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Methods for evaluating the utilities of local and global maps
for increasing the precision of estimates of subtropical forest
area
Ronald E. McRoberts, Alexander C. Vibrans, Christophe Sannier, Erik Næsset, Matthew C. Hansen,
Brian F. Walters, and Débora V. Lingner

Abstract: For a study area in the Brazilian state of Santa Catarina, the utilities of local and global forest maps in combination
with poststratified and model-assisted estimators for increasing the precision of estimates of forest area were compared.
Auxiliary information was in the form of local maps, the recent Global Forest Change map, and combinations of these maps. The
poststratified estimators produced estimates of greater precision than the model-assisted regression estimators for maps of
categorical variables, but the model assisted estimators produced estimates of greater precision for maps of continuous vari-
ables. The Global Forest Change map was the least accurate of all the maps, but it produced estimates of forest area that were
similar to those for the other maps and that were more precise than if the map had not been used. Thus, the Global Forest Change
map may be an attractive option if local maps are not available or cannot be constructed. The primary contributions of the study
are two-fold. First, this is one of the first case studies that rigorously assess the utility of global maps for national estimation.
After accumulation of a few more such studies, broader generalizations should be forthcoming. Second, a statistical basis is
provided for the previously unexplained greater precision for poststratified estimators than for model-assisted estimators.
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Résumé : Sur la base d’une zone d'étude située dans l'État de Santa Catarina au Brésil, nous avons comparé l'utilité de cartes du
couvert forestier locales et mondiale combinées à des estimateurs stratifiés a posteriori ou assistés par un modèle pour
augmenter la précision de l'estimation des superficies forestières. L'information auxiliaire était représentée par les cartes
locales, la carte récemment produite de ‘Global Forest Change’ et différentes combinaisons de ces cartes. Pour les cartes à valeurs
catégoriques, les estimateurs stratifiés a posteriori ont produit des estimations plus précises que les estimateurs assistés par un
modèle de régression, mais, pour les cartes à valeurs continues, les estimateurs assistés par un modèle de régression ont produit
des estimations de plus grande précision que les estimateurs stratifiés. La carte de ‘Global Forest Change’ était la moins précise
de toutes les cartes mais elle a produit des estimations de la superficie forestière semblables à celles des autres cartes et plus
précises que si seules les données de terrain avaient été utilisées. Par conséquent, la carte des changements du couvert forestier
mondial peut être une option intéressante si les cartes locales ne sont pas disponibles ou ne peuvent être produites. Les
principales contributions de cette étude résident en deux volets. Premièrement, il s'agit d’une des premières études de cas qui
évalue rigoureusement l'utilité des cartes mondiales pour des estimations à l'échelle nationale. Après que d’autres études
semblables auront été réalisées, il devrait être possible de généraliser ce fait plus largement. Deuxièmement, nous proposons des
fondements statistiques qui permettent dorénavant d'expliquer la plus grande précision des estimateurs stratifiés comparative-
ment aux estimateurs assistés par un modèle. [Traduit par la Rédaction]

Mots-clés : modèle de régression logistique, inférence, Santa Catarina, Brésil.

1. Introduction
1.1. Background

In the framework of the United Nations program, Reducing
Emissions from Deforestation and Forest Degradation (REDD),
incentive payments to developing countries for reducing forest-
related greenhouse gas (GHG) emissions are results based, mean-
ing that the payments are contingent on the countries providing
convincing evidence that reduction targets have been achieved
(Voigt and Ferreira 2015). In this framework, the evidence must be

in the form of accurate and precise estimates of forest resources,
particularly forest area. This requirement is recognized as a key
component of monitoring, reporting, and verification programs
implemented in tropical and subtropical countries under the aus-
pices of the United National Framework Convention on Climate
Change (UNFCCC). For example, estimation of forest area is a
primary component of the gain–loss approach to carbon account-
ing recommended by the Intergovernmental Panel on Climate
Change (IPCC) (Penman et al. 2003). Additional and extended guid-
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ance is provided by the Methods and Guidance document (Global
Forest Observations Initiative (GFOI) 2013) and the associated
module on using global tree cover and change datasets (GFOI
2015). With the gain–loss approach, the net balance of additions to
and removals from a carbon pool is estimated as the product of
the area of land use change, called activity data, and the responses
of carbon stocks for particular land use change categories on a per
unit area basis, called emission factors. For these GHG inventories,
the IPCC defines two good practice criteria: (i) “neither over- nor
under-estimates as far as can be judged”, and (ii) “uncertainties are
reduced as far as practicable” (see preface in Penman et al. (2003));
in this context, uncertainty is conceptually equivalent to the in-
verse of precision. Thus, the importance of not only the accuracy,
but also the precision, of estimates of forest area must be empha-
sized.

Satisfaction of precision criteria for estimates of forest area is
difficult to achieve apart from augmenting the estimation process
with auxiliary information. One effective approach has been to
use stratified estimators, whereby auxiliary information in the
form of classifications of satellite spectral data serve as the basis
for strata. Two sets of stratified estimators are distinguished. First,
when strata are defined before sampling and within-strata sample
sizes are selected in advance, the term stratified is used to character-
ize the estimators, whereas when the sample is selected without
regard to the strata and the within-strata sample sizes are random,
the term poststratified (PSTR) is used to characterize the estimators.
The Forest Inventory and Analysis program of the U.S. Forest Service,
which conducts the national forest inventory of the United States of
America, has devoted considerable effort to investigating PSTR esti-
mators using satellite spectral data; much of this research is summa-
rized in McRoberts et al. (2005) and Westfall et al. (2011). Stratified
estimators are also increasingly used for estimating tropical forest
area. Tyukavina et al. (2013) used stratified estimators and Landsat
data to estimate forest area for the Democratic Republic of the
Congo, and Potapov et al. (2014) used stratified estimators and Land-
sat data to estimate the extent of forest cover in Peru. Olofsson et al.
(2013, 2014) illustrated stratified estimators using information in a
confusion matrix and provided corresponding good practice guide-
lines. The general conclusion from these and similar studies is that
both stratified and PSTR estimators with remote sensing based strata
have the potential to reduce the variances of estimates of forest area
by factors of three or greater relative to the variances of estimates
obtained using only plot data.

Recently, model-assisted regression estimators have been used
with remotely sensed auxiliary information to increase the precision
of estimates of parameters related to forest area. McRoberts (2011)
used Landsat data and model-assisted estimators to estimate areas of
forest, nonforest, coniferous forest, and deciduous forest, and
McRoberts (2014) extended these techniques to estimate areas of af-
forestation, deforestation, and net deforestation. Vibrans et al. (2013)
used model-assisted estimators with forest inventory data and re-
mote sensing based land cover maps to estimate forest area for Santa
Catarina, Brazil. Sannier et al. (2014, 2016) estimated forest area
change for Gabon using model-assisted estimators and maps based
on Landsat data. These techniques have been highly effective, with
the variances of estimates of forest area reduced by factors as great as
30 and variances of estimates of forest area change reduced by fac-
tors as great as 3.5 relative to variances of simple random sampling
(SRS) estimates (Sannier et al. 2016).

Only a few comparisons of model-assisted estimators and either
form of stratified estimators have been reported. Stehman (2009)
demonstrated that PSTR and model-assisted estimators are closely
related and can be encompassed within the same inferential frame-
work. For continuous response variables, McRoberts et al. (2013) and
Sannier et al. (2014) reported that model-assisted estimators pro-
duced greater precision than PSTR estimators. However, for categor-
ical response variables, Stehman (2013) reported that stratified
estimators produced comparable or greater precision than model-

assisted regression estimators when the stratification variable and
the inventory response variable were the same. McRoberts et al.
(2014) reported similar results for PSTR estimators.

Construction of remote sensing based land cover maps typically
entails acquisition of the remotely sensed data, training data to
guide classification or prediction, and reference data for assessing
accuracy. These tasks can be costly, laborious, and time consum-
ing. Therefore, use of local existing maps can be an efficient alter-
native (McRoberts et al. 2002; Vibrans et al. 2013). Although the
usual challenge is that few, if any, relevant maps are available, on
occasion, the challenge may be to choose from among multiple
maps. For example, for the Brazilian State of Santa Catarina, Vibrans
et al. (2013) reported comparisons of four land cover maps that were
aggregated to forest–nonforest. Although model-assisted estimates
and their variances were similar for several of the maps, they all
exhibited deficiencies for particular applications. An alternative ap-
proach that merits consideration is to combine maps in such a way
that the resulting map capitalizes on the relative strengths of the
underlying maps while circumventing their deficiencies.

If no current local maps exist and the construction of maps is
not feasible, then a third alternative is to use one of the existing
continental or global forest cover and (or) forest cover change
maps. The recently released Landsat based, Global Forest Change
(GFC) map products at 30 m × 30 m resolution (Hansen et al. 2013)
are one possibility. Other possibilities include the 30 m × 30 m
Global Land Cover dataset based on Landsat and Huan Jing
(Environment)-1 data (Jun et al. 2014). This dataset depicts 10 main
land cover types for two reference years, 2000 and 2010. A third
possibility is the global forest–nonforest map that is based on data
from the Advance Land Observation Satellite, Phased Array type
L-band Synthetic Aperture Radar, and depicts forest cover in four
density classes for years between 2007 and 2010 (Shimada et al.
2014). The choice of a particular map depends on multiple factors,
including the degree to which the maps and local reference data
match with respect to factors such as dates, resolutions, and def-
initions.

1.2. Objectives
For a study area in the Brazilian State of Santa Catarina, the objec-

tives were two-fold: (i) to compare estimates of proportion forest area
and corresponding estimates of precision using a variety of local and
global maps as auxiliary information, and (ii) to compare SRS, PSTR
estimators, and model-assisted estimators with respect to the preci-
sion of estimates of proportion forest area.

2. Data

2.1. Study area
The study area was a 150 km × 150 km region in the east–central

portion of the Brazilian state of Santa Catarina (Fig. 1). Santa Ca-
tarina includes dense ombrophylous forests and mixed ombro-
phylous forests with Araucaria phytogeographic subdivisions, as
established by Klein (1978) and Veloso et al. (1991).

2.2. Forest and Floristic Inventory of Santa Catarina
Data from the Forest and Floristic Inventory of Santa Catarina

(IFFSC) for the study area included ground plot observations of
forest cover, structure, and composition obtained between 2007
and 2010 for a sample consisting of 255 plots located at the inter-
sections of a 10 km × 10 km grid with a randomly selected starting
position. This sampling design features sampling without replace-
ment, with all potential plot centers having equal probabilities of
inclusion into the sample. Sample plots consisted of clusters of four
crosswise 1000 m2 subplots (20 m × 50 m) and were used to collect
field data (Vibrans et al. 2010). Plot centers were determined in the
field using global positioning system receivers with a mean error of
4.1 m. For this study, assessments of only the northernmost subplot
of each plot were used as a means of circumventing issues related to
spatial correlation among observations for subplots of the same plot.
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The forest–nonforest status of the plots was determined using the
IFFSC definition of forest, which specifies woody vegetation with
minimum area of 0.5 ha, canopy height of at least 10 m, and basal
area of at least 10 m2·ha–1 (Vibrans et al. 2013). A nominal 10% canopy
cover criterion was used, but cover of exactly 10% was difficult to
assess in the field. However, subsequent analyses indicated that the
height and basal area criteria produced canopy covers of at least 10%.

2.3. Local Santa Catarina maps
Four satellite image based land cover maps had previously been

constructed for Santa Catarina: (i) a survey of forest remnants of
Santa Catarina (Levantamento da Cobertura Florestal da Secre-
taria de Agricultura) designated LCF/SAR (SAR 2005); (ii) a survey of
the native vegetation of the Atlantic forest designated PROBIO
(Cruz and Vincens 2007); (iii) an atlas of the Atlantic forest rem-
nants designated Atlas 2008 (Fundação SOS Mata Atlântica 2009);
and (iv) a general thematic map of the state of Santa Catarina (Projeto
de Proteção da Mata Atlântica) designated PPMA (Geoambiente
Sensoriamento Remoto Ltda. 2008). Data for the four surveys and
the resulting maps were kindly provided by the responsible insti-
tutions (Table 1). Vibrans et al. (2013) discussed the individual
thematic classes for the four maps and how they were aggregated
to the two classes, i.e., forest and nonforest.

2.4. GFC map
Of the previously referenced global datasets, the GFC data are

most compatible with the local inventory data with respect to
dates, resolution, and forest definition. The Landsat-based GFC
map was acquired, clipped to the study area boundaries, and geo-
rectified with the inventory plot locations and local maps using a
common coordinate system. The GFC year 2010 tree cover data are
per pixel estimates of percent maximum tree canopy cover based
on cloud-free, annual growing season, composite, Landsat 7 En-
hanced Thematic Mapper Plus data. A regression tree model was
used with annual composites from 2000 to 2012 inclusive (Hansen
et al. 2013). Data gaps and noise were replaced using multiyear
median values. The resulting layer represents estimated maxi-
mum percent tree canopy cover per 30 m × 30 m pixel in the range
1%–100% for vegetation taller than 5 m for the year 2010. For this

study, the tree cover percentages were divided by 100 to convert
them to proportions.

3. Methods

3.1. Combining maps
Two additional maps were constructed by combining informa-

tion from the four local maps and the GFC map using a logistic
regression model. The relationship between a Bernoulli response
variable, Y, such as forest–nonforest and a vector, X, of predictor
variables, whether categorical or continuous, is often expressed as

(1)
pi � E(yi)

� f(Xi; �)

where i indexes population units, E(.) denotes statistical expecta-
tion, pi is the probability that yi = 1, and � is a vector of parameters
to be estimated (Agresti 2007). The function f(Xi; �) expresses the
statistical expectation of Y in terms of X and � and is often for-
mulated using the logistic function as

(2) f(Xi; �) �

exp��0 � �
j�1

J

�jxij�
1 � exp��0 � �

j�1

J

�jxij�
where exp(.) is the exponential function. For this study, j indexes
maps, and Y is forest–nonforest, with yi = 0 denoting nonforest
and yi = 1 denoting forest. The model parameter vector, �, was
estimated using the maximum likelihood method (Agresti 2007).

The logistic regression model was fit using the IFFSC forest–
nonforest observations as the response variable and the forest–
nonforest data from the four local maps as the predictor variables.
The model of eq. 2 with estimated parameter values was then used
to predict the probability of forest for each pixel with the result
designated the SC map because it is based on the combination of

Fig. 1. Study area in the State of Santa Catarina, Brazil.
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the four Santa Catarina maps. Similarly, the logistic regression
model was fit using the IFFSC forest–nonforest observations as the
response variable and both the forest–nonforest data from the
four local maps and the GFC tree cover proportions as the predic-
tor variables. The model of eq. 2 with the estimated parameter
values was then used to predict the probability of forest for each
pixel, with the result designated the SC+GFC map.

3.2. Constructing forest–nonforest maps
The GFC map consists of continuous tree cover proportions in

the range [0, 1], and the SC and SC+GFC maps consist of continu-
ous probabilities of forest, also in the range [0, 1]. The continuous
values for all three maps were used with multiple threshold (T)
values to construct forest–nonforest maps. For the GFC map, if the
proportion tree cover for a pixel exceeded T, then the pixel was
classified as forest; otherwise, the pixel was classified as nonfor-
est. For the SC and SC+GFC maps, if the probability of forest from
eq. 2 exceeded T, then the pixel was classified as forest; otherwise,
the pixel was classified as nonforest. The following three thresh-
olds were used: T = 0.1, T = 0.3, and T = 0.5. The first threshold
corresponds to the minimum canopy cover for the IFFSC defini-
tion of forest and is also the minimum value recommended by the
UNFCCC (2006); the second threshold is the maximum value rec-
ommended by the UNFCCC; and the third threshold is commonly
used to distinguish classes when using logistic model predictions.
In summary, 16 maps were available: four local forest–nonforest
maps; nine additional forest–nonforest maps constructed using
each of the three thresholds with each of the SC, GFC, and SC+GFC
maps; the GFC proportion tree cover map; and the SC and SC+GFC
probability of forest maps.

3.3. Map accuracy
The accuracies of the 13 forest–nonforest maps were evaluated

using error matrices, where overall accuracy (OA) is the propor-
tion of observations correctly classified, user's accuracy (UA) is the
ratio of the number of correct classifications and the total number
of predictions for a class, and producer's accuracy (PA) is the ratio
of the number of correct classifications and the total number of
observations for a class.

3.4. Inference
Because forest area is simply the product of total area and pro-

portion forest area and because total area is known, estimation
focused on proportion forest area. The ultimate inferential objec-
tive was to construct confidence intervals for estimates of propor-
tion forest area for the entire study area. These intervals are
expressed as

(3) �̂ ± t SE(�̂)

where �̂ is the estimate of proportion forest area, SE��̂� �

�Vâr��̂� is the standard error of �̂, and the factor t depends on the
desired significance level and the distribution of the response
variable. For most distributions and applications, t = 2 produces
an approximate 95% confidence interval. For purposes of con-
structing confidence intervals, the focus of the study was estima-
tion of mean proportion forest area and the variance and SE of the
estimated mean using SRS, PSTR, and model-assisted estimators.
In the probability-based or design-based frameworks, all three
estimators are unbiased or asymptotically unbiased in the sense
that the mean of estimates obtained using the estimator over all
possible samples equals the true value. However, the estimate
obtained with any particular sample may deviate substantially
from the true value, hence the relevance of confidence intervals.

3.4.1. SRS estimators
Proportion forest area was estimated using only the observa-

tions from the IFFSC ground sample under the assumption of SRS.T
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For an equal probability sample, the SRS estimator of proportion
forest, �̂SRS, is simply the proportion of sample plots classified as
forest cover

(4) �̂SRS �
1
n �

i�1

n

yi

where n is the sample size, i indexes the sample units, and

(5) yi � �0 if nonforest land cover is observed
1 if forest land cover is observed

For the Bernoulli variable defined by eq. 5, an estimator of the
variance of �̂SRS is

(6)
Vâr(�̂SRS) �

1
n(n � 1) �

i�1

n

(yi � �̂SRS)
2

�
�̂SRS(1 � �̂SRS)

n(n � 1)

When a systematic sample is used, as for this study, variances
may be overestimated relative to estimates based on a simple
random sample (Särndal et al. 1992, p. 83), although Aune-Lundberg
and Strand (2014) note that the SRS estimators are still safe and
conservative. The primary advantages of the SRS estimators are
that they are intuitive and unbiased, but the disadvantage is that
variances may be large, particularly for small sample sizes and (or)
highly variable populations.

3.4.2. PSTR estimators
The essence of stratification is to disaggregate the population

into a small number of homogenous classes or strata and then
calculate the population mean as a weighted mean of the within-
stratum means, where the weights are proportional to the strata
sizes. For appropriate strata, stratification can reduce the variances
of estimates of the population mean relative to variances obtained
using the SRS estimators. Use of stratified estimators requires accom-
plishment of two tasks: (i) calculation of the strata weights and (ii)
assignment of each sample unit to a single stratum. The first task is
accomplished by calculating the strata weights as proportions of
population units in strata. The second task was accomplished for this
study by assigning the IFFSC plots to strata on the basis of the strata
assignments of the map units containing the plot centers.

Forest inventory and monitoring programs increasingly use
permanent plots whose locations are based on systematic grids
and sampling intensities that are constant over large geographic
areas. In such cases, stratified sampling is not possible, but preci-
sion may still be increased by using PSTR estimators subsequent
to the sampling. PSTR estimates of means and variances are cal-
culated using estimators provided by Cochran (1977)

(7) �̂PSTR � �
h�1

H

wh�̂h

where

(8) �̂h �
1
nh
�
i�1

nh

yhi

and where h = 1, …, H denotes strata, yhi is the ith sample observa-
tion in the hth stratum, wh is the weight for the hth stratum, nh is

the number of plots assigned to the hth stratum, and �̂h is the
sample estimate of the within-stratum mean. For poststratifica-
tion, Cochran (1977, p. 135) provides an estimator of the variance

(9) Vâr(�̂PSTR) � �
h�1

H 	wh

�̂h
2

n
� (1 � wh)

�̂h
2

n2

where

(10) �̂h
2 �

1
nh � 1 �

i�1

nh

(yhi � �̂h)
2

The utility of a stratification for increasing the precision of
estimates is often assessed using relative efficiency (RE), which,
for this study, was defined as

(11) RE �
Vâr(�̂SRS)

Vâr(�̂PSTR)

where RE > 1.0 indicates a reduction in variance and an increase in
precision.

Strata were constructed using two approaches. First, for each of
the 13 forest–nonforest maps, the forest–nonforest classes were
used as strata. Second, for the SC, GFC, and SC+GFC maps, strata
boundaries for separating the forest and nonforest strata were
selected to minimize the PSTR variance estimate from eq. 9 by
considering all possible boundaries between 0.01 and 0.99 in
increments of 0.01. Map accuracy assessments, as described in
Section 3.2, were also conducted for forest–nonforest maps for
which the latter optimal thresholds were used to distinguish the
classes. Of importance, map inaccuracy does not contribute to
bias in the estimator but only causes the variance of the stratified
estimate to increase and the RE to decrease (Gregoire and
Valentine 2008, section 5.5).

Concerns may be raised regarding the validity of estimates ob-
tained using stratifications constructed using the same sample
observations as are used to calculate estimates. Breidt and Opsomer
(2008) demonstrated that when strata are constructed by dividing
the range of predictions obtained from a regression model cali-
brated using the response variable observations, the detrimental
effects of violating the stratification assumptions are negligible,
even for small sample sizes. Dahlke et al. (2013) and Tipton et al.
(2013) extended these results to include nonparametric prediction
procedures.

3.3.3. Model-assisted estimators
Model-assisted regression estimators use models based on

auxiliary data to enhance inferences but rely on the probability
sample for validity (Särndal et al. 1992). An initial estimator of
proportion forest area based only on the map data, designated the
synthetic estimator (�̂Syn), is formulated as

(12) �̂Syn �
1
N �

i�1

N

ŷi

where N is the population size and ŷi is the map prediction. For
forest–nonforest maps, ŷi � 0 if the map class is nonforest and
ŷi � 1 if the map class is forest; for the GFC map, ŷi takes on the
continuous values of proportion tree cover; and for the SC and
SC+GFC maps, ŷi takes on the continuous values of the probability
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of forest. Systematic map classification and prediction errors in-
duce bias into this estimator, which can be estimated as follows:

(13) Bîas(�̂Syn) �
1
n �

i�1

n

�i

where �i � ŷi � yi. The model-assisted, generalized regression
(GREG) estimator is then defined as

(14)

�̂GREG � �̂Syn � Bîas(�̂Syn)

�
1
N �

i�1

N

ŷi �
1
n �

i�1

n

�i

with variance estimator

(15) Vâr(�̂GREG) �
1

n(n � 1) �
i�1

n

(�i � �̄)2

where �̄ �
1
n � i�1

n
�i (Särndal et al. 1992, section 6.5; Särndal 2011).

Of importance, correction for estimated bias compensates for
map inaccuracy, making the GREG estimator asymptotically un-
biased. RE was calculated as

(16) RE �
Vâr(�̂SRS)

Vâr(�̂GREG)

The primary advantage of the GREG estimators is that they
capitalize on the relationship between the sample observations
and their model predictions in the form of map data to reduce the
variance of the estimate of the population mean.

4. Results and discussion

4.1. Map accuracies
Absolute values for estimates of the logistic regression model

parameters were greatest for the PPMA map, which had the great-
est OA of the four original maps, and smallest for the LCF/SAR
maps, which had the smallest OA of the four original maps. Thus,
predictions for maps constructed using the logistic regression
model and information from the four original maps were most
influenced by the most accurate original map and least influenced
by the least accurate original map.

For the four local maps, OAs ranged from 0.75 to 0.82; for the
four forest–nonforest maps derived from the SC map, which con-
sists of probabilities of forest, all OAs were 0.82; for the four
forest–nonforest maps derived from the GFC proportion tree
cover map, OAs ranged from 0.62 to 0.69; and for the four forest–
nonforest maps derived from the SC+GFC probability of forest
map, OAs ranged from 0.63 to 0.83 (Table 2). Thus, considering all
OAs, the forest–nonforest maps derived from the SC probability of
forest map were the most accurate overall, followed by the four
local maps, then the forest–nonforest maps derived from the
SC+GFC probability of forest map, and finally, the forest–nonforest
maps derived from the GFC proportion tree cover maps.

Several map accuracy issues are worth noting. First, maps de-
rived from the SC probability of forest map were as accurate, or
more accurate, than the four local maps. Second, when consider-
ing OA, PA, and UA together, maps derived from the SC probabil-
ity of forest map were consistently more accurate across all
measures than any of the other maps, although the PPMA map
was only slightly less accurate. Third, use of the proportion tree
cover data from the GFC map as a predictor variable when con-

structing the SC+GFC map led to a slight loss of accuracy in the
derived forest–nonforest maps relative to the maps derived from
the SC map. Finally, greater values of the threshold, T, generally
produced greater accuracies.

Values of the threshold, T, for the GFC-derived forest–nonforest
maps had little effect on OAs. Within the small range of values,
the least accurate map was produced using T = 0.10, which corre-
sponds most closely to the nominal 10% canopy cover used by
the IFFSC and is also the minimum value recommended by the
UNFCCC, and the second least accurate map was produced using
T = 0.30, which corresponds to the maximum value recommended
by the UNFCCC. For the GFC map, OA was maximized for T = 0.95
(Table 2). For a related study in Gabon, Sannier et al. (2016) found
that a threshold of T = 0.70 for the GFC map produced the greatest
accuracy.

4.2. SRS estimators
The SRS estimators that use only the IFFSC plot-level forest–

nonforest observations produced �̂SRS = 0.475 and SE��̂SRS� = 0.031.
Because use of the SRS variance estimator with data obtained
from a systematic sample may be positively biased, additional
variance estimators could be considered. For this study, a variance
estimator proposed by Wolter (1984) to accommodate this issue
produced variance estimates that deviated proportionally by less
then 0.01 from estimates obtained using the SRS variance estima-
tor. This result confirms the conclusion of Aune-Lundberg and
Strand (2014) that the SRS estimators are “a safe and conservative
alternative when spatial autocorrelation is absent or unknown”.
Therefore, for this study, estimates obtained using the SRS esti-
mators are used for comparison purposes. In particular, when the
sample is proportionally allocated to strata, as is the sample for
this study, the SRS and PSTR estimates of the mean converge
asymptotically as the sample size increases.

4.3. PSTR estimators
As expected, the unbiased PSTR estimators produced similar

estimates of proportion forest area ranging from 0.429 to 0.471,
regardless of the map used as auxiliary information (Table 3).
Although the overall range of SEs was also small (0.024 to 0.030),
the forest–nonforest maps derived from the SC probability of for-

Table 2. Map accuracies.

Accuracies

PA UA

Map Threshold (T) OA Nonforest Forest Nonforest Forest

Atlas 2008 — 0.76 0.71 0.56 0.92 0.86
LCF/SAR — 0.75 0.74 0.69 0.79 0.75
PPMA — 0.82 0.84 0.84 0.80 0.79
PROBIO — 0.75 0.72 0.65 0.84 0.78
SC 0.10* — — — — —

0.30 0.82 0.85 0.84 0.79 0.76
0.50 0.82 0.85 0.84 0.80 0.79
0.50† 0.82 0.85 0.84 0.80 0.79

GFC 0.10 0.62 0.88 0.95 0.33 0.56
0.30 0.64 0.87 0.94 0.36 0.57
0.50 0.66 0.87 0.93 0.41 0.59
0.95† 0.69 0.76 0.79 0.61 0.65

SC+GFC 0.10 0.63 0.92 0.97 0.32 0.56
0.30 0.79 0.85 0.85 0.74 0.75
0.50 0.82 0.84 0.83 0.82 0.81
0.57† 0.83 0.84 0.83 0.83 0.81

Note: OA, overall accuracy; PA, producer's accuracy; UA, user's accuracy; SC,
combination of the four local Santa Catarina maps; GFC, Global Forest Change
map; SC+GFC, combination of the four local Santa Catarina maps and the Global
Forest Change map.

*All plots had predicted probabilities of forest greater than the threshold.
†Threshold value that maximized OA and minimized the poststratified esti-

mate of standard error.
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est map produced the smallest SEs, whereas the forest–nonforest
maps derived from the GFC proportion tree cover map produced
the largest SEs. Optimal values for the thresholds, T, that sepa-
rated the nonforest and forest strata were proportion tree cover of
0.95 for the GFC map, probability of forest of 0.50 for the SC map,
and probability of forest of 0.57 for the SC+GFC map (Table 3).
Despite producing the least accuracies and greatest SEs, the four
forest–nonforest maps derived from the GFC proportion tree
cover map all produced RE values > 1.0 for all threshold values,
meaning that the combination of the GFC-derived forest–nonforest
maps and the PSTR estimators produced greater precision than
the SRS estimators, which used no auxiliary information.

4.4. Model-assisted estimators
The asymptotically unbiased model-assisted GREG estimators

also produced similar estimates of mean proportion forest area
that ranged from 0.414 to 0.475 (Table 3). Although the synthetic
estimates of mean proportion forest area deviated greatly, rang-
ing from 0.282 to 1.000, the GREG adjustments for estimated bias
compensated for the deviations. The GFC proportion tree cover
map and the three forest–nonforest maps obtained using the
thresholds of T = 0.10, T = 0.30, and T = 0.50 all produced RE
values < 1.0, meaning that the SRS estimators that did not use map
data as auxiliary information produced greater precision than the
GREG estimators. Overall, SEs were smallest and REs were great-
est when using the continuous probability of forest map data for
the SC and SC+GFC maps. Finally, adjustments for estimated bias
were greater for smaller threshold values.

4.5. PSTR versus model-assisted estimators
When using the categorical, forest–nonforest map data, the

PSTR estimators consistently produced smaller SEs and larger REs
than the GREG estimators (Table 3). This result confirmed the
previous findings of Stehman (2013) and McRoberts et al. (2014)
that when the classes of a categorical response variable corre-
spond to the strata, stratified estimators produce greater preci-
sion than model-assisted estimators. For moderate conditions
described in Appendix A, this finding can be generalized via the
following approximation:

(17)
Vâr(�̂GREG)

Vâr(�̂PSTR)
≈

1
UĀ

where UĀ �
UAnonforest � UAforest

2
and UAnonforest ≈ UAforest. Thus,

under these conditions, the PSTR estimators produce greater pre-
cision, but as the UAs simultaneously approach 1.0, the precision
for the GREG estimator approaches precision for the PSTR estimator.
For the SC-derived forest–nonforest maps, UAnonforest ≈ UAforest and
1

UĀ
≈ 1.18 with the result that

Vâr��̂GREG�
Vâr��̂PSTR�

ranged from 1.00 to 1.27,

which indicates general confirmation of the approximation
(Tables 1 and 2).

Despite the smaller SEs and greater REs for the PSTR estimators
relative to the GREG estimators for the categorical forest–nonfor-
est maps, the smallest SEs and the largest REs over all combina-
tions of maps and estimators were obtained using the continuous
probability of forest map data for the SC and SC+GFC maps.

5. Conclusions
Six conclusions were drawn from the study. First, auxiliary in-

formation in the form of remote sensing based maps has the
potential to substantially increase the precision of forest attribute
parameter estimates. Although this result has been reported on
multiple previous occasions (McRoberts et al. 2014; Olofsson et al.
2014; Vibrans et al. 2013), failure to have observed this phenome-
non would have invalidated the entire study. Second, the wide
range of synthetic estimates obtained using the model-assisted
estimators documents the inappropriateness of estimating forest
area simply by adding the areas of population units (pixels) clas-
sified as forest. Third, the two additional maps constructed using
the logistic regression model and information from the four local
and GFC maps produced the greatest map accuracies. Thus, com-
bining existing maps merits consideration. Fourth, regardless of
the combination of map and estimator, estimates of proportion
forest area were similar as would be expected when using unbi-
ased or asymptotically unbiased estimators. Fifth, for a categori-
cal response variable whose classes correspond to strata, the PSTR
estimators produced greater precision than the model-assisted,
generalized regression estimators. However, estimates obtained
using the continuous map data, probability of forest, and the
generalized regression estimator produced the greatest overall
precision. Sixth, the GFC map was the least accurate map and
produced the least precise estimates of forest area. However,
when used with the PSTR estimators, the forest–nonforest maps

Table 3. Estimates of proportion forest.

PSTR estimates Model-assisted estimates

Map Threshold (T) �̂PSTR SE��̂PSTR� RE Threshold (T) �̂Syn Bîas��̂Syn� �̂GREG SE��̂GREG� RE

Atlas 2008 — 0.454 0.027 1.311 — 0.282 −0.157 0.439 0.029 1.141
LCF/SAR — 0.469 0.028 1.285 — 0.428 −0.035 0.463 0.032 0.983
PPMA — 0.437 0.024 1.655 — 0.443 0.027 0.416 0.027 1.358
PROBIO — 0.453 0.028 1.263 — 0.348 −0.082 0.431 0.031 1.005
SC 10* — — — 0.10 1.000 0.525 0.475 0.031 1.000

30 0.444 0.024 1.665 0.30 0.462 0.035 0.426 0.027 1.362
50 0.438 0.024 1.690 0.50 0.449 0.031 0.418 0.027 1.390
50† 0.438 0.024 1.690 Continuous 0.436 0.000 0.436 0.024 1.774

GFC 10 0.463 0.030 1.127 0.10 0.777 0.329 0.448 0.032 0.931
30 0.461 0.029 1.150 0.30 0.753 0.310 0.443 0.033 0.928
50 0.453 0.028 1.214 0.50 0.706 0.278 0.428 0.032 0.946
95† 0.471 0.027 1.374 Continuous 0.682 0.246 0.436 0.030 1.082

SC+GFC 10 0.460 0.029 1.168 0.10 0.785 0.341 0.444 0.032 0.973
30 0.443 0.025 1.551 0.30 0.488 0.067 0.421 0.028 1.226
50 0.436 0.024 1.691 0.50 0.433 0.012 0.414 0.026 1.414
57† 0.429 0.024 1.737 Continuous 0.433 0.000 0.433 0.023 1.830

Note: SC, combination of four local Santa Catarina maps; GFC, Global Forest Change map; SC+GFC, combination of four local Santa Catarina maps and the Global
Forest Change map; PSTR, poststratified; Syn, synthetic; GREG, generalized regression; RE, relative efficiency.

*All plots had predicted probabilities of forest greater than the threshold.
†Threshold value that maximized the overall accuracy and minimized the PSTR estimate of standard error.
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derived from the GFC map still produced relative efficiencies
greater than 1.0, indicating that the maps produced greater preci-
sion than the SRS estimators. Thus, if local maps are not available
or cannot be constructed, then the GFC map merits consideration
as a source of auxiliary information for constructing strata for use
with PSTR estimators.

The primary contributions of the study to the larger topic area
are two-fold. First, the general manner in which a relatively new
topic area progresses is via the accumulation of empirical results
that are eventually generalized. This is one of only three known
reported studies that have used statistically rigorous methods to
assess the utility of global maps for national REDD applications,
the others being Sannier et al. (2016) and Næsset et al. (2016). Thus,
the first contribution of this study is its contribution to an initial
body of results from which generalizations will eventually be for-
mulated. Second, the derivation in Appendix A, which is further
discussed in Section 4.5, provides a statistical foundation for the
observed but previously unexplained finding that when the response
and auxiliary variables are categorical with the same classes, the
stratified estimator is more precise than the model-assisted regres-
sion estimator.
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Appendix A
For a forest–nonforest map whose classes are used as strata for

stratified estimation of proportion forest using forest–nonforest
observations, the error matrix is as depicted in Appendix Table A1.
When the Appendix Table A1 cell entries are divided by their
corresponding map class marginal totals so that

(A1) pij �
nij

ni •

then the error matrix is as depicted in Appendix Table A2. Note
that Appendix Table A2 is formulated by dividing the cell entries
by the marginal totals, not the total sample size. With this formu-
lation, p00 and p11 are the user's accuracies, and p01 and p10 are the
corresponding proportional errors of commission.

The generalized regression (GREG) estimators take the forms

(A2) �̂GREG �
1
N �

i�1

N

ŷi �
1
n �

i�1

n

�i

and

(A3) Vâr(�̂GREG) �
1

n(n � 1) �
i�1

n

(�i � �̄)2

where N is the population size, n � n0• � n1• � n00 � n01 � n10 � n11

is the sample size, �i � ŷi � yi, and �̄ �
1
n �i�1

n
�i (Särndal et al. 1992). For

�̄ ≈ 0, the GREG variance estimator can be approximated as

Vâr(�̂GREG) �
1

n(n � 1) �
i�1

n

�i
2

Further, noting that �i
2 � �yi � ŷi�

2 � �0 if yi � ŷi

1 if yi ≠ ŷi
, the GREG

variance estimator can be expressed as

(A4) Vâr(�̂GREG) ≈
n01 � n10

n(n � 1)
�

n0 • p01 � n1 • p10

n(n � 1)

Further noting that p01 = 1 – p00 and p10 = 1 – p11, the GREG
variance estimator can finally be expressed as

(A5) Vâr(�̂GREG) ≈
n0 • (1 � p00) � n1 • (1 � p11)

n(n � 1)

The poststratified (PSTR) estimators are

(A6) �̂PSTR � �
h�1

H

wh�̂h

and

(A7) Vâr(�̂PSTR) � �
h�1

H

�̂h
2�wh

n
�

1 � wh

n2 �
where h = 1, …, H indexes the strata; �̂h, �̂h

2, nh, and Nh are the
within-stratum sample mean, sample variance, sample size, and

population size, respectively; and wh �
Nh

N
. For equal within-strata

sampling intensities and large sample sizes, wh ≈
nh•

n
and

1 � wh

n2
≈ 0

with the result that

Vâr��̂PSTR� ≈ �
h�1

H �nh •

n2 ��̂h
2

which is the usual stratified variance estimator (Cochran 1977,
page 92). Because the response variable follows a Bernoulli distri-
bution, �̂0

2 � p00�1 � p00� and �̂1
2 � p11�1 � p11�. Thus

(A8)
Vâr(�̂PSTR) ≈ �n0 •

n2 �p00(1 � p00) � �n1 •

n2 �p11(1 � p11)

�
1

n2
[n0 • p00(1 � p00) � n1 • p11(1 � p11)]

The ratio of the two variance estimators is

(A9)
Vâr(�̂GREG)

Vâr(�̂PSTR)
≈

1
n(n � 1)

[n0 • (1 � p00) � n1 • (1 � p11)]

1

n2
[n0 • p00(1 � p00) � n1 • p11(1 � p11)]

If n is sufficiently large that
n

n � 1
≈ 1 and the two user's accuracies

UA0 = p00 and UA1 = p11, are approximately equal, i.e., p00 ≈ p11, then

designating the common user's accuracy as UĀ �
UA0 � UA1

2
�

p00 � p11

2
yields

(A10)

Vâr(�̂GREG)

Vâr(�̂PSTR)
≈

n[n0 • (1 � UĀ) � n1 • (1 � UĀ)]

(n � 1)[n0 • UĀ(1 � UĀ) � n1 • UĀ(1 � UĀ)]

�
n(n0 • � n1 •)

(n � 1)UĀ(n0 • � n1 •)
≈

1
UĀ

Appendix Table A1. Error matrix with counts.

Reference class

Map class Nonforest (y = 0) Forest (y = 1) Total

Nonforest �ŷ � 0� n00 n01 n0 • � n00 � n01
Forest �ŷ � 1� n10 n11 n1 • � n10 � n11

Appendix Table A2. Error matrix with proportions.

Reference class

Map class Nonforest (y = 0) Forest (y = 1) Total

Nonforest �ŷ � 0� p00 �
n00

n0 •

p01 �
n01

n0 •

n0 • � n00 � n01

Forest �ŷ � 1� p10 �
n10

n1 •

p11 �
n11

n1 •

n1 • � n10 � n11
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