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Abstract
& Key message The effects on large-area volume estimates
of uncertainty in individual tree volumemodel predictions
were negligible when using simple random sampling esti-
mators for large-area estimation, but non-negligible when
using stratified estimators which reduced the effects of
sampling variability.
& Context Forest inventory estimates of tree volume for large
areas are typically calculated by adding model predictions of
volumes for individual trees at the plot level and calculating
the per unit area mean over plots. The uncertainty in the model
predictions is generally ignored with the result that the preci-
sion of the large-area volume estimate is optimistic.
& Aims The primary objective was to estimate the effects on
large-area volume estimates of volume model prediction un-
certainty due to diameter and height measurement error, pa-
rameter uncertainty, and model residual variance.
& Methods Monte Carlo simulation approaches were used
because of the complexities associated with multiple sources

of uncertainty, the non-linear nature of the models, and
heteroskedasticity.
& Results The effects of model prediction uncertainty on
large-area volume estimates of growing stock volume were
negligible when using simple random sampling estimators.
However, with stratified estimators that reduce the effects of
sampling variability, the effects of model prediction uncertain-
ty were not necessarily negligible. The adverse effects of
parameter uncertainty and residual variance were greater than
the effects of diameter and height measurement errors.
& Conclusion The uncertainty of large-area volume estimates
that do not account for model prediction uncertainty should be
regarded with caution.

Keywords Measurement error . Parameter uncertainty .

Residual variability . Stratified estimation

1 Introduction

Forest inventory andmonitoring programs predict the volume,
biomass, or carbon content of individual trees using statistical
models based on observations and measurements of tree attri-
butes such as species, diameter, and height. The individual
tree model predictions are aggregated at plot level, and plot-
level estimates are averaged over plots to produce large-area
estimates, often expressed on a per unit area basis. The uncer-
tainty in the model predictions is routinely ignored with the
result that precision estimates are erroneously optimistic.

Uncertainty in model predictions can be attributed to four
primary sources: (1) model misspecification, (2) uncertainty in
values of the independent variables, (3) uncertainty in the
model parameter estimates, and (4) residual variability around
model predictions. Model misspecification is due to the lack
of appropriate model calibration data and/or the lack of
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modeling expertise. The effects of uncertainty from this
source are not considered for this study because model
misspecification is typically not a problem for allometric vol-
ume models for which reported R2 and pseudo-R2 values are
usually greater than 0.85 (e.g., Brown et al. 1989; Chave et al.
2005;McRoberts andWestfall 2014; McRoberts et al. 2014b).
The effects of uncertainty in values of the predictor variables
have been studied extensively (Gertner and Dzialowy 1984;
Gertner 1990; Gertner and Köhl 1992; McRoberts et al. 1994;
McRoberts 1996; Kangas 1996; Westfall and Patterson 2007:
Berger et al. 2014; Qi et al. 2015), but few generalizations are
possible. Uncertainty in model parameter estimates is often
expressed by the model parameter covariance matrix, and
for a correctly specified model, residual variance is typically
estimated as root mean square error. McRoberts and Westfall
(2014) review approaches that have been used to estimate the
effects of uncertainty in model predictions on large-area esti-
mates including sampling theory (Cunia 1965, 1987; Ståhl
et al. 2014; Qi et al. 2015), Taylor series approximations
(Gertner 1990; Berger et al. 2014), and Monte Carlo simula-
tions (Gertner and Dzialowy 1984; Gertner 1987; McRoberts
1996; McRoberts and Westfall 2014; Breidenbach et al.
2014).

The overall study objective was to assess the effects of
uncertainty in allometric model predictions of individual tree
volumes on large-area, sample-based estimates of mean vol-
ume per unit area. The technical objective was to estimate the
particular effects of diameter and height measurement error,
parameter uncertainty, and model residual variance for a sin-
gle, non-specific allometric volume model. A Monte Carlo
approach was used with a model that was constructed specif-
ically for this study so that parameter uncertainty and model
residual variance could be rigorously quantified.

2 Material and Methods

2.1 Study area

The study area was Minnesota Survey Unit 1 of the Forest
Inventory and Analysis (FIA) program of the Northern Re-
search Station, US Forest Service (Fig. 1). The study area
includes approximately 33,353 km2 (12,877 mi2) and consists
of forest land dominated by aspen-birch and spruce-fir asso-
ciations, agricultural land, wetlands, and water.

2.2 Data

The FIA program conducts the National Forest Inventory
(NFI) of the United States of America (USA) and has
established field plot centers in permanent locations using a
quasi-systematic sampling design that is regarded as produc-
ing an equal probability sample (McRoberts et al. 2010). Field

crews observe species and measure diameter at breast height
(dbh) (1.37 m, 4.5 ft) and height (ht) for all trees with dbh of at
least 12.7 cm (5 in.). Volumes (V) for individual trees are
predicted using statistical models, aggregated at plot level,
expressed as volume per unit area, and typically considered
to be observations without error. For this study, data were used
for 2178 FIA plots on forest land with 50,176 trees
representing 38 species. McRoberts and Westfall (2014,
Table 1) describe these data in greater detail. For future refe-
rence, these data are characterized as the estimation dataset.

The data used to calibrate the allometric volume model
were originally acquired for a taper model study (Westfall
and Scott 2010) encompassing 24 northeastern states of the
USA (Fig. 1). For the current study, the geographic source of
the calibration data was restricted to the States of Michigan,
Minnesota, andWisconsin which span the ecological province
that includes the study area. For the 2398 individual trees in
the dataset, diameter measurements were obtained using a
Barr and Stroud dendrometer at heights of 0.3, 0.6, 0.9, 1.4,
and 1.8 m and at approximately 2.5-cm diameter taper inter-
vals up to total tree height. Volumes of sections between
height measurements were calculated using Smalian’s formula
(Avery and Burkhart 2002, p. 101) as the product of mean
cross-sectional area and section length, and total stem
volumes for individual trees were calculated by adding
volumes for all sections. McRoberts and Westfall (2014) de-
scribe the sampling procedure and protocols for individual
tree measurements in detail. For future reference, these data
are characterized as the calibration dataset.

2.3 Volume models

An allometric model of the relationship between V as the re-
sponse variable and dbh and ht as the predictor variables was
formulated as

V i ¼ β0 � dbhβ1
i � htβ2

i þ εi; ð1Þ
where i indexes individual trees, εi is a random residual, and
the βs are parameters to be estimated. McRoberts andWestfall
(2014) documented the global popularity of this model form.
They also demonstrated that a set of species-specific models
and a non-specific model were nearly indistinguishable with
respect to estimates of large-area volume means and their
standard errors (SE); McRoberts et al. (2014b) confirmed this
result for a sub-tropical Brazilian dataset. Further, the bound-
aries for Minnesota Survey Unit 1, which are also the bound-
aries of the study area, were specifically selected to ensure a
large degree of within-unit homogeneity with respect to cli-
mate, topography, and forest types. Therefore, only a single,
non-specific model was considered for this study.

Before model fitting, natural logarithmic (ln) transforma-
tions of the response and predictor variables were calculated,
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and the model was reformulated as

ln V ið Þ ¼ α0 þ α1 � ln dbhið Þ þ α2 � ln htið Þ þ εi; ð2Þ

where the αs are parameters to be estimated, and the εi of
Eq. (2) are not necessarily the same εi as for Eq. (1). The
advantages of the transformations were that the model could
be expressed in linear form which facilitates estimation of the
parameters, and heteroskedasticity was removed, thereby
eliminating the necessity of weighted regressions. On the orig-
inal scale, predictions were calculated as

bV i ¼ exp bα0 þ bα1 � ln dbhið Þ þ bα2 � ln hið Þ þ bσε

2

� �
; ð3Þ

where bσε is the residual standard deviation on the ln-ln scale,

and the term bσε
2 compensates for bias that accrues when

transforming from the ln-ln scale back to the original scale
(Baskerville 1972).

The quality of model fit on both the ln-ln and original
scales was assessed in terms of the proportion of the variabil-
ity explained by the model. On the ln-ln scale, the proportion
was calculated and denoted R2. The predictions were also
transformed from the ln-ln scale back to the original scale
using Eq. (3), and the proportion of variability explained by
the model was denoted pseudo-R2 because the assumptions
underlying R2 are not completely satisfied when using non-
linear models (Anderson-Sprecher 1994).

2.4 Estimators

The simplest approach for estimating large-area parameters is
to use the familiar simple random sampling (SRS) estimators,

bμSRS ¼
1

n

Xn

j¼1

y j ð4aÞ

and

Vbar bμSRSð Þ ¼

Xn

j¼1

y j‐bμSRS

� �2

n n‐1ð Þ ; ð4bÞ

where n is the total sample size and yj is the observation for the
jth plot selected for the sample. The primary advantages of the
SRS estimators are that they are intuitive, simple, and unbi-
ased when used with an SRS design; the disadvantage is that
variances are frequently large, particularly for highly variable
populations and/or small sample sizes. Although Vbar bμSRSð Þ
from Eq. (4b) may be biased when used with systematic
sampling, it is usually conservative in the sense that it overes-
timates the variance (Särndal et al. 1992, p. 83). For this study,
the finite population correction factor was ignored because of
the small sampling intensity of approximately one 670m2 plot
per 1200 ha of study area.

Because the uncertainty in volume model predictions is
independent of the particular large-area estimators, the relative
effects of model prediction uncertainty will be greater for es-
timators that reduce the effects of population variability than
for the SRS estimators. Multiple regional FIA programs use
post-stratified estimators to reduce variances of estimates with
strata based on satellite spectral data. McRoberts et al. (2012)
showed that stratifications derived from lidar-based maps of
growing stock volume reduced the variance of mean volume
per unit area by factors as great as 3.5 relative to the SRS
estimators. Therefore, for this study, the effects of volume

Fig. 1 Minnesota Survey Unit 1
(black), area of Northern
Research Station inventory
responsibility (gray), and
geographic source of model
calibration data (Minnesota,
Wisconsin, Michigan)
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model uncertainty on large-area estimates of mean volume per
unit area were also assessed using post-stratified estimation.

Post-stratified (STR) estimates of means and variances are
calculated using estimators provided by Cochran (1977, pp.
134–135),

bμSTR ¼
XH
h¼1

whbμh ð5aÞ

and

Vbar bμSTRð Þ ¼
XH
h¼1

wh⋅
bσ2
h

n
þ 1−whð Þ bσ2

h

n2

" #
; ð5bÞ

where

bμh ¼
1

nh

X
j¼1

nh

yh j ; bσ2
h ¼

1

nh−1

X
j¼1

nh

yh j‐bμh

� �2

;

n is the total sample size; h=1,…,H denotes strata; and for the
hth stratum, yhj is the jth sample observation, wh is the weight
calculated as the proportional area of the stratum, nh is the

sample size, and bμh and bσ2
h are the sample estimates of the

mean and variance, respectively.
Because lidar data were not available for the entire study

area, stratifications were simulated by ordering the predicted
plot volumes from smallest to largest and dividing the range
into intervals with approximately the same number of plots
per interval. These intervals simulated strata for which strata
weights were estimated as the proportions of plots in the strata.
The consequences on estimates of using these simulated strata
rather than strata based on an actual lidar-based volume map
were twofold. First, when using the same data, the SRS and
STR estimates of the study areameanwill be exactly the same,
regardless of the number of strata used. Operationally, how-
ever, differences between stratum weights and proportions of
plots per stratum cause SRS and STR estimates of means to
differ. Second, the simulated approach assumes that each plot
is assigned to the correct stratum, whereas operationally map
prediction and geo-location errors cause some plots to be
assigned to incorrect strata. These incorrect assignments do
not induce bias into the estimators, but they increase the
within-stratum variances and the overall variance. The overall
result is that the relative effects of volume model prediction
uncertainty for this study will be slightly overestimated for the
simulated stratifications.

Cochran (1977, pp. 132–134) suggests that more than six
strata are usually not useful; McRoberts et al. (2012) reported
that little was gained when using more than six lidar-based
strata; and the FIA program uses five spectral-based strata in

the study area. For this study, stratifications based on 2, 4, and
8 strata were considered as representative of the range of
possibilities.

2.5 Simulating uncertainty

The study focused on the effects on estimates of large-area
mean volume per unit area of model prediction uncertainty
arising from four sources: dbhmeasurement error, height mea-
surement error, parameter uncertainty, and model residual var-
iance. The tolerance for dbh measurement errors specified by
the FIA protocols is that 95 % of measurements are to be
within 0.5 % of the true dbh (U.S. Forest Service 2012). As-
suming that dbh measurement errors follow a Gaussian distri-
bution with mean 0, the standard deviation of the distribution

is σdbh
ε ¼ 0:005�dbh

1:96 ≈ 0:00255� dbh. The tolerance for

height measurement errors specified by the FIA protocols is
that 90 % of measurements are to be within 10 % of the true
height (U.S. Forest Service 2012). Assuming that the height
measurement errors follow a Gaussian distribution with mean
0, the s tandard devia t ion of the dis t r ibut ion is

σht
ε ¼ 0:10�ht

1:645 ≈ 0:06079� ht.

Uncertainty in the linear model parameter estimates on
the ln-ln scale was assessed using a 3-step Monte Carlo
approach: (i) the transformed calibration dataset was ag-
gregated into 10 dbh size classes, each with approxi-
mately the same number of observations; (ii) each dbh
size class was resampled with replacement until the orig-
inal class sample size was achieved; and (iii) the model
was fit to the resampled data and the parameters were
estimated. Steps (i)–(iii) were then replicated until the
means and standard deviations of the distributions of
parameter estimates stabilized. The resulting multiparam-
eter distribution of parameter estimates represented the
uncertainty in estimates of the linear model parameters
on the ln-ln scale.

Residual uncertainty was assessed on the original scale
where the models were applied using a 4-step procedure that

accommodated heteroskedasticity: (i) the pairs V i; bV i

� �
were

ordered with respect to the model prediction, bV i; (ii) the pairs
were aggregated into groups of size 25; (iii) within each

group, g, the mean of the observations Vg, the mean of the

predictions bVg, and the standard deviation bσg of the residuals

εi ¼ V i‐bV i were calculated; and (iv) the relationship between
the group standard deviations, bσg , and the group prediction

means, bVg, was represented using the model,

bσg ¼ γ1 � bVg

γ
2 þ εg; ð6Þ

where the γs are parameters to be estimated.

628 R.E. McRoberts, J.A. Westfall



2.6 Uncertainty in large-area volume estimates

A 6-step Monte Carlo simulation procedure was used to esti-
mate the effects of model prediction uncertainty on the uncer-
tainty of large-area estimates of mean volume per unit area.

Step 1. For the kth replication, a set of model parameter

estimates, bβk
, was randomly selected from the dis-

tribution constructed in “Section 2.5”.
Step 2. For the ith tree on the jth plot in the estimation

dataset, a random number, ε, was drawn from a
Gaussian (0,1) distribution; if |ε| >2.5, ε was
redrawn. A dbh observation was then simulated as

dbhi j ¼ dbh0i j þ ε� σdbh
ε ;

where dbhij
0 was the observation from the estimation

dataset, and σε
dbh was as described in “Section 2.5.”

Step 3. For the ith tree on the jth plot in the estimation
dataset, a random number, ε, was drawn from a
Gaussian (0,1) distribution; if |ε| >2.5, ε was
redrawn. A height observation was then simulated as

hti j ¼ ht0i j þ ε� σht
ε ;

where htij
0 was the observation from the estimation

dataset, and σε
ht was as described in “Section 2.5.”

Step 4. For the ith tree on the jth plot in the estimation
dataset, an initial volume observation was calculated
using the parameter values from step (1) and the
simulated dbh and height observations from steps
(2) and (3) as

Vk;0
i j ¼ bβk

1�dbhi j
bβ k

2 �hti j
bβ k

3 :

A random number, ε, was drawn from a Gaussian
(0,1) distribution; if |ε|>2.5, ε was redrawn. The
residual standard deviation, bσi j, was then calculated
using Eq. (6) with Vij

k,0 as the value of the predictor
variable. The individual tree volume was then sim-
ulated as

Vk
i j ¼ Vk;0

i j þ ε� bσi j:

Step 5. The total volume for the jth plot in the estimation

dataset was calculated as Vk
j ¼ ∑

i¼1

n j

V k
i j where nj is the

number of trees on the plot.
Step 6. The overall study area mean, V

k
, and variance of the

mean, Vbar V
k

� �
, for the kth replication were estimat-

ed using both the SRS and STR estimators as de-
scribed in “Section 2.4.”

Steps (1)–(6) were replicated, and the mean and variance
over replications were estimated as per Rubin (1987, pp.76–77),

bμ ¼ 1

nrep

X
k¼1

nrep

V
k
; ð7Þ

and

Vbar bμð Þ ¼ 1þ 1

nrep

� �
�W 1 þW 2; ð8Þ

whereW 1 ¼ 1
nrep‐1

∑
k¼1

nrep

V
k
‐bμ� �

2 is the among-replications var-

iance, W 2 ¼ 1
nrep

∑
k¼1

nrep

Vbar V
k

� �
is the mean within-replication

variance, and nrep is the number of replications. The replications

continued until bμ and SE bμð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbar bμð Þ

p
stabilized.

In Steps (2) and (3), dbh and height measurement errors for
the same tree were assumed to be independent, as were dbh
errors for trees on the same plot. However, because of the
greater difficulty in accurately measuring height and because
plot canopy conditions tend to affect measurements of the
heights of all trees on the same plot in a similar manner, height
measurement errors for trees on the same plot may not be
independent. Therefore, simulations were conducted separate-
ly for height correlations of ρ=0.00 and ρ=0.25. In Step (4),
spatial correlations among residuals for trees on the same plot
were ignored based on Berger et al. (2014), Breidenbach et al.
(2014), and McRoberts and Westfall (2014) who all reported
that the effects were negligible.

Parameter uncertainty and residual variance are highly cor-
related because each necessarily affects the other. This phe-
nomenon is easily understood by considering the parametric
form of the parameter covariance matrix for a linear model;
in particular,

Var bβ� �
¼ σ2 � X0Xð Þ‐1;

where X is the matrix of values of the independent variables
and σ2 is the residual variance (Bates and Watts 1988, p. 5).
Thus, if σ2=0, the covariances of the parameter estimates are
necessarily 0; conversely, the only way the covariances can all
simultaneously be 0 is if σ2=0. Therefore, for this study, neither
parameter uncertainty nor residual variance was incorporated
into the simulation procedure apart from the other.

3 Results

The fit of the model to the data on the ln-ln scale produced
R2=0.98 with corresponding pseudo-R2=0.97 on the original
scale (Figs. 2 and 3). These large values justify the initial deci-
sion not to consider model misspecification for this study
(“Section 1”) and also suggest that other model forms would

Propagating uncertainty through individual tree volume model 629



likely not have produced more accurate predictions. However,
as with most similar datasets, the number of observations for
large trees is smaller than for other trees. Although this phe-
nomenon could contribute to serious lack of fit of the model for
large trees, such was not the case for this study (Figs. 2 and 3).

On the ln-ln scale, the distribution of simulated parameter
estimates exhibited an ellipsoidal pattern as expected for linear
models (Fig. 4). Parameter uncertainty was simulated by ran-
dom draws from this distribution. The approach to estimating
the relationship between heteroskedastic residual standard de-
viations and volume model predictions as described in “Sec-
tion 2.5” was somewhat arbitrary, but the relationship was
well estimated (Fig. 5).

For all combinations of dbh measurement error, height
measurement error, and parameter uncertainty and residual
variance, 5000 replications of the simulation procedure were
sufficient for estimates of both means and SEs to stabilize

(Fig. 6). Further, no prediction for any of the more than
50,000 trees in the estimation dataset over the 5000 replica-
tions was proportionally less than 0.87 or greater than 1.20
than the prediction with the original parameter estimates. For
large trees, the proportions were 0.95 and 1.05.

Means of tree-level dbh measurement errors ranged from
approximately −0.12 to 0.12 cm with nearly 98 % between
−0.05 and 0.05 cm, and means of tree-level height measure-
ment errors ranged from approximately −2.4 to 2.1 m with
nearly 98 % between −1.0 and 1.0 m. These relatively small
tree-level errors have minimal effects at the population level.

For the STR estimators, the effects of uncertainty from the
four sources on SEs increased as the number of strata in-
creased, although nearly all the increase is attributed to the
combined effects of parameter uncertainty and residual vari-
ance. For two strata, the proportional increase in SE was
0.036; for four strata, the proportional increase was 0.092;
and for eight strata, the proportional increase was 0.148.

Fig. 2 Group observation means versus group prediction means on ln-ln
scale

Fig. 3 Group observation means versus group prediction means on
original scale

Fig. 4 Distribution of parameter estimates used to simulate parameter
uncertainty

Fig. 5 Observed versus predicted heteroskedastic residual standard
deviations
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Although the increase for two strata would likely be consid-
ered negligible, such may not be the case for four and eight
strata. As previously noted, the simulated stratifications likely
reduce SEs more than would be realized with actual stratifi-
cations with the result that the actual increases in SE may be
slightly less than those reported in Table 1.

4 Discussion

The simulated stratifications accomplished the intended ob-
jective by grouping plots into strata with greater homogeneity
than the population as a whole and thereby reducing the var-
iance of the estimate of the population mean relative to the
variance of the SRS mean (Tables 1 and 2). As previously

noted, the lack of differences among the SRS and STR esti-
mates of the means is attributed to using proportions of plots
per stratum as stratum weights rather than proportions of the
population.

When using the SRS estimators, no source of uncertainty
individually or in combination had a meaningful effect on SEs
(Table 1). This result is consistent with the results reported by
McRoberts et al. (2014b) for a sub-tropical dataset. For both
the SRS and STR estimators, the effects of dbh and height
measurement errors, including correlated height measurement
errors, were negligible. This result can be attributed to the fairly
large number of trees per plot (mean 23, maximum 134) which
resulted in relatively small mean dbh and height measurement
errors at the plot level. Berger et al. (2014) and Qi et al. (2015)
reported similar results. Overall, these results suggest that as
long as height measurements satisfy FIA protocols, these
sources of uncertainty produce no meaningful adverse conse-
quences. However, experience suggests that height measure-
ments may fail to satisfy the protocols. Nevertheless, results
obtained using a 20 % rather than 10 % tolerance and an 80 %
rather than 90 % satisfaction rate were essentially unchanged.

The combined effects of parameter uncertainty and residual
variance were greater than the combined effects of dbh and

Fig. 6 Simulated mean biomass per unit area (Mg/ha) and standard error
versus replications for four strata and incorporating all sources of
uncertainty

Table 1 Effects on large-area volume estimates of model prediction uncertainty due to uncertainty from underlying sources

Source of uncertainty Simple random sampling (SRS) estimators Stratified (STR) estimators (number of strata)

2 4 8

Mean SE Mean SE Mean SE Mean SE

None 90.17 1.69 90.17 1.11 90.17 0.76 90.17 0.54

Diameter measurement error 90.17 1.69 90.17 1.11 90.17 0.76 90.17 0.54

Height measurement errora 90.17 1.69 90.17 1.11 90.17 0.77 90.17 0.54

Height measurement errorb 90.17 1.69 90.17 1.11 90.17 0.77 90.17 0.55

Diameter and height measurement errorsa 90.17 1.69 90.17 1.11 90.17 0.77 90.17 0.54

Diameter and height measurement errorsb 90.17 1.69 90.17 1.11 90.17 0.77 90.17 0.55

Parameter uncertainty and residual variance 90.17 1.71 90.17 1.14 90.17 0.82 90.17 0.61

Alla 90.17 1.71 90.17 1.14 90.17 0.82 90.20 0.61

Allb 90.17 1.71 90.17 1.15 90.17 0.83 90.17 0.62

aWithin-plot height measurement error correlation: ρ=0.00
bWithin-plot height measurement error correlation: ρ=0.25

Table 2 Stratified estimates

Stratum Weight Sample size Mean SE

1 0.25 545 12.42 0.35

2 0.25 544 49.13 0.54

3 0.25 545 100.14 0.71

4 0.25 544 199.14 2.90

Total 1.00 2178 90.17 0.76

No uncertainty incorporated

Propagating uncertainty through individual tree volume model 631



height measurement error. This result can be at least partially
attributed to how parameter uncertainty affects plot-level esti-
mates. Whereas measurement errors and prediction residuals
are incorporated separately for individual trees and compen-
sate for each other, parameter uncertainty is realized at the
population level and therefore should be expected to have a
greater population-level effect.

The important finding is that as the effects on SEs of pop-
ulation variability are reduced by using the STR estimators
rather than the SRS estimators, the relative effects of underly-
ing sources of model prediction uncertainty increase. Model-
assisted estimators, which are receiving increasing attention
for inventory applications, often reduce the effects of popula-
tion variability even more than do stratified estimators
(McRoberts et al. 2013, 2014a). Thus, the proportional ad-
verse effects of measurement error, parameter uncertainty,
and residual variance on the uncertainty of the large-area vol-
ume estimates may be even greater when the effects of sam-
pling variable populations are further reduced.

5 Conclusions

Three conclusions may be drawn from the study. First, when
using the simple random sampling estimators, the effects on
large-area volume estimates of uncertainty in individual tree
volume model predictions due to diameter and height mea-
surement error, parameter uncertainty, and residual variance
were negligible. Second, however, when the effects of vari-
ability in the population on uncertainty were reduced via strat-
ified estimation, the effects of model prediction uncertainty on
the large-area volume estimates increased as the number of
strata increased. For four and eight strata, the proportional
increases in the stratified SEs were as great as 0.092 and
0.148, respectively, which may not be negligible. Third, near-
ly all the effects of model prediction uncertainty can be attrib-
uted to parameter uncertainty and residual variance. Finally,
all results for this study are contingent on the calibration
dataset sample size and the quality of fit of the model to the
data, both of which directly affect parameter uncertainty and
residual variance.
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