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Carbon accounting is at the heart of efforts to mitigate the effects of climate change. One approach for
estimating population parameters for live tree stem carbon entails three primary steps: (1) construction
of an individual tree, allometric carbon model, (2) application of the model to tree-level data for a prob-
ability sample of plots, and (3) use of a probability-based (design-based) estimator of mean carbon per
unit area for a population of interest. Compliance with the IPCC good practice guidance requires satisfac-
tion of two criteria, one related to minimizing bias and one related to minimizing uncertainty. For this
carbon estimation procedure, the portion of uncertainty attributed to the variance of the probability-
based estimator of the population mean using the plot-level predictions is usually correctly estimated,
but the portion attributed to the variance of the allometric model estimator is usually ignored. The result
is that the total variance of the population mean estimator cannot be asserted to comply with the IPCC
good practice criteria because not only is it not minimized, it is not even correctly estimated.

Within the framework of what is coming to be characterized as hybrid inference, model-based inferen-
tial methods were used to estimate the variance of the tree-level allometric model estimator which was
then propagated through to the variance of the probability-based estimator of mean carbon per unit area.
This combined estimator, consisting of a model-based estimator used to predict a variable for a probabil-
ity sample of a population followed by a probability-estimator of the population total or mean using the
sample predictions, is characterized as a hybrid estimator. For this study, two probability-based estima-
tors of the mean were considered, simple random sampling estimators and model-assisted regression
estimators that used airborne laser scanning (ALS) data as auxiliary information. The variance of the allo-
metric model estimator incorporated variances of distributions of diameter and height measurement
errors, covariances of model parameter estimators, model residual variance, and variances of distribu-
tions of wood densities and carbon content proportions.

The novel features of the study included the hybrid inferential framework, consideration of six sources
of uncertainty including the variances of distributions of wood densities and carbon content proportions,
use of ALS data with model-assisted regression estimators of the population mean, and use of confidence
intervals for the population mean as the basis for comparisons rather than intermediate products such as
model prediction accuracy. The primary conclusions were that the variance of the allometric model esti-
mator was negligible or marginally negligible relative to the variance of the probability estimator when
using species-specific allometric models and simple random sampling estimators, but non-negligible
when using species-specific models and model-assisted regression estimators and when using a non-
specific model with either estimator.
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1. Introduction
1.1. Carbon estimation

Among the six economic sectors identified by the United
Nations Framework Convention on Climate Change as sources of
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anthropogenic greenhouse gas (GHG) emissions, the Land Use,
Land Use Change and Forestry sector is the only terrestrial sector
with the potential to remove GHG emissions from the atmosphere.
The contributions of this sector to carbon sequestration are further
reflected in three of the five carbon pools identified by the Mar-
rakesh Accords for the maintenance of existing carbon stocks:
aboveground biomass, below ground biomass, and deadwood
(Angelsen et al., 2009, p. 311; Penman et al., 2013, Table 3.1.2).
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One approach for estimating carbon population parameters for
the aboveground biomass pool entails three steps (Jalkanen et al.,
2005; Petersson et al., 2012). First, an individual tree, allometric
volume model is constructed using a sample consisting of tree-
level species observations, diameter at breast-height (dbh) and
height (ht) measurements, and carefully measured volumes con-
sidered to be observations without measurement error. Second,
the model is applied to predict individual tree volumes for a prob-
ability sample of field plots with tree-level species observations,
dbh measurements, and either ht measurements or ht predictions
as predictor variables. Species-specific wood densities and carbon
content proportions are then used to convert the tree-level volume
predictions to tree-level carbon predictions. The tree-level carbon
predictions are then aggregated to produce plot-level carbon per
unit area predictions. Third, a probability-based (design-based)
estimator is used to estimate the population mean carbon per unit
area using the plot-level carbon predictions. Simple random sam-
pling estimators can be used to estimate the population parameter,
but their precision may be insufficient because of small sample
sizes and/or large variability among population unit carbon values.
In these instances, stratified or model-assisted estimators using
remotely sensed auxiliary information may have greater precision.

1.2. Individual tree, allometric volume models

Samples used as sources of data for constructing the allometric
volume models are typically purposive and at least partially exter-
nal to the populations to which they are applied. Further, volume
observations for the trees to which the models are applied are typ-
ically not available, meaning that no direct comparisons of tree-
level volume observations and corresponding allometric model
predictions for the probability sample units are possible. Under
these conditions, model-based rather than probability-based
estimators must be used to estimate the variances of both the
tree-level and plot-level estimators.

A crucial issue is the degree to which ignoring the variance of
the allometric model estimator causes underestimates of the vari-
ance of the estimator of the population mean carbon per unit area.
McRoberts and Westfall (in press) noted that the variance of an
allometric volume model estimator can be attributed to four pri-
mary sources of uncertainty: (1) model misspecification, (2)
covariances of the model parameter estimators, (3) allometric
model residual variance, and (4) measurement errors for the pre-
dictor variables. For purposes of volume estimation, the adverse
effects of allometric model misspecification are often negligible,
because the models are usually quite accurate with pseudo-R? val-
ues greater than 0.90 (Brown et al., 1989; Mugasha et al., 2013) and
often greater than 0.95 (Chave et al, 2005; McRoberts and
Westfall, in press; McRoberts et al., 2015). Predictor variable mea-
surement errors have been studied but few generalizations have
been forthcoming (Westfall and Patterson, 2007; Westfall, 2008;
Berger et al. 2014; Breidenbach et al., 2014; McRoberts et al.,
2015; Chen et al., 2015; Shettles et al., 2015; McRoberts and
Westfall, in press). The covariances of the model parameter estima-
tors are often expressed by the model parameter covariance
matrix, and for a correctly specified model, mean square error is
typically used as the estimator of homogeneous model residual
variance. In addition, wood densities and carbon content propor-
tions vary due to multiple factors including site attributes, climate,
tree age and size, stem location, and competition. The effects of the
variances of the distributions of wood densities and carbon content
proportions on the variance of the allometric model estimator are
not known to have been rigorously addressed.

Multiple recent studies using a variety of methods have
addressed estimation of the variance of estimators of population

mean volume that rely on allometric models. Stahl et al. (2014)
and Chen et al. (2015) used sampling theory; Thurner et al.
(2014) and Magnussen et al. (2014) used Taylor series approxima-
tions; and Breidenbach et al. (2014), McRoberts et al. (2015) and
McRoberts and Westfall (in press) used Monte Carlo simulations.
An important issue is that the variance of the estimator of the
population mean could have large bias when the variance of the
allometric model estimator is ignored. Subject to allometric model
calibration dataset sizes and prediction accuracies, Breidenbach
et al. (2014) and McRoberts and Westfall (2014 ) reported that esti-
mates of the bias were negligible when using the simple random
sampling estimator of the population mean for temperate forests;
McRoberts et al. (2015) reported a similar result for a sub-tropical
Brazilian dataset. However, Stdhl et al. (2014) reported a bias of
approximately 10% when using simple random sampling estima-
tors; McRoberts and Westfall (in press) reported non-negligible
bias when using post-stratified estimators; and McRoberts et al.
(2013) suggested greater bias when using model-assisted estima-
tors than when using post-stratified estimators.

1.3. Hybrid inference

Corona et al. (2014) coined the term hybrid inference to describe
situations whereby a population mean is estimated as the mean of
model predictions for a probability sample of auxiliary information
used as model predictor variables. The key features of hybrid infer-
ence are fourfold: (1) a probability sample of auxiliary information,
(2) a model using the auxiliary information to predict the response
variable for the sample units, (3) a probability-based estimator of
the population mean using the sample unit predictions, and (4)
both model-based and probability-based inferential methods to
estimate the variance of the hybrid estimator of the population
mean. Failure to recognize the requirement for both forms of infer-
ence leads to incorrect estimation of the variance of the estimator
of the population mean. In particular, although correct methods
are typically used for estimating the variance of the probability-
based estimator of the mean, the variance of the model estimator
is often ignored with the result that the variance of the hybrid
estimator is systematically under-estimated.

In a comprehensive review of applications of models for large
area inference, Stdhl et al. (2016) documented multiple applica-
tions of hybrid inference, although the term was not specifically
used in any of the reports. For example, Stahl et al. (2011) and
Gobakken et al. (2012) obtained probability samples of strips of
ALS data, used a model of the relationship between biomass and
ALS metrics to predict biomass for cells that tessellated the strips,
aggregated the cell predictions to obtain strip predictions, used
probability-based cluster estimators to estimate the population
mean biomass per unit area, and used model-based inference to
estimate the variance of the cluster estimators and probability-
based inference to estimate the variance of the estimator of the
population mean.

The approach previously described in Section 1.1 using allomet-
ric models to estimate mean carbon per unit area constitutes
another application of hybrid inference. The probability sample
consists of the field plots; the auxiliary information consists of
the plot-level, individual tree, species observations and dbh
(1.37 m, 4.5 ft) and ht measurements; the allometric carbon model
is used to predict carbon per unit area for the field plots; and
probability-based estimators such as the simple random sampling
or model-assisted regression estimators are used with the field
plot predictions to estimate mean carbon per unit area.
McRoberts et al. (2015) and McRoberts and Westfall (in press)
reported examples of this application of hybrid inference, although
as for the Stahl et al. (2016) examples, the term itself was not used.
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1.4. Objectives

The primary study objectives were to describe and illustrate the
hybrid inferential framework, to estimate the variance of the
hybrid estimator of the population mean of live tree stem carbon
per unit area, and to assess the degree to which variances associ-
ated with particular information sources contribute to the variance
of the hybrid estimator. The technical objectives included incorpo-
rating the effects on the variance of the individual tree, allometric
model estimator of the covariances of the model parameter esti-
mators, allometric model residual variance, variances of distribu-
tions of individual tree dbh and ht measurement errors, and
variances of distributions of species-specific wood densities and
carbon content proportions. Additional technical objectives were
to compare the variance of the allometric model estimator to the
variances of both simple random and model-assisted estimators
of the population mean based on the allometric model predictions
and to compare variances of the hybrid estimator when using
species-specific and non-specific allometric models.

When estimating volume, biomass or carbon for large areas,
models are not stand-alone or final products, but rather are interme-
diate products enroute to confidence intervals for the population
mean. As a result, measures of model prediction accuracy such as
root mean square error or pseudo-R2 may contribute little to under-
standing the effects of the variance of the allometric model estimator
on the variance of the hybrid estimator of the population mean.
Therefore, model prediction accuracy should be assessed not only
in absolute terms but also in the context of the model application,
i.e., estimation of the population mean (Gregoire et al., 2016).

Similarly, the effects of the variances of distributions of wood
densities and carbon content proportions should be assessed in
the context of their application. Singh (1984), Baker et al. (2004),
Chave et al. (2006) and Nock et al. (2009) all report relevant infor-
mation on wood density including assessments of the degree to
which species-specific wood densities vary with respect to site
attributes, tree age and size, and stem location. However, the rela-
tive contributions to the variance of the hybrid estimator have not
been fully addressed.

A Monte Carlo approach was used with nonlinear, individual-
tree, allometric volume models constructed specifically for this
study so that the covariances of the model parameter estimators
and the allometric model residual variance could be rigorously esti-
mated. The novel features of the study are characterization of the
problem in the hybrid inferential framework, incorporation of the
effects of variances in distributions of wood densities and carbon
content proportions, use of the model-assisted regression estima-
tors with ALS auxiliary information, and confidence intervals rather
than model accuracies as the basis for assessments and comparisons.

2. Data
2.1. Study area

The study area was Itasca County in north central Minnesota in
the United States of America (USA) (Fig. 1). The 7583-km? study
area is characterized by approximately 80% forest land, 11% non-
forest land, and 9% water. Tree species include upland deciduous
mixtures, pines (Pinus spp.) spruce (Picea spp.) and balsam fir
(Abies balsamea) and lowland species including spruce (Picea
spp.), tamarack (Larix laricina), white cedar (Thuja occidentalis),
and black ash (Fraxinus nigra).

2.2. Airborne laser scanning data

Wall-to-wall ALS data were acquired in April 2012 with a
nominal pulse density of 0.67 pulses/m? using Leica ALS 60 and

ALS 70 sensors. The average flying height above ground was
2100-2300 m, the field of view was 40 degrees, and the vertical
accuracy was 11-15 cm. Ground returns were classified by the pro-
vider and used to construct a digital terrain model via interpolation
using Tiffs (Toolbox for Lidar Data Filtering and Forest Studies)
software (Chen, 2007).

Distributions of all first echo heights were constructed for the
168.3-m? plots and the 169-m? square cells that tessellated the
study area. For each plot and cell, the mean, standard deviation,
skewness, and kurtosis of the distributions were calculated as
was quadratic mean height (QMH) (Lefsky et al., 1999; Chen
et al., 2015). In addition, heights corresponding to the 10th, 20th,
..., 100th percentiles of the distributions were calculated, and
canopy densities were calculated as the proportions of echoes with
heights greater than 0%, 10%, ..., 90% of the range between 1.3 m
above ground and the 95th height percentile (Gobakken and
Naesset, 2008).

2.3. Allometric model calibration data

Data to calibrate the allometric volume model were originally
acquired for a taper model study (Westfall and Scott, 2010)
encompassing 24 northeastern states of the USA. For the current
study, the model calibration data were restricted to the States of
Michigan, Minnesota, and Wisconsin which span the ecological
province that includes the study area. For the approximately
2400 individual trees whose data were used to calibrate the
models, species was determined and dbh and total tree ht were
measured. In addition, diameter measurements were obtained
using a Barr and Stroud dendrometer at heights of 0.3, 0.6, 0.9,
1.4, and 1.8 m and at approximately 2.5-cm diameter taper inter-
vals up to total tree ht. Volumes (m?) of sections between height
measurements were calculated using Smalian’s formula (Avery
and Burkhart, 2002, p. 101) as the product of mean cross-
sectional area and section length, and total aboveground stem
volumes (m?3) for individual trees were calculated by adding
volumes for all sections. McRoberts and Westfall (in press)
describe the sampling procedure and protocols for individual tree
measurements in detail. For future reference, these data are
assumed to be without error and are characterized as the
calibration dataset.

2.4. Forest inventory ground data

Data were obtained for plots established by the Forest
Inventory and Analysis (FIA) program of the U.S. Forest Service
which conducts the national forest inventory (NFI) of the USA
(McRoberts et al., 2010). Each FIA plot consists of four 7.32-m
(24-ft) radius circular subplots that are configured as a central
subplot and three peripheral subplots with centers located at
36.58 m (120ft) and azimuths of 0°, 120°, and 240° from the
center of the central subplot. Centers of forested, partially
forested, or previously forested plots were determined using
global positioning system receivers with sub-meter accuracy,
whereas centers of non-forested plots were verified using aerial
imagery and digitization methods. Field crews observe species
and measure dbh (cm) and ht (m) for all trees with dbh of at least
12.7 cm (5 in) where the measurements are subject to error. Data
were used for 86 forest plots and 29 non-forest plots measured in
2014. Further, data for only the central subplot of each plot were
used to avoid issues of spatial correlation among subplot observa-
tions. For future reference, the term plot is used to refer to the
central subplot and the corresponding data are characterized as
the estimation dataset.
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3.1. Hybrid inference

As described in Section 1.3, hybrid inference characterizes situ-
ations for which models are used to predict the response variable
for a probability sample of auxiliary data and probability-based
estimators are used to estimate population parameters based on
the probability sample predictions (Corona et al.,, 2014; Stdhl
et al., 2016). For the current study, an allometric model was used
to predict individual tree stem volume using individual tree obser-
vations of species and measurements of dbh and ht as predictor
variables for a probability sample of field plots. Species-specific
biomass and carbon conversion factors were used to convert
tree-level volume predictions to biomass predictions and then to
carbon predictions which were then aggregated at plot-level and
converted to a per unit area basis (kg/ha). Two forms of probability
inference were used. First, simple random sampling estimators
were used with the plot-level carbon predictions to estimate mean
carbon per unit area. Second, ALS metrics were calculated for each
plot and for regular polygons that tessellated the study area, and a
model of the relationship between plot-level carbon and ALS met-
rics was used to predict carbon for the plots and the polygons.
Mean carbon per unit area was then estimated using model-
assisted regression estimators.

3.2. Model-based inference

Species-specific allometric models of the relationship between
tree-level stem volume, V, as the response variable and dbh and
ht as the predictor variables were formulated as,

Vi = B - dbh" - ht!? 4 g, (1)

where i indexes individual trees, ¢; is a random residual, and the Bs
are parameters to be estimated. McRoberts and Westfall (2014)
documented the global popularity of this model form. The quality
of model fit to the calibration data was assessed using pseudo-R?,

where SSean is the sum of squared deviations of the observations
from their mean, and SSge, is the sum of squared deviations of
observations from their predictions. A similar procedure was used
to construct a non-specific, individual tree allometric model.

The individual tree, allometric models were constructed using
data for the larger ecological province, nearly all of which is exter-
nal to Itasca County (Section 2.3). Therefore, because a probability
sample of individual tree carbon observations was not available,
model-based inference was used to estimate the variance of the
tree-level allometric model estimators. Although parametric
model-based variance estimators could be used, Monte Carlo sim-
ulation approaches are often used when model predictor variables
are subject to measurement error (Gertner and Dzialowy, 1984;
McRoberts et al., 1994). For this study, the tree- and plot-level car-
bon predictions were affected by uncertainty from six sources: the
covariances of the allometric model parameter estimators, the allo-
metric model residual variance, the variances of distributions of
dbh and height measurement errors, and the variances of distribu-
tions of wood densities and carbon content proportions. The anal-
yses focused on estimating the variances associated with the six
sources and using Monte Carlo procedures to propagate them
through the variance of the allometric model estimator to the vari-
ance of the hybrid estimator of the population mean.

3.2.1. Allometric model parameter covariances

The covariances of the estimators of the allometric volume
model parameters were estimated using a Monte Carlo approach:
(i) the calibration dataset (Section 2.2) consisting of approximately
2400 observations was ordered by dbh and grouped into the same
six dbh classes (originally inches, here cm) used to acquire the
data: [0.00-12.70), [12.70-22.86), [22.86-33.02), [33.02-43.18),
[43.18-60.96), [60.96+]; (ii) each dbh class was resampled with
replacement until the original class sample size was achieved,
and (iii) the model was fit to the resampled data and the parame-
ters were estimated. Steps (i)-(iii) were replicated a large number
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Fig. 2. Distribution of allometric model parameter estimates.

of times. The resulting multivariate distribution of parameter
estimates represented the covariances of the allometric model
parameter estimators (Fig. 2).

3.2.2. Allometric model residual variance

The heterogeneous allometric model residual variance was esti-
mated using a 4-step procedure that accommodated heteroskedas-
ticity: (i) from the fit of the model of Eq. (1) to the calibration data,
the pairs (v;, V;) were ordered with respect to the model prediction,
Vi; (ii) the pairs were aggregated into groups of size 25; (iii) within
each group, g, the mean of the predictions, \7g. and the standard devi-
ation, Gy, of the residuals, & = v; — V;, were calculated; and (iv) the
relationship between the group standard deviations, G4, and the
group prediction means, V,, was represented using the model,

Gg =L Vg + &, 3)

where A is a model parameter to be estimated (Fig. 3).
0.6

Group standard deviation

0 1 2 3 4 5
Group mean biomass prediction

Fig. 3. Heteroscedastic residual standard deviation.

3.2.3. Diameter and height measurement error

The tolerance for dbh measurement errors specified by the FIA
protocols is that 95% of measurements are to be within 0.5% of the
true dbh (US Forest Service, 2015, Appendix 7). Assuming that dbh
measurement errors follow a Gaussian distribution with mean 0,
the standard deviation of the distribution is,

Gabh = %%dbh ~ 0.00255 - dbh. (4)

The tolerance for ht measurement errors specified by the FIA
protocols is that 90% of measurements are to be within 10% of
the true ht (US Forest Service, 2015, Appendix 7). Assuming that
the ht measurement errors follow a Gaussian distribution with
mean 0, the standard deviation of the distribution is,

0.10- ht

Ont = 1645

~ 0.06079 - ht (5)

3.2.4. Wood density

Wood densities are necessary to convert individual tree volume
predictions to biomass predictions. For the Canadian provinces of
Alberta, Manitoba, and Saskatchewan which are in close proximity
to the study are, Singh (1984) reported wood density means (g/cm?)
for 10 prairie species, eight of which were also observed in Itasca
County (Table 1). These means were based on 10-13 measure-
ments per tree for 60 trees per species with 15 trees for each of
four diameter classes. Further, the trees were sampled equally
from across the Canadian provinces of Manitoba, Saskatchewan,
and Alberta. For eastern Canada, Blouin and Cormier (2012)
reported wood density means for 17 of the 20 species found in
Itasca County. These wood densities were taken mostly from
Alemdag (1984) who state that their data were obtained from “a
full range of sites in Ontario” and represented different heights
along the stem for an average of 59 trees per species. The two sets
of Canadian wood density means were similar to each other but
deviated, on average, by approximately 0.05 g/cm? from the corre-
sponding species means for the USA reported by Miles and Smith
(2009). A simple linear regression model with the combined sets
of Canadian means as the response variable and the American
means reported by Miles and Smith (2009) as the predictor vari-
able was used to characterize the relationship between the Canadian
and American means. An F-test of significance (Ratkowsky, 1983,
p. 135) indicated that the estimated slope was not statistically
significantly different from 1 (o = 0.05). Therefore, a reduced model
was fit with the slope fixed to 1; the resulting estimate of the inter-
cept was 0.0507 (Fig. 4). For all species in Itasca County, the means
of species-specific wood density distributions were denoted §¥%°
and were estimated as the American means plus 0.0507, the esti-
mate of the regression model intercept. The same mean was
assumed for all trees of the same species within the study area
regardless of factors such as site attributes, tree age and size, and
stem location. For use with the non-specific allometric volume
model, the mean of the pooled species-specific distributions of
wood densities was estimated as the mean of the means of the
species-specific distributions

Information on the variances of distributions of wood densities
is sparse. For a tropical uncertainty assessment, Chave et al. (2004)
assumed an overall ratio of the standard deviation to the mean for
wood densities of 0.10. Chave et al. (2009) later reported mean
wood density (g/cm?) for North American species of 0.540 with
standard deviation of 0.153. For a study of northern boreal and
temperate forests in Russia, Europe and the USA, Thurner et al.
(2014) reported mean wood density of 0.570 and standard devia-
tion of 0.150 for broadleaved species; mean of 0.464 and standard
deviation of 0.057 for needleleaf deciduous species; and mean of
0.411 and standard deviation of 0.066 for needleleaf conifer
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Species-specific sample sizes, wood densities, and carbon content proportions.

Species Sample size Wood density (g/cm?) Carbon content
proportion
Calibration Estimation Mean Std Dev Mean Range
dataset dataset Miles and Blouin and Singh Predicted Singh
Smith (2009) Cormier (2012) (1984) (1984)
Balsam fir 65 64 0.33 0.341 0.372 0.3807 0.037 0.5008 0.0045
Tamarack 93 38 0.49 0.494 0.530 0.5407 0.041 0.4721 0.0035
White spruce 53 17 0.37 0.383 0.404 0.4207 0.037 0.5039 0.0045
Black spruce 90 13 0.38 = 0.457 0.4307 0.034 0.5040° -
Jack pine 104 8 0.40 0.418 0.451 0.4507 0.036 0.5040 0.0043
Red pine 79 65 0.41 0.372 - 0.4607 - 0.5328 0.0033
White pine 78 1 0.34 0.342 0.3907 - 0.4974 0.0016
No. white cedar 89 9 0.29 0.311 - 0.3407 - 0.5172 0.0017
Red maple 112 12 0.49 0.588 - 0.5407 - 0.4864 0.0052
Sugar maple 132 22 0.56 0.616 - 0.6107 - 0.4932 0.0019
Yellow birch 73 2 0.55 0.596 - 0.6007 - 0.4627 0.0033
Paper birch 83 47 0.48 0.539 0.607 0.5307 0.045 0.4837 0.0021
Black ash 89 50 0.45 0.545 - 0.5007 - 0.4780 0.0048
Green ash 56 6 0.53 - - 0.5807 - 0.4800¢ -
Balsam poplar 102 41 0.31 0.354 0.409 0.3607 0.040 0.4779° -
Quaking aspen 156 192 0.35 0.387 0.424 0.4007 0.033 0.4709 0.0075
Bur oak 14 3 0.58 - - 0.6307 - 0.4779° -
No. red oak 97 10 0.56 0.590 - 0.6107 - 0.4963 0.0032
Am. basswood 64 3 0.32 0.428 - 03707 - 0.4643 0.0017
Am. EIm 67 8 0.46 0.580 - 0.5107 - 0.4632 0.0027
2 Conifer mean.
" Deciduous mean.
¢ Johnson et al. (2009, p. 457).
0.65 ~ was estimated as the variance among the species-specific means
/ plus the species-specific common variance of G2 = (0.0407)%.
0.60 - % /{'
[ J hd ®
// 3.2.5. Carbon content proportion
0.55 1 o Lamlom and Savidge (2003; IPCC, 2003, Vol. 4., Table 4.3)
4 reported carbon content proportions and ranges for 41 North
2 0.50 1 // American boreal and temperate species which included 16 of the
oy . . .
2 J 20 species observed in Itasca County (Table 1). These 16 species-
2 045 - x / specific proportions, denoted y*¢°, were used for this study.
—8 * x Carbon content proportion for green ash was obtained from
S 040 . X x e Johnson et al. (2009), and conifer or deciduous means, as appropri-
= /e o ate, were used for the remaining species. Carbon content propor-
% ' tions vary with respect to the same factors as wood densities,
0.35 1 Y J Blouin & Cormier (2012) but for this study the same proportions, representing the means
/ . x Singh (1984) of the species-specific distributions, were used for all trees of the
0.30 - 1-1 line same species within the study area. The 16 ranges reported by
e §200507+x Lamlom and Savidge (2003) were each assumed to represent four
0.25 . standard deviations and served as the basis for estimation of a

0.25 030 035 040 045 0.50 0.55 0.60 0.65
Wood density (Miles & Smith, 2009)

Fig. 4. Mean wood densities (g/cm>) by species for eastern Canada (Blouin and
Cormier, 2012) and the Canadian prairie provinces (Singh, 1984) versus national
means for the USA (Miles and Smith, 2009).

species. For the previously reported Canadian study, Singh (1984)
also reported species-specific standard deviations that ranged from
0.033 to 0.045. Because of the close proximity of the Canadian
prairie provinces to the study area, the standard deviations
reported by Singh (1984) were used to estimate a common
species-specific wood density standard deviation of o5 = 0.0407.
The ratio of this value and the mean predicted wood density
(Table 1) corresponds well with the overall ratio of the standard
deviation to the mean of 0.10 assumed by Chave et al. (2004).
For use with the non-specific allometric volume model, the vari-
ance of the pooled species-specific distributions of wood densities

common species-specific standard deviation, &, = 0.04. For use
with the non-specific allometric volume model, the mean of the
pooled species-specific distributions of carbon content proportion
was estimated as the mean of the means of the species-specific dis-
tributions. The variance of this pooled distribution was estimated
as the variance among the species-specific means plus the common
species-specific variance of 62 = (0.04)°.

3.3. Probability-based inference

The validity of probability-based inference relies on the crucial
assumptions that each population unit has a positive probability of
selection for the sample and that a probability sampling design is
used to select sample units (McRoberts et al, 2013). Hansen
et al. (1983) used the term probability-based as an alternative to
the more familiar term design-based, because the requirement is
not just a sampling design, but rather a probability sampling
design. Familiar estimators associated with probability-based
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inference include the simple random sampling, stratified, post-
stratified, and model-assisted regression estimators.

3.3.1. Simple random sampling estimators

For equal probability samples, the simplest approach for esti-
mating population parameters is to use the familiar simple random
sampling (SRS) estimators,

R 18
Hsgs = 0 ;Cj (6a)

and

25 (6~ )’

n(n-1) ’ (6b)

Vér(l:lSRs) =
where ¢; is the carbon value for the jth population unit selected for
the sample. The primary advantages of the SRS estimators are that
they are intuitive, simple, and unbiased when used with an SRS
design; the disadvantage is that variances are frequently large, par-
ticularly for large within-population variability and/or small sample
sizes. Although Var([iszs) from Eq. (6b) may be biased when used
with systematic sampling, it is usually conservative in the sense
that it over-estimates the variance (Sarndal et al., 1992, p. 83). For
this study, finite population correction factors were ignored because
of the small sampling intensity of approximately one 168.1-m? plot
per 6600 ha of study area.

3.3.2. Model-assisted estimators

Model-assisted regression estimators use models based on aux-
iliary data to enhance inferences but rely on the probability sample
for validity (Sarndal et al., 1992). After considering multiple alter-
natives, an area-based model of the relationship between plot-
level carbon and the ALS metrics was formulated as,

G =Py +B,-exp (B3 : QMHj) + &, (7)

where j indexes plots, QMH; is quadratic mean height, ¢; is a plot-
level carbon prediction, ¢ is a random residual, and the ps are
parameters to be estimated. The B; parameter compensates for
the fact that an exponential function is always positive, even when
the argument is 0, and therefore cannot accurately predict biomass
for non-forest plots with no carbon. For future reference, the model
of Eq. (7) is characterized as the area-based model to distinguish it
from the individual tree-level allometric volume model of Eq. (1)
A synthetic estimator of the population mean is,

X 1N,
Psyn = NZ% (8a)
j=1

where N is the population size and ¢; is the model prediction of car-
bon for the ith population unit from Eq. (7). Hansen et al. (1983)
note that models that do not “represent the state of nature” induce
bias into this estimator which, for equal probability samples, can be
estimated as,

PR 1.
Bias (flsyn) = HZSJ-, (8b)
=

where & = ¢ — ¢;. The model-assisted, generalized regression (GREG)
estimator is then defined as,

fcrec = fsyn — Bias(}lSyn)
. (80)

iéj DGR

Z=

j=1
When least squares parameter estimation techniques are used,
the bias estimate will be zero for linear models and generally small

for nonlinear models; nevertheless, the form of the estimator
expressed by Eq. (8c) with the adjustment for estimated bias is still
used. The corresponding variance estimator is,

LS9, (8d)

Var([lcrec) n(n—p) 2.
where p is the number of model parameters and é:%Z}’lei
(Sarndal et al., 1992; Sarndal, 2011). Sarndal et al. (1992, p. 326)
suggests the g-weighted variance estimator for which the
g-weights compensate for using a model estimated from the same
sample as is used for calculating the residuals, ¢;. For this study
the g-weights were ignored with the possible consequences of a
slight underestimation of the variance (Mandallaz, 2013).

The primary advantage of the GREG estimators is that they cap-
italize on the relationship between the sample observations and
their corresponding model predictions to reduce the effects of
within-population variability and therefore reduce the variance
of the estimator of the population mean. The degree to which the
auxiliary information increases precision and thereby shortens
the confidence interval is calculated using relative efficiency,

Vél‘(}lSRs)
RE = A o~ . 9
Var([lcrec) ®

3.4. The simulation procedure

3.4.1. Model-based inference

A replicated Monte Carlo approach similar to that described by
McRoberts and Westfall (in press) was used to generate ny., sets of
simulated plot-level carbon observations where each set repre-
sents a different set of allometric volume model parameter esti-
mates, measurement errors, wood densities, and carbon content
proportions. For replications, k=1, ..., Neep:

(1a) Select a set of allometric volume model parameter estimates
from the distribution constructed in Section 3.2.1.

(1b) For the ith tree on the jth plot in the estimation dataset,
draw a random number, ¢, from a Gaussian (0, 1) distribution
and simulate a dbh observation as,

dbhy; = dbhj} + & - Ggbn,

where dbhg is the observation from the estimation dataset,
and Ggpy is as described in Section 3.2.3.

(1c) For the ith tree on the jth plot in the estimation dataset,
draw a random number, €, from a Gaussian (0, 1) distribution
and simulate a ht observation as,

0
htij = htij + & Op,

where htg is the observation from the estimation dataset, and
Oy is as described in Section 3.2.3.

(1d) For the ith tree on the jth plot in the estimation dataset, use
the parameter estimates from Step (1a) and the simulated
dbh and ht observations from Steps (1b) and (1c¢) to calculate
an initial tree volume observation as,

kO _ [k Bk Bk
vij =B dbhij2 . htif.

Draw a random number, ¢, from a Gaussian (0,1) distribution

and calculate the heteroskedastic allometric volume residual

standard deviation,Gj;, using Eq. (3) from Section 3.2.2 with
V}}'O as the value of the predictor variable and simulate the

individual tree volume as,

k _ kO o~
vijfvij + € - Gjj.
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(1e) For each species, draw a random number ¢ from a Gaussian
(0,1) distribution and simulate species-specific wood
density as 8¢ = 5**° 1 ¢ . ;5 where §*° and o, are from
Section 3.2.4. Similarly, for each species, draw a random
number ¢ from a Gaussian (0,1) distribution and simulate
species-specific carbon content proportion as ysP® = yspe0t
€- o, where y**° and o, are from Section 3.2.5. Use yP®
and &°°° to simulate a carbon (Mg/ha) observation for the
ith tree on the jth plot as,

= e,
where v}j is tree-level volume from Step (1d).

(1f) Simulate the plot-level carbon observation for the jth plot in
the estimation dataset as cf = > 1€ where n; is the number
of trees on the jth plot.

3.4.2. Probability-based inference

A replicated Monte Carlo simulation procedure was used as the
estimator of mean carbon per unit area using the simulated plot-
level carbon observations from Step (1f) and both the SRS and
GREG estimators. For replications, k=1, ..., Nep:

(2a) Use the plot-level carbon predictions from Step (1f) and the
SRS estimators, from Eqs. (8a and b) to estimate mean car-
bon per unit area, [l, and the variance of the estimator
of the mean, Var (fi;).

(2b) Fit the area-based model, Eq. (7), to the kth set of simulated
plot-level carbon observations from Step (1f) using the ALS
metric, QMH, as the predictor variable.

(2c) Use the area-based model, Eq. (7), with parameter estimates
from Step (2b) to predict carbon for each plot and for each of
the 13-m x 13-m grid cells that tessellate Itasca County.

(2d) Use the GREG estimators from Egs. (8c and d) with the sim-
ulated plot-level carbon observations from Step (1f) and
both the plot-level and grid cell carbon predictions from
Step (2b) to estimate mean carbon per unit area, Iz, and
to estimate the variance of the estimator of the mean,

Vér(l:l(k;REG)~

3.4.3. Population parameter estimation
Combine the n, SRS estimates of means and variances from
Step (2c) as per Rubin (1987, pp. 76-77) to calculate overall popu-
lation estimates,
R -l Nrep L
= i, (10a)
rep k=1

and

A 1
var(p) = (1 + nrep> -Wi + Wy,

(10b)

where W; =

AN2
— n,ep —1 anep( _ )

ance, and W, = Z“““’Var( k) is the mean within-replications

k=1

is the among-replications vari-

variance. Replicatlons continue until L and SE(j1) = \/Var([) stabi-
lize. Similarly, combine the n., GREG estimates of means and vari-
ances from Step (2d).

Three issues merit minor clarification. First, in Steps (1b) - (1e),
if || > 2.5, then & was redrawn. Second, the covariances of the allo-
metric model parameter estimators depend on the model residual
variance as is illustrated via the parametric form of the parameter
covariance matrix for a linear model,

var(p) = o®- (X'-X) ", (11)

where X is the matrix of values of the predictor variables and 2 is
the residual variance (Bates and Watts 1988, p. 5). Therefore,
because the effects of the covariances of the model parameter esti-
mators cannot be separated from the effects of the model residual
variance, neither the covariances of the model parameter estima-
tors nor the model residual variance was incorporated into the sim-
ulation procedure apart from the other. Third, in Eq. (10b), W5, is the
mean within-replications variance conditional on particular sets of
imputed tree-level carbon values. As per Rubin (1987) these sets of
imputed values produce “complete-data estimates.” W is the vari-
ance “among the complete-data estimates,” and Eq. (10b) is the
total variance estimator (Rubin, 1987, pp. 76-77).

3.5. Analyses

The procedure described in Sections 3.4.3 was implemented for
combinations of the six sources of uncertainty: variances of distri-
butions of dbh and ht measurement errors, covariances of allomet-
ric model parameter estimators, allometric model residual
variance, and variances of distributions of wood densities and car-
bon content proportions. The primary technical objectives were to
assess the relative effects of the six sources of uncertainty on the
variance of the allometric model estimator and to assess the effects
of the variance of the allometric model estimator on the variance of
the hybrid estimator when using simple random sampling and
model-assisted regression estimators in the probability-based
component.

Additional analyses were conducted to assess the sensitivity of
the estimates of mean carbon per unit area to multiple other
factors: (i) the species-specific wood density means reported by
Miles and Smith (2009) as reported in Section 3.2.4; (ii) the wood
density standard deviations reported by Chave et al. (2009) and by
Thurner et al. (2014) in Section 3.2.4; and (iii) the species-specific
carbon content proportion means reported by Lamlom and Savidge
(2003) in Section 3.2.5.

4. Results and discussion
4.1. Allometric volume model prediction accuracies

Accuracies for the individual tree, species-specific allometric
volume models were uniformly large with 0.94 < R* < 0.99 over
all species with the single exception for Tamarack for which
R?>*=0.83. For the non-specific allometric volume model,
R?* = 0.95. R** values in this range are typical, not only for temper-
ate forests, but also for tropical and sub-tropical forests (Brown
et al., 1989; Chave et al., 2005; Mugasha et al., 2013; McRoberts
et al., 2015).

4.2. Area-based model prediction accuracies

Depending on the estimates of B; and B, for the area-based
model of Eq. (7), some model predictions could be negative,
although such was not the case for this study, regardless of
whether uncertainty from the six sources were or were not incor-
porated. In addition, because the model has no upper asymptote,
some predictions may be unrealistically large, particularly if
QMH is larger for a population unit than the greatest value in the
sample. However, for this study, no prediction was larger than
the largest of the more than 8500 subplot-level observations
obtained for the approximately 630 plots measured at 5-year inter-
vals between 1999 and 2015 for the study area.

Median R?* values for the area-based model were in the range

0.818 < R** < 0.831, regardless of whether the species-specific or
non-specific allometric models were used to predict individual tree
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volumes (Table 2). These R** values were similar to 0.76 < R**
< 0.89 reported by Naesset et al. (2011) and R** =0.84 reported
by McRoberts et al. (2013) for two Norwegian study areas; greater
than R?* = 0.74 reported by Strunk et al. (2012) for a study area in
Washington, USA; and greater than 0.59 < R?>* < 0.72 reported by
d’Oliveira et al. (2012) for a Brazilian study area.

4.3. Estimates of mean carbon per unit area

For each of the four combinations of species-specific or non-
specific allometric model and SRS or GREG estimators, estimates
of mean carbon per unit area were very similar (Table 3). Differ-
ences are attributed primarily to random effects and to the nonlin-
ear nature of the models whereby equal negative and positive
perturbations around a given value of a predictor variable do not
necessarily produce equal perturbations of predictions around
the prediction for that given value. For each allometric model type,
differences among estimates of the mean for the SRS and GREG
estimators reflect differences in the sample and population distri-
butions of the ALS predictor variables. Model misspecification
characterized by the failure of the predictions to describe the pat-
tern of the observations was negligible, and any contributions to
estimator bias were offset by the second term in the GREG estima-
tor. For each estimator, differences among estimates of the mean
for the species-specific and non-specific allometric models were
relatively small and are attributed to differences in the models
themselves. These results are consistent with McRoberts and
Westfall (2014) who reported only small differences in estimates
of mean volume for species-specific and non-specific models for
a different Minnesota dataset, and McRoberts et al. (2015) who
reported similar results for a sub-tropical Brazilian dataset.

4.4. Uncertainty analyses

4.4.1. General results

The smaller SEs for the GREG estimators than for the SRS
estimators, regardless of allometric model type or sources of
uncertainty considered, reflect the utility of the ALS data to

Table 2
Area-based, carbon-lidar model prediction accuracy.

increase the precision of estimators. Although this result has been
frequently reported, failure to observe it would have undermined
the utility of the GREG estimators for reducing variances.

Bias in the variance of the hybrid estimator resulting from
ignoring the variance of the allometric model estimator was
assessed by comparing SEs obtained when none of the six sources
of uncertainty was incorporated into the variance of the allometric
model estimator to SEs obtained when all six were incorporated.
For the species-specific allometric models, the SE with the SRS esti-
mator was approximately 5% greater and the SE with the GREG
estimator was approximately 23% greater when uncertainty from
all six sources was incorporated relative to SEs when no uncer-
tainty from any of the sources was incorporated (Table 3). These
percentage differences for SEs equate to an approximate 10% dif-
ference in variances for the SRS estimator and an approximate
51% difference in variances for the GREG estimator. The 10%
increase in variance for the SRS estimator is approximately the
same as the increase reported by Stahl et al. (2014) who, however,
had much larger allometric model calibration sample sizes but did
not consider uncertainty associated with wood densities or carbon
content proportions. The much greater increase for the GREG esti-
mator confirms the suggestion of McRoberts et al. (2013). For the
non-specific allometric model, the differences in SEs were even
greater, approximately 21% for the SRS estimators and approxi-
mately 92% for the GREG estimators; these SE percentage increases
equate to 46% and 368% increases in variances, respectively.

4.4.2. Results by source

For all four combinations of allometric model type and
probability-based estimator, the combined effects of dbh and ht
measurement errors were negligible. For the species-specific allo-
metric models with both the SRS and GREG estimators, the effects
of the covariances of the allometric model parameter estimators,
the allometric model residual variance, and the wood density
and carbon content variances were approximately equal and had
the greatest effects. For the non-specific allometric models with
both the SRS and GREG estimators, the variance of the pooled
distribution of wood densities accounted for nearly all the vari-

Source of uncertainty

R%*

Allometric volume model Measurement error

Conversion factors

5th percentile 50th percentile 95th percentile

Parameter Residual dbh ht Wood density Carbon

uncertainty variance content

Species-specific allometric volume model

- - - - - - 0.831 0.831 0.831
X X - - - - 0.823 0.831 0.832
- - X X - - 0.818 0.828 0.838
- - - - X X 0.805 0.830 0.849
- - - - X - 0.828 0.831 0.834
- - - - - X 0.804 0.829 0.850
X X X X - - 0.815 0.828 0.838
X X - - X X 0.803 0.827 0.847
- - X X X X 0.801 0.828 0.849
X X X X X X 0.797 0.826 0.848
Non-specific allometric volume model

X X - - - 0.830 0.831 0.833
- - X X - - 0.818 0.830 0.841
- - - - X X 0.740 0.820 0.861
- - - - X - 0.753 0.824 0.860
- - - - - X 0.807 0.831 0.851
X X X X - - 0.819 0.830 0.841
X X - - X X 0.744 0.821 0.861
- - X X X X 0.730 0.818 0.860
X X X X X X 0.743 0.820 0.858




Table 3
Estimates.

Source of uncertainty

Mean carbon estimates (Mg/ha)

Allometric volume model Measurement Conversion factors SRS? GREG”
error

Parameter Residual dbh ht Wood Carbon [isks SE([isks) Confidence [iGREG SE(ficRrec) Confidence
covariances variance density content (Mg/ha) (Mg/ha) interval® (Mg/ha) (Mg/ha) interval®
Species-specific allometric volume model
- - - - - - 21.16 3.24 [14.68, 27.64] 19.79 1.32 [17.15, 22.43]
X - - - - 21.03 3.31 [14.41, 27.65] 19.63 1.47 [16.69, 22.57]
- - X X - - 21.17 3.26 [14.65, 27.69] 19.78 1.34 [17.10, 22.46]
- - - - X X 21.15 3.31 [14.53, 27.77] 19.76 145 [16.86, 22.66]
- - - - X - 21.16 3.24 [14.68, 27.64] 19.79 1.32 [17.15, 22.43]
- - - - - X 21.14 331 [14.52, 27.76] 19.76 1.46 [16.84, 22.68]
X X X X - - 21.04 332 [14.40, 27.68] 19.64 1.48 [16.68, 22.60]
X X - - X X 21.05 3.40 [14.25, 27.85] 19.64 1.61 [16.42, 22.86]
- - X X X X 21.21 3.33 [14.55, 27.87] 19.82 1.48 [16.86, 22.78]
X X X X X X 21.05 3.41 [14.23, 27.87] 19.64 1.62 [16.40, 22.88]
Non-specific allometric volume model
- - - - - - 23.17 3.51 [16.15, 30.19] 21.63 1.42 [18.79, 24.47]
X - - - - 23.14 3.52 [16.10, 30.18] 21.63 1.44 [18.75, 24.51]
- - X X - - 23.20 3.52 [16.16, 30.24] 21.69 1.45 [18.79, 24.59]
- - - - X X 23.18 4.21 [14.76, 31.60] 21.68 2.49 [16.70, 26.66]
- - - - X - 23.19 4.15 [14.89, 31.49] 21.71 2.40 [16.91, 26.51]
- - - - - X 23.16 3.61 [15.94, 30.38] 21.65 1.61 [18.43, 24.87]
X X X X - - 23.17 3,53 [16.11, 30.23] 21.66 1.47 [18.72, 24.60]
X X - - X X 23.04 4.13 [14.78, 31.30] 21.56 2.40 [16.76, 26.36]

- X X X X 23.26 4.21 [14.84, 31.68] 21.75 2.47 [16.81, 26.69]
X X X X X X 23.19 4.24 [14.71, 31.67] 21.71 2.54 [16.63, 26.79]

2 SRS: simple random sampling estimators.
Y GREG: model-assisted, generalized regression estimators.

¢ 2-standard error confidence interval.
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ances for both the allometric model estimator and the hybrid
estimator.

The effects of the covariances of the allometric model parame-
ter estimators and the allometric model residual variance were
much greater for the species-specific models than for the non-
specific models, whereas the effects of the wood density variance
were much less for the species-specific models than for the non-
specific models. These results are attributed primarily to the much
larger calibration sample size for the non-specific models which
resulted in much smaller covariances for the model parameter esti-
mators. Simultaneously, the similarities in model prediction accu-
racies as reflected in R?* for both types of allometric models meant
there was no offsetting effect of larger residual variance. Second,
for the non-specific model, the variance of the pooled distribution
of wood densities incorporates both the common species-specific
variance and the variance among the species-specific means, but
for the species-specific models, the variance among the species-
specific means is not incorporated. In particular, for the species-
specific models, the common species-specific wood density
standard deviation was 0.004, but for the non-specific model the
standard deviation of the pooled distribution was estimated as
0.095. The latter value is comparable to the mean standard devia-
tion of 0.091 reported by Thurner et al. (2014) for northern boreal
and temperate forests and less than the standard deviation of 0.153
reported by Chave et al. (2009) for all North American species.
Thus, the effects of the variance of the pooled distribution of wood
densities used with the non-specific model for this study may be
regarded as comparable or less than effects reported in the
literature.

In general, uncertainties for individual sources that function at
the tree- or plot-level had smaller effects than uncertainties that
function at the population level. For example, dbh and ht measure-
ment errors function at the tree-level and, therefore, measurement
errors more readily compensate for each other at plot-level. Con-
versely, uncertainties that function at the population level such
as the variance of the pooled distribution of wood densities have
greater effects.

4.5. Comparative analyses

4.5.1. Comparisons for carbon conversion factors

Although species-specific carbon content proportions were
used for this study, commonly a non-specific value of 0.50 g/cm®
is used (Woodall et al., 2011, p. 3). For the four combinations of
allometric model type and probability estimator, differences in
estimates of the mean carbon per unit area resulting from using
the common non-specific value of 0.50 g/cm® ranged from 0.33
to 0.53 Mg/ha and on a percentage basis from 1.6% to 2.5%. These
negligible differences can be attributed to the similarity of the
species-specific carbon proportions to the common non-specific
value of 0.50 g/cm> and to the small standard deviations of the
species-specific distributions (Table 1).

4.5.2. Comparisons for wood densities

The estimates of the population means were compared for the
wood densities used for this study and the American wood densi-
ties reported by Miles and Smith (2009) (Table 1). For the four
combinations of allometric model type and probability-based esti-
mator, the differences in estimates of the means ranged from
—1.69 to —1.84 Mg/ha and on a percentage basis from —7% to to
8%. These marginally negligible differences were all less than two
SEs and are consistent with the average difference of approxi-
mately 0.05 g/cm® between the wood density means used and
the American wood densities (Fig. 4).

Estimates of means and SEs obtained for the wood density
means and their standard deviations selected in Section 3.2.4 were

compared to estimates obtained using the North American wood
density means and standard deviations reported by Chave et al.
(2009). For the non-specific allometric models and a common
carbon content proportion, the difference in the means for the
SRS estimators was 5.35 Mg/ha or 23%, and the difference in SEs
was 1.19 Mg/ha or 29%; for the GREG estimators, the difference
in the means was 5.10 Mg/ha or 23%, and the difference in SEs
was 40%. These differences are certainly not negligible and can at
least partially be attributed to the effects of using means over
the entirety of North America rather than means more closely
targeted to the study area.

Estimates of means and SEs were similarly compared for the
broadleaf, needleleaf deciduous, and needleleaf evergreen wood
density means and corresponding standard deviations for boreal
and temperate regions reported by Thurner et al. (2014). To avoid
confounding between the effects of different species data used as
the basis for the allometric volume models and different wood
density means and standard deviations, models for the same spe-
cies groups as reported by Thurner et al. (2014) were constructed
specifically to facilitate these comparisons. Ignoring the effects of
covariances for the allometric model parameter estimators and
the allometric residual variance, estimates of mean carbon per unit
area when using the Thurner et al. (2014) wood density means
were larger by nearly 20% and the SE was larger by 45% for the
SRS estimators and 105% for the GREG estimators. These differ-
ences in the estimates and particularly the SEs are even less negli-
gible than the estimates obtained using the Chave wood density
means.

5. Conclusions

Three primary conclusions were drawn from the study. First,
regardless of whether species-specific or non-specific allometric
volume models were used, and regardless of whether simple ran-
dom sampling or generalized regression estimators were used,
estimates of mean carbon per unit area were similar and within
two standard errors of each other.

Second, the estimate of bias in the variance of the hybrid esti-
mator resulting from ignoring the variance of the allometric model
estimator was 10% when using the species-specific allometric
model and the simple random sampling estimator, 51% when using
the species-specific allometric model and the generalized regres-
sion estimator, 46% when using the non-specific allometric model
and the simple random sampling estimator, and 368% when using
the non-specific allometric model and the generalized regression
estimator. Differences in results for the simple random and gener-
alized regression estimators are mostly attributed to reduction in
the variance of the hybrid estimator resulting from use of the aux-
iliary airborne laser scanning data. Differences in results for the
species-specific and non-specific allometric models are mostly
attributed to the much greater variance of the pooled species-
specific distributions of wood densities relative to the variances
of the individual species-specific distributions. Overall, the effects
of ignoring the variance of the allometric model estimator were
negligible only for the combination of the species-specific allomet-
ric model and the simple random sampling estimator. These
results suggest that when non-specific allometric models are used,
as is the case for many tropical inventories, ignoring the effects of
the variance of the allometric model estimator may substantially
under-estimate the SE of estimates of mean carbon per unit area.

Third, the effects of continental-level and/or ecological
province-level wood density means on both estimates of mean car-
bon per unit area and the variances of the estimators were
substantial.

Two additional issues merit comment. First, all results are based
on allometric model calibration sample sizes in the range of 65-155
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with mean of 85, and R** generally greater than 0.95. Smaller
sample sizes and/or less accurate models could lead to somewhat
different results. Second, any reduction in the variance of the
hybrid estimator of mean carbon per unit area obtained from
non-specific allometric models would require a smaller variance
of the pooled distributions of the wood densities. Unfortunately,
the greatest contributor to this variance is the variation among
species, not the variance within species. For tropical inventories,
with large numbers of species, reduction of the variance of the
hybrid estimator will remain a challenge.
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