimize multiple criteria
either individually or in combination. The relevant factors in
selecting k are threefold: (1) small values of k are generally pre-
ferred as a means of reducing complexity and computational
intensity, (2) small values may yield root mean square errors
that are greater than the standard deviations of the response
variable observations, meaning that the response variable
mean over all reference set observations when used as a pre-
diction for every target unit would better maximize accuracy
than the k-NN predictions and (3) large values of k, tend to pro-
duce overestimation for small observations and underestima-
tion for large observations. McRoberts (2012) reviews additional
issues related to selection of k. For many reported applications,
the value of k has been arbitrarily selected as k = 1 or k = 5
based on values reported elsewhere in the literature. The
rationale for such decisions is uncertain, if not confusing, at
least without assessing the consequences; for example, if a
regression model was used, parameter estimates reported
elsewhere in the literature would certainly not be arbitrarily
selected for a new application that used the same model form
and predictor variables.
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Analyses
Optimization
For each distance metric, the value of k, and the value of t for
the t-weighting scheme that minimized the sum of squared
residuals, SSres, were determined using leave-one-out cross val-
idation (Elisseeff and Pontil, 2002) for each combination of each
number of feature variables, m, beginning with m = 1. For each
value of m, the combination of feature variables with the smal-
lest SSres was selected. In addition, beginning with m = 3,
three F-tests were conducted: (1) SSmres was compared with

−SSmres 1, (2) −SSmres 1 was compared with −SSmres 2 and (3) SSmres was
compared with −SSmres 2. For each test, the statistic was calculated as

= ( − ) ( − )
( − )

( )F
m m

n m
SS SS /

SS /
, 11

m m

m
res res 2 1

res 2

1 2

2

where m1 and m2 are the smaller and larger number of feature
variables, respectively. The second and third tests were con-
ducted because for several combinations of data sets, metrics
and weighting schemes, the first test corresponding to inclusion
of a single new feature variable indicated no decrease in SSres,
but inclusion of a second new feature variable did produce a
decrease in SSres. If all three tests failed to exceed the critical
value corresponding to α = 0.01, the combination with m – 2
feature variables was selected, and no combinations with greater
numbers of feature variables were considered. Issues related to
significance level and the α = 0.01 significance level in particular
are addressed in the Appendix 1. Although feature variable selec-
tion was based on SSres, results are reported using a pseudo-R2

denoted and calculated as

= − ( )⁎R
SS SS

SS
. 122 mean res

mean

A stepwise variable selection procedure is an alternative to
considering all possible combinations of each number of feature
variables. However, stepwise algorithms are known to perform
poorly when the feature variables are strongly correlated
(Harrell, 2001, pp. 64–65). For this study, preliminary investiga-
tions produced decidedly sub-optimal results when using step-
wise procedures, presumably because of the strong correlations
among the ALS height and density metrics used as feature
variables.

Arbitrary selections

Many implementations of nearest neighbours techniques fea-
ture arbitrary selections of k and t, often using all feature vari-
ables. For example, the popular Most Similar Neighbour variation
of k-NN uses the CCA metric and k = 1 with no attempt to opti-
mize other than the optimization that is inherent in the metric
(Moeur and Stage, 1995). A reasonable question pertains to the
degree of sub-optimality that results from such arbitrary selec-
tions. As a second example, metrics that incorporate feature
variable weighting such as the WEUCL and CCA metrics theoret-
ically circumvent the necessity of selecting feature variables
because they assign negligible weights to irrelevant variables.
Thus, a second reasonable question pertains to the degree to
which this potential is realized when using these metrics. To

address these issues, estimates of means and standard errors
for common arbitrary selections of k and t using the WEUCL and
CCA metrics were compared with estimates and standard errors
for optimized configurations.

Multiple neighbours at the kth distance

An issue related to both the value of k and the number of fea-
ture variables pertains to multiple neighbours at the same dis-
tance as the kth neighbour. For example, if k = 5 and the fifth
and sixth neighbours are at the same distance for a particular
prediction, then a decision must be made as to which of the
two neighbours to select. Often the first neighbour in the order
is selected, and any detrimental consequences are ignored.
Alternatively, both neighbours could be used or additional cri-
teria such as distance in geographical space could be introduced
(Franco-Lopez et al., 2001, Section 3.1.4; Baffetta et al., 2009,
Section 2.1). Multiple neighbours at the kth distance are more
probable with larger reference sets and smaller numbers of fea-
ture variables, and the consequences are more detrimental with
smaller values of k. For larger values of k, the effects are attenu-
ated because predictions are calculated as means over more
neighbours and because the kth neighbour receives a smaller
weight relative to the other neighbours at smaller distances.
Finally, the phenomenon is independent of the particular neigh-
bour weighting scheme used. For each data set and for selected
optimized combinations of distance metrics and neighbour
weighting schemes, the numbers of neighbours at the kth dis-
tance were determined.

Inference

For each data set, consideration was given to inferences for the
mean per unit area of the response variable expressed as,

μ μˆ ± ⋅ ( ˆ) ( )t SE , 13

where μ̂ is the estimate of the mean, μ μ( ˆ) = ˆ ( ˆ)SE Var is the
standard error of μ̂ and t depends on the desired significance
level and the distribution of the response variable. Because t = 2
produces an ~95 per cent confidence interval for most distribu-
tions and applications, two-SE confidence intervals were used
for this study. Any uncertainty resulting from using a model to
predict individual tree volume or biomass was considered negli-
gible relative to the variances of estimators of the large area
population mean (McRoberts and Westfall, 2014).

Simple random sampling estimators

For equal probability samples, the simple random sampling
(SRS) estimator of the mean is,

∑μ̂ = ( )
=n
y

1 , 14
i

n

iSRS
1

where n is the reference set size, i indexes the reference units
(plots) and yi is the reference unit observation. The estimator of
the variance of μ̂SRS is,
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( )∑μ μˆ ( ˆ ) =
⋅( − )

− ˆ ( )
=n n

yVar 1
1

. 15
i

n

iSRS
1

SRS
2

Of importance the SRS estimators use no auxiliary information.
For systematic samples, as used for this study, the SRS variance
estimator may have a slight positive bias (Särndal et al., 1992,
p. 83). However, Aune-Lundberg and Strand (2014) concluded
that the SRS estimators are still a safe and conservative choice.
The primary advantages of the SRS estimators are that they are
intuitive and unbiased, but the disadvantage is that variances
may be large, particularly for small sample sizes and/or large
within-population variability.

Model-assisted regression estimators

Model-assisted regression estimators use models based on aux-
iliary data to enhance inferences but rely on the probability
sample for validity (Särndal et al., 1992; Särndal, 2011). A ‘syn-
thetic’ estimator of the mean is formulated as

∑μ̂ = ˆ ( )
=N
y

1 , 16
i

N

iSyn
1

where N is the target set (population) size and ŷi is the k-NN
prediction for the ith target unit. Any systematic prediction errors
induce bias into this estimator, which for equal probability sam-
ples can be estimated as

( ) ∑μ εˆ ˆ = ( )
=n

Bias 1 , 17
i

n

iSyn
1

where ε = ˆ −y yi i i. The model-assisted, generalized regression
(GREG) estimator is then defined as

( )μ μ μˆ = ˆ − ˆ ˆBiasGREG Syn Syn

( )∑ ∑= ˆ − ˆ − ( )
= =N
y

n
y y

1 1 , 18
i

N

i
i

n

i i
1 1

with variance estimator,

∑μ ε εˆ ( ˆ ) =
( − )

( − ¯) ( )
=n n

Var 1
1

, 19
i

n

iGREG
1

2

where ε ε¯ = ( ) ∑ =n1/ i
n

i1 (Särndal et al., 1992). Despite the label
characterizing the estimator, prediction techniques other than
regression can be used (Breidt and Opsomer, 2000, 2009; Zheng
and Little, 2004; Lehtonen et al., 2005; Särndal, 2007). The
degree to which the auxiliary information increases precision
and thereby shortens the confidence interval is often calculated
using relative efficiency,

μ
μ

=
ˆ ( ˆ )

ˆ ( ˆ )
( )RE

Var
Var

. 20SRS

GREG

The primary advantage of the GREG estimators is that they
capitalize on the relationship between the reference set obser-
vations and their corresponding predictions to reduce the vari-
ance of the estimate of the population mean.

Comparisons

Estimates of population means and their SEs and corresponding
two-SE confidence intervals were compared for k-NN configura-
tions consisting of all combinations of the three data sets, the
WEUL and CCA metrics, and the t- and d-weighting schemes.
For these analyses, optimization consisted of selecting optimal
subsets of feature variables, optimal values of k and for the
t-weighting scheme, optimal values of t. Neither the EUCL and
MAHA metrics nor the c-weighting scheme were used for these
analyses because the WEUCL and CCA metrics were deemed
preferable for reasons noted in the following sections. For all
three data sets, estimated means and SEs for the optimized
WEUCL and t-weighting configuration were compared with esti-
mates obtained using the EUCL metric with arbitrary choices for
t and k. Similarly, for all three data sets, estimated means and
SEs for the optimized CCA and d-weighting configuration were
compared with estimates obtained using the same metric and
neighbour weighting scheme with arbitrary choices for k. For the
latter two sets of analyses, arbitrary choices for k were k = 1
and k = 5 and arbitrary choices for t when using t-weighting
were t = 0, t = 1 and t = 2.

Results and discussion
Software
Appendix 2 briefly describes the software constructed for imple-
mentation of the k-NN technique for this study.

Feature variable selection

Methods for selecting feature variables entailed considering all
combinations of all numbers of feature variables until reduc-
tions in SSres failed to exceed selected threshold values. For the
MAHA metric, and to a lesser degree for the CCA metric, mul-
tiple combinations of larger numbers of feature variables pro-
duced matrices that were not positive definite and, therefore,
could not be inverted as is required for these metrics. This result
is attributed to large correlations between some pairs of the
ALS metrics. This phenomenon suggests that the MAHA metric,
and to some extent the CCA metric, may not be appropriate
when feature variables are highly correlated.

Selection of numbers and combinations of feature variables
also entailed using successive F-tests to accommodate the
possibility of gradual and significant reductions in SSres that
could not be detected with single F-tests for consecutive num-
bers of feature variables. The technique generally performed as
anticipated.

Prediction accuracy

Distance metrics

Overall, the primary results of optimization with respect to pre-
diction accuracy were twofold. First, optimization for the
WEUCL, MAHA and CCA metrics produced slightly greater accur-
acies as assessed by R2* than the EUCL metric (Table 1). This
result was as expected because the three former metrics all fea-
ture greater potential for optimization. Second, optimization for
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the WEUCL and CCA metrics produced accuracies that were
generally similar to each other.

Optimization for the WEUCL, MAHA and CCA metrics produced
R2* values in the range 0.79–0.85 for all three data sets. Relative
to R2* values for the EUCL metric, R2* values for the three former
metrics represented increase in the range 0.00–0.04 for the
Molise and Itasca data sets but 0.08–0.12 for the Hedmark data
set. These small ranges indicate that optimization of the WEUCL,
MAHA and CCA metrics via selection of feature variables, k, and
weighting scheme produced comparable results.

Although optimization produced similar R2* values, each of
the WEUCL, MAHA and CCA metrics has disadvantages. For the
WEUCL metric, optimization can be computationally intensive,
particularly with large reference sets and large numbers of fea-
ture variables. In particular, GA optimization is unrealistic, if not
impossible, for very large numbers of feature variables. As noted
in the literature review, supervised metrics that are optimized
using observations of the response variable are generally more
accurate than unsupervised metrics. In this context, the WEUCL
and CCA metrics are characterized as supervised, whereas the
MAHA metric is characterized as unsupervised. As previously
noted, many combinations of feature variables could not be
considered for the MAHA metric because the associated matrix
was not positive definite. In addition, the MAHA metric makes
no provision for minimizing the influence of irrelevant feature
variables as do the WEUCL and CCA metrics. The CCA metric, as
with the MAHA metric, was occasionally hampered by matrices
that were not positive definite, but not to the same degree as
for the MAHA metric and mostly for larger numbers of feature
variables than for the MAHA metric. Also, larger numbers of fea-
ture variables were selected when optimizing the CCA metric, a
result that can likely be attributed to near negligible weights
associated with mostly irrelevant feature variables that other-
wise would not have been selected. The disadvantage is that
larger numbers of feature variables mean that optimization
requires consideration of more combinations of feature vari-
ables, thereby increasing computational intensity.

Number of neighbours

Optimal values of k tended to be small, never greater than
k = 10 for all combinations of data set, metric and neighbour
weighting scheme. In the event of optimal values of k > 10,
smaller values would likely be used as a means of reducing
computational intensity. As graphs of optimization criteria ver-
sus k typically reveal, considerably smaller values of k often pro-
duce only slight changes in the optimization criterion (e.g.
Figure 2 in McRoberts et al., 2002; Figure 2 in McRoberts, 2012).

Neighbour weighting

The t- and d-weighting schemes produced little increase in R2*

relative to c-weighting. This result can likely be partially attribu-
ted to the relatively small values of k. Among the three neigh-
bour weighting schemes, c- and d-weighting schemes require
no optimization and are simple to implement, whereas opti-
mization of t-weighting can be computationally intensive.

Summary

Overall, based on the potential for optimization, the WEUCL and
CCA metrics are preferable to the EUCL and MAHA metrics.
In addition, based on the potential for optimization t- and
d-weighting are preferable to c-weighting. For purposes of
assessing the effects on inferences of optimizing k-NN choices
versus using all feature variables in combination with arbitrary
selections of k and neighbour weighting, only the WEUCL and
CCA metrics and only the t- and d-weighting schemes were
considered.

Inference

Estimates of population means per unit area obtained using the
SRS estimators and the GREG estimators with the optimized
WEUCL and CCA metrics were generally similar; in particular, all
GREG estimates were within two SRS SEs of the SRS estimates

Table 1 Prediction accuracies

Data set Distance metric1 c-Weighting t-Weighting d-Weighting

No. feature variables k R2* No. feature variables k t R2* No. feature variables k R2*

Hedmark EUCL 3 6 0.74 3 6 0.0 0.74 3 10 0.73
WEUCL 3 3 0.84 3 3 0.6 0.84 3 4 0.84
MAHA 4 2 0.82 6 3 0.7 0.83 4 8 0.83
CCA 7 3 0.85 7 4 0.7 0.85 7 3 0.85

Molise EUCL 3 2 0.78 3 4 1.6 0.82 2 3 0.78
WEUCL 3 2 0.80 3 4 1.6 0.82 2 4 0.78
MAHA 3 3 0.79 3 3 1.1 0.80 3 4 0.79
CCA 3 2 0.79 4 6 1.2 0.80 4 2 0.80

Itasca EUCL 5 2 0.84 4 2 0.6 0.84 4 2 0.83
WEUCL 5 2 0.85 4 2 0.4 0.85 4 2 0.84
MAHA 4 1 0.86 6 9 3.6 0.88 5 2 0.87
CCA 7 2 0.87 7 2 1.8 0.87 7 3 0.87

1EUCL, Euclidean; WEUCL, weighted Euclidean; MAHA, Mahalanobis; CCA, canonical correlation analysis.
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(Table 2). Despite similarity in estimates of means, the GREG SEs
were less than half of the SRS SEs, which indicate the utility of
the ALS auxiliary information for increasing the precision of esti-
mates of the population means. The differences in GREG and
SRS SEs are also reflected in REs, which can be interpreted as
the factor by which the sample sizes would have to be increased
to achieve the same SEs using the SRS estimators without the
ALS data as were achieved using the GREG estimators, the opti-
mized k-NN technique, and the ALS data. In particular, optimiza-
tion of the k-NN technique with both the WEUCL and CCA
metrics produced REs in the range 4.5–9.5. In addition, ratios of
squares of SEs for optimized and arbitrary choices for the WEUCL
and CCA metrics indicate that effects of optimization are equiva-
lent to increasing sample sizes by factors as great as 5.5.

Arbitrary selections

Overall, the effects of optimization versus arbitrary choices were
twofold. First, for each data set, estimates of means per unit
area for the response variables were generally similar, although
the estimates obtained using the optimal k-NN choices were
generally smaller than the estimates obtained using the arbi-
trary choices (Table 2). Second, optimization produced substan-
tially smaller SEs than arbitrary choices for k-NN selections. The
consequences of common arbitrary choices of k = 1 or k = 5;
t = 0, t = 1 or t = 2; and all feature variables for use with
the WEUCL and CCA metrics were always detrimental relative
to optimized choices. For the Hedmark data set, standard
errors for the arbitrary choices ranged from 3.74 to 5.53, but for
optimized configurations were 2.89 for both the WEUCL and
CCA metrics. For the Molise data set, standard errors for arbi-
trary choices ranged from 6.04 to 11.61, but for optimized

configurations were 5.08 for the WEUCL metric and 4.88 for the
CCA metric. For the Itasca data set, standard errors ranged
from 2.77 to 3.52 for the arbitrary choices, but for optimized
configurations were 2.41 for the WEUCL metric and 2.15 for the
CCA metric.

Two overall results relative to arbitrary choices versus opti-
mization are important. First, optimized selection of k, t and fea-
ture variables contributed to substantially more accurate
predictions and enhanced inferences in the form of shorter con-
fidence intervals. This result suggests that arbitrary choices and/
or failure to optimize will be increasingly difficult to justify. While
perhaps placing an additional burden on researchers, this result
represents continuing maturation of the k-NN technique. Second,
minimization of the detrimental effects of irrelevant feature vari-
ables theoretically possible with the WEUCL and CCA metrics was
at best only partially realized.

Multiple neighbours at the kth distance

Among the 36 combinations of data set, distance metric and
neighbour weighting scheme, the combination of the CCA met-
ric and d-weighting produced as large or nearly as large R2*

than any other combination of metric and weighting scheme
(Table 1). In addition, the combination of the CCA metric and d-
weighting was computationally easiest to implement. For all
three data sets, there were no instances of multiple neighbours
at the kth distance for forest predictions. However, for the
Hedmark data set, 11.4 per cent of non-forest predictions had
multiple neighbours at the kth distance, but in each instance ref-
erence set observations for both the kth and k + 1st neighbours
were identically zero and, therefore, the predictions were not
affected. For this study, all three reference sets were relatively
small and the numbers of optimally selected feature variables

Table 2 Confidence intervals for population means per unit area for optimal configurations

Estimator Distance metric Neighbour weighting μ̂ μ( ˆ)SE Confidence interval1 RE2

Hedmark
SRS – – 74.26 7.45 [59.36, 89.16] –

GREG WEUCL t-weighting 79.55 2.47 [74.61, 84.49] 9.36
d-weighting 80.82 2.53 [75.76, 85.88] 8.90

CCA t-weighting 77.55 2.51 [72.53, 82.57] 9.03
d-weighting 83.23 2.89 [77.45, 89.01] 7.45

Molise
SRS – – 108.23 10.94 [86.35, 130.11] –

GREG WEUCL t-weighting 111.56 4.60 [102.36, 120.76] 5.66
d-weighting 105.97 5.09 [95.79, 116.15] 4.62

CCA t-weighting 106.01 4.87 [96.27, 115.75] 5.05
d-weighting 107.58 4.88 [97.82, 117.34] 5.04

Itasca
SRS – – 50.63 5.96 [38.71, 62.55] –

GREG WEUCL t-weighting 50.51 2.35 [45.81, 55.21] 6.43
d-weighting 51.16 2.40 [46.36, 55.95] 6.16

CCA t-weighting 50.38 2.16 [46.06, 54.70] 7.64
d-weighting 54.04 2.15 [49.74, 58.34] 7.68

1Two-standard error confidence interval.
2RE = Relative efficiency.
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were relatively large, both of which minimize the probability of
multiple neighbours at the kth distance; conversely, the relatively
small optimal values of k would tend to exacerbate the effects
of the phenomenon. For other studies with reference set sizes
on the order of 1000s, small numbers of feature variables such
as often are derived from remotely sensed spectral data, and
k = 1 (e.g. Ohmann et al., 2014), results may be quite different.

Conclusions
Four conclusions were drawn from the study. First, regardless of
whether the weighted Euclidean, Mahalanobis or the canonical
correlation analysis metric was used, optimization via selection
of feature variables, k, and neighbour weighting produced gen-
erally comparable prediction accuracies and, more importantly,
comparably precise estimates of mean volume or mean bio-
mass per unit area. Furthermore, regardless of the metric, opti-
mization produced considerably greater precision than arbitrary
choices. Together, these two results suggest that the crucial
issue is optimization versus no optimization rather than the par-
ticular k-NN configuration that is optimized.

Second, despite comparable results, the weighted Euclidean
and canonical correlation analysis metrics have greater poten-
tial for optimization and are therefore preferable to the
Euclidean and Mahalanobis metrics. Among the neighbour
weighting schemes, c-weighting has little potential for optimiza-
tion relative to t- and d-weighting, but optimization of t-weighting
is computationally intensive, whereas no optimization is necessary
for d-weighting. Given the consistency of the results and the con-
siderable variety among the forest conditions represented by the
three data sets, a reasonable degree of generalization is war-
ranted for these findings. Thus, the second conclusion is that the
combination of the canonical correlation metric and d-weighting,
when optimized by selecting optimal subsets of feature variables
and optimal values of k, merits serious consideration when esti-
mating parameters related to forest volume and biomass using
ALS data as auxiliary information.

Third, despite the potential of the weighted Euclidean and
canonical correlation analysis metrics to circumvent selection of
feature variables by assigning negligible weights to irrelevant
feature variables, selections of smaller numbers of feature vari-
ables produced greater precision for estimates of population
means per unit area than use of all feature variables. This con-
clusion confirms a conclusion previously reported by Packalén
et al. (2012).

Fourth, optimization of k-NN configurations via selection of
feature variables, k, and neighbour weighting, regardless of the
distance metric, produced considerably more precise estimates
of population means per unit area than use of all feature vari-
ables and arbitrary selections of k and t. Although arbitrary
selections may be warranted under unique situations, authors
should justify any decisions not to optimize and report assess-
ments of the degree to which arbitrary selections produce sub-
optimal prediction accuracies and inferences.

For forestry applications, particularly inventory applications, the
greater prediction accuracies and corresponding smaller standard
errors achieved using optimized k-NN configurations represent sub-
stantial inferential enhancements. Relative efficiencies associated
with smaller standard errors (Table 2) are theoretically the factors

by which sample sizes can be reduced with no loss of precision
when using the combination of the ALS auxiliary data and the
k-NN technique relative to using SRS estimators with no auxiliary
data.
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Appendix

A1. Significance level for F-test
The significance level for the F-test used to select feature variables is only
approximate. First, for linear regression models, the test assumes that the
model with m–1 predictor variables is nested within the model with m
predictor variables in the sense that the set of m–1 predictor variables is
completely included in the set of m predictor variables. For k-NN

applications, this criterion is not always satisfied. For example, for the
Molise data set, none of the feature variables selected for m = 3 were
included among those selected for m = 4. Second, the leave-one-out
technique does not necessarily produce the same distributions of SSres as
would a regression model. Third, the multiple applications of the test may
require adjustment of the significance level as is done for statistical mul-
tiple comparisons analyses (Miller, 1981, Section 3.1). Nevertheless, the
approach is an automated and objective technique for selecting feature
variables.
The relatively small α = 0.01 significance level was selected rather than

larger values for three reasons: (1) to partially compensate for the strin-
gent three-test selection criterion, (2) to partially compensate for multiple
applications of the test and (3) to err on the side of selecting fewer fea-
ture variables because, as shown by McRoberts et al. (2015), with larger
numbers of feature variables less of the optimization achieved in the ref-
erence set is actually realized in the target set.

A2. k-NN software
Software for implementation of the k-NN algorithm was constructed spe-
cifically for this study to run in a generic Microsoft Windows environment.
The algorithm was coded in Fortran for three reasons: (1) experience and
familiarity, (2) availability of necessary modules and subroutines and
(3) ease of optimization. The primary components are an input/output
module, an optimization module, a distance calculation and neighbour
selection subroutine, and a criterion (sum of squared errors) evaluation
subroutine. Additional subroutines for matrix inversion and canonical cor-
respondence analysis were obtained from free Internet-based Fortran
software libraries. Because multiple aspects of the overall algorithm
including neighbour weighting schemes and distance metrics have yet to
reach sufficiently mature stages, the software is not available for distri-
bution. However, some of the features of the algorithm including the
canonical correspondence analysis distance metric, albeit not the Dudani
neighbour weighing scheme, are already available in an R-based software
package titled yaImpute (Crookston et al., 2015).
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