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The relatively small sampling intensities used by national forest inventories are often insufficient to produce the
desired precision for estimates of population parameters unless the estimation process is augmented with aux-
iliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a
non-parametric, multivariate approach to prediction that has emerged as particularly popular for use with forest
inventory and remotely sensed data and has been shown to contribute substantially to increasing precision. k-NN
predictions are calculated as linear combinations of observations for sample units that are nearest in a space of
auxiliary variables to the population unit forwhich a prediction is desired. Implementation of a nearest neighbors
algorithm requires four choices: (i) a distancemetric, (ii) specific auxiliary variables to be used with the distance
metric, (iii) the number of nearest neighbors, and a (iv) scheme for weighting the nearest neighbors. Regardless
of the choices for a distance metric and weighting scheme, emerging evidence suggests that optimization of the
technique, including selection of an optimal subset of auxiliary variables, greatly enhances prediction. However,
optimization can be computationally intensive and time-consuming. A promising approach that is gaining favor
is based on genetic algorithms, a technique that uses search heuristics that mimic natural selection to solve op-
timization problems.
The objective of the study was to compare optimized k-NN configurations with respect to inferences for mean
volume per unit area using airborne laser scanning variables as auxiliary information. For two study areas, one
in Norway and one in Minnesota, USA, the analyses focused on optimizing k-NN configurations that used the
weighted Euclidean and canonical correlation distancemetrics and two neighbor weighting schemes. Novel fea-
tures of the study include introduction of a neighbor weighting scheme that has not previously been used for for-
estry applications, simultaneous optimization of all four k-NN choices, and basing comparisons on confidence
intervals, rather than intermediateproducts suchasprediction accuracies. Two conclusionswere primary: (1) op-
timized selection of feature variables produced greater precision than using all feature variables, and (2) compu-
tational intensity necessary to optimize the weighted Euclidean metric was considerably greater than for the
canonical correlation analysis metric. Specific findings were that optimization produced pseudo-R2 as large as
0.87 for the Norwegian dataset and as large as 0.89 for theMinnesota dataset. For the optimized canonical corre-
lation distance metric, widths of approximate 95% confidence intervals as proportions of the estimated means
were as small as 0.13 for the Norwegian dataset and as small as 0.15 for the Minnesota dataset.
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1. Introduction

Among the parameters estimated by national forest inventories
(NFI), the most common are related to forest area and growing stock
volume (Lawrence et al., 2010). Because NFI sampling intensities are
relatively small, precision requirements for these parameters often can-
not be achieved apart from augmenting the estimation process with
auxiliary information. For estimation of parameters related to forest
.

area, auxiliary information in the form of remotely sensed spectral
data from sensors such as Landsat have been demonstrated to be partic-
ularly effective (e.g., McRoberts, 2010). However, for parameters related
to growing stock volume, spectral data are less effective which should
be expected because spectral sensors respond primarily to light
reflected from the top of the canopy. For the latter parameters, remotely
sensed data from active sensors such as lidar have been demonstrated
to be much more effective (Næsset et al., 2011; Strunk et al., 2012;
d'Oliveira et al., 2012; McRoberts et al., 2013).

For estimation of both area and growing stock volume, the k-Nearest
Neighbors (k-NN) technique has emerged as particularly popular for
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usewith NFI and remotely sensed data. Chirici et al. (2016) conducted a
meta-analysis and reviewof the k-NN literature and reportedmore than
250 forestry applications using remotely sensed data for 26 countries on
six continents. The most commonly reported response variables were
growing stock volume and closely related variables such as biomass
and carbon.

The k-NN technique is a non-parametric approach to prediction.
Population unit predictions are calculated as linear combinations of ob-
servations for sample units designated neighbors that are nearest or
most similar in a space of auxiliary variables to units for which predic-
tions are desired. Implementation of a nearest neighbors algorithm re-
quires four choices: (i) a distance metric, (ii) specific auxiliary or
feature variables to be used with the distance metric, (iii) the number
of nearest neighbors, and (iv) a scheme forweighting the nearest neigh-
bors. Chirici et al. (2016) found that no particular k-NN configuration
could be considered optimal for all the cases, and therefore recom-
mended an optimization phase for each application. Similarly,
Packalén et al. (2012) reported that selection of optimal subsets of fea-
ture variables was beneficial.

Selection of optimal subsets of feature variables can be extremely
computationally intensive when the number of such variables is large.
Further, when the feature variables are highly correlated such as is the
case with many sets of remotely sensed feature variables, stepwise se-
lection methods are known to perform poorly (Harrell, 2001). For
such applications, Tomppo and Halme (2004) introduced genetic algo-
rithms (GA) as a technique for optimizing k-NN configurations, and
subsequent investigations have shown them to have considerable po-
tential for this purpose (McRoberts, 2012; McRoberts et al., 2015;
Tomppo et al., 2009; Latifi et al., 2010).

GAs are iterative search heuristics that mimic natural selection to
solve optimization problems (Holland, 1975). These algorithms start
with a population of randomly generated individuals, compare them
with respect to an optimization criterion, and combine the more opti-
mal individuals to produce additional individuals. For usewith k-NN, in-
dividuals are components of k-NN configurations including particular
combinations of feature variables and/or elements of distance metrics.
Despite their increasing popularity, there have been few reports of
broad investigations of GAs for forestry applications.

The objective of the study was to compare optimized k-NN configu-
rations obtained usingGAswith respect to inferences in the formof con-
fidence intervals for mean forest volume per unit area. Two study areas
were used, one in Norway and one in Minnesota, USA, both with wall-
to-wall airborne laser scanning (ALS) data used as k-NN feature vari-
ables. In addition to being among the first broad investigations of
GAs for forestry applications, the novel components of the study in-
clude introduction of a neighbor weighting scheme not previously
used for forestry applications, simultaneous optimization of all four
k-NN choices, and basing comparisons on the final NFI product,
confidence intervals, rather than intermediate products such as
prediction accuracies.
2. Data

2.1. Overview

Two datasets with distinct features were used to permit a degree of
generalization of the results. The important dataset distinctions are the
Norwegian boreal biome and the Minnesota temperate biome, the spe-
cies compositions, theminimum tree diameter threshold of 5 cm for the
Norwegian dataset but the considerably larger threshold of 12.7 cm for
the Minnesota dataset, the ground sampling designs, and the 250-m2

Norwegian plots but the considerably smaller 168.3-m2 Minnesota
plots. Comparable, but yet still different features include the allometric
volume models, ALS pulse densities, and ALS metrics. Details for the
two datasets follow.
2.2. Hedmark, Norway

The 1259-km2 study area was mostly in the municipalities of Åmot
and Stor-Elvdal in Hedmark County, Norway (Fig. 1) andwas complete-
ly forested. Dominant tree species are Norway spruce (Picea abies (L.)
Karst.) and Scots pine (Pinus sylvestris L.). Field measurements were ac-
quired for 250-m2 Norwegian NFI field plots located at the intersections
of a 3-km × 3-km grid (Tomter et al., 2010), but restricted to the 145
plots inventoried by the Norwegian NFI between 2005 and 2007 and
the geographic area represented by the corresponding portion of the
Latin Square sampling design (Fig. 1). The volume of each sample tree
with diameter of at least 5 cmwas predicted using species-specific vol-
ume models with diameter at breast-height (dbh, 1.3 m) and either
measured height or predicted height as independent variables
(Braastad, 1966; Brantseg, 1967; Vestjordet, 1967). Volume predictions
for individual trees were added to produce plot-level totals which were
then scaled to a per unit area basis (m3/ha) and considered to be obser-
vations without error (McRoberts and Westfall, 2014).

Wall-to-wall ALS data were acquired between 15 July 2006 and 12
September 2006 with average point density of 0.7 pulses per m2. Data
for only single echoes or the first of multiple echoes were used. For
each plot and population unit, heights corresponding to the 10th,
20th, …, 100th percentiles of the distributions of echoes with heights
above 2mwere calculated and denoted h1, h2,…, h10, respectively. Can-
opy densities were calculated as the proportions of echoes with heights
N0%, 10%,…, 90% of the range between 2 m above ground and the 95th
height percentile and were denoted d0, d1, …, d9, respectively
(Gobakken and Næsset, 2008). Næsset (2002) provides additional de-
tails for the dataset.
2.3. Itasca County, Minnesota, USA

The 7583-km2 study area was located in north central Minnesota in
the USA (Fig. 2) and was characterized as approximately 80% forest
land. Land cover includes water, wetlands and forest consisting of up-
land deciduous mixtures of pines (Pinus spp.) spruce (Picea spp.) and
balsam fir (Abies balsamea (L.) Mill.) and lowlands with spruce (Picea
spp.), tamarack (Larix laricina (Du Roi) K. Koch), white cedar (Thuja
occidentalis (L.)), and black ash (Fraxinus nigra Marsh.). Data were ob-
tained for plots established by the Forest Inventory and Analysis (FIA)
program of the U.S. Forest Service which conducts the NFI of the USA.
Field crews observe species andmeasure dbh (1.37m, 4.5 ft) and height
for all trees with dbh of at least 12.7 cm (5 in). Model predictions of in-
dividual tree volumes were aggregated to obtain plot-level volume pre-
dictions which were scaled to a per unit area basis (m3/ha) and
considered to be observations without error (McRoberts and Westfall,
2014). Data were used for 115 plots measured in 2014 because this
was the only year for which GPS receivers with sub-meter accuracy
were available. Further, data for only the 168.3-m2 central subplot of
the four subplot cluster were used to avoid issues of spatial correlation
among subplot observations.

Wall-to-wall ALS data were acquired in April 2012 with a nominal
pulse density of 0.67 pulses/m2. Ground returns were classified by the
provider and were used to construct a digital terrain model via interpo-
lation using the Tiffs (Toolbox for Lidar Data Filtering and Forest Stud-
ies) software (Chen, 2007). Distributions of all first echo heights were
constructed for the 168.3-m2 plots and 169-m2 square cells that tessel-
lated the study area. Metrics for each plot and cell included the mean,
standard deviation, skewness, kurtosis, quadratic mean height of the
distributions of heights for all echoes (Lefsky et al., 1999; Chen et al.,
2012). In addition, heights corresponding to the 10th, 20th, …, 100th
percentiles of the distributions were calculated, and canopy densities
were calculated as the proportions of echoes with heights N0%, 10%,
…, 90% of the range between 1.3 m above ground and the 95th height
percentile (Gobakken and Næsset, 2008).



Fig. 1. Study area in Hedmark County, Norway. The shaded areas are the portion of the Norwegian NFI's Latin Square sampling design corresponding to plots measured in 2005–2007.

389R.E. McRoberts et al. / Remote Sensing of Environment 184 (2016) 387–395
3. Nearest neighbors techniques

3.1. Terminology and notation

For notational purposes, Y commonly denotes a possibly multivari-
ate vector of response variables observed for a sample, and X denotes
a vector of auxiliary variables with observations for the entire popula-
tion. In the terminology of nearest neighbors techniques, the auxiliary
Fig. 2. Study area in Itasca C
variables are designated feature variables; the space defined by the fea-
ture variables is designated the feature space; the sample of sample units
for which observations of both response and feature variables are avail-
able is designated the reference set with size denoted n; and the set of
population units for which predictions of response variables are desired
is designated the target setwith size denoted N. All population units for
both the reference and target set are assumed to have a complete set of
observations for all feature variables.
ounty, Minnesota, USA.
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For continuous response variables such as forest volume, the nearest
neighbors prediction, ŷi, for the ith target unit is calculated as,

ŷi ¼
Xk

j¼1

wijyij ð1Þ

where {yji, j=1,2,… ,k} is the set of response variable observations for
the k reference set units that aremost similar or nearest to the ith target
unit in feature space with respect to a distance metric, d, and wij is the

weight assigned to the jth nearest neighbor with ∑
k

j¼1
wij ¼ 1:

3.2. Neighbor weighting

3.2.1. t-weighting
One common neighbor weighting scheme designated t-weighting is

to weight neighbors inversely to a power of the distance, dij, between
the jth reference unit and the ith target unit,

wij ¼
d−t
ij

W
ð2Þ

whereW ¼ ∑
k

j¼1
d−t
ij and t ≥ 0. For small numbers of feature variables and/

or large reference sets, dij = 0 may occur in which case Eq. (2) leads to
computational errors. For this study, if dij=0 for j=1,…, k, then all dis-
tances are arbitrarily reset to 1, i.e., dij= 1 for all neighbors. If dij= 0 for
j = 1,…, k’where k’ b k, then all 0-distances are arbitrarily reset to half
the smallest non-zero distance, i.e., for j = 1,…, k’,

dij ¼
dik0þ1

2
: ð3Þ

For many applications, the default value of t = 0, meaning equal
weighting of neighbors, is selected; otherwise, t = 1or t = 2 is usually
selected, although there is no reason integer values must be used.
Only a few reports of efforts to optimize selection of t are known
(Wilson et al., 2012; McRoberts, 2012; McRoberts et al., 2015).

3.2.2. d-Weighting
Dudani (1976) proposed a weighting scheme that bases the weight

for the jth neighbor on the ratio of two distances, the distance between
the jth and kth neighbors and the distance between the first and the kth
neighbors. Because the scheme assigns weight of 0 to the kth neighbor,
the scheme was modified for this study to,

wij ¼
dikþ1−dij
dikþ1−di1

W
ð4Þ

whereW ¼ ∑
k

j¼1

dikþ1−dij
dikþ1−di1

: For notational purposes, this scheme is char-

acterized as d-weighting. Note that with the formulation of Eq. (4), cal-
culation of weights for k neighbors requires distances for k + 1
neighbors. For small numbers of feature variables and/or large reference
sets, dik’ =dik+1 for k’ b k + 1may occur in which case, wij = 0 for j =
k’, …, k. For this study, if di1 = dik+1, then all distances are reset to 1,
i.e., dij = 1 for all neighbors. If dij = dik+1 for j = k’, …, k where
1 b k’ b k + 1, then all such distances are reset to the mean of the
k + 1st distance and the greatest distance that differs from the
k + 1st distance,

dij ¼
dik0−1 þ dikþ1

2
ð5Þ

for j = k’, …, k. For example, suppose k = 5 and the six smallest
distances for the ith target unit are di1 = 1, di2 = 2, di3 = 3 di4 =
5,di5 = 5,di6 = 5. Using only Eq. (4), the weights for the fourth and
fifth neighborswould bewi4=wi5=0whichwould exclude the obser-
vations from the fourth and fifth neighbors when calculating the k-NN
prediction. However, by applying Eq. (5), the fourth and fifth distances
are reset to di4 = di5 = ½·(di3 + di4) = 4.0 with the result that W =
2.75 and wi1 = 0.364, w12 = 0.272, wi3 = 0.182, wi4 = 0.091, and
wi5 = 0.091. No previous reports of the use of d-weighting for forestry
applications are known.

3.3. Distance metrics

Many familiar nearest neighbors distance metrics can be expressed
in matrix form as,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi−X j
� �0M Xi−X j

� �q
ð6Þ

where i denotes a target unit for which a prediction is desired, j denotes
a reference unit, Xi and Xj are vectors of observations of feature vari-
ables, andM is a square, positive definitematrix.WhenM is the identity
matrix, Euclidean distance results; when M is a non-identity diagonal
matrix, weighted Euclidean distance results; when M is the inverse of
the covariance matrix for the feature variables, Mahalonobis distance
results. Other popular metrics such as those based on canonical correla-
tion analysis (Moeur and Stage, 1995; Maltamo et al., 2003; LeMay and
Temesgen, 2005) and canonical correspondence analysis (Wilson et al.,
2012; Ohmann et al., 2014) can also be expressed in matrix form.

For this study, only metrics that can be readily expressed in matrix
form were considered. Further, based on a comprehensive review of
nearest neighbors configurations (Chirici et al., 2016), distance metrics
were further restricted to the weighted Euclidean and canonical corre-
lation analysis metrics.

3.3.1. Weighted Euclidean metric
With theWeighted Euclidean distance metric (WEUCL), the matrixM

from Eq. (6) is a non-identity diagonal matrix, D, and distance is
expressed as,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi−X j
� �0D Xi−X j

� �q
: ð7Þ

Optimization of thismetric entails selection of optimal values for the
matrix diagonal elements and can be computationally intensive, even
for relatively small numbers of feature variables.

3.3.2. Canonical correlation analysis metric
With the canonical correlation analysis distance metric (CCA), a

system of linear models is solved to obtain estimates of coeffi-
cient vectors, α and β, that maximize the correlation between
U=α1 ⋅Y1+ … +αp ⋅Yp and V=β1 ⋅X1+ … +βq ⋅Xq where Yj

denotes the jth response variable, Xj denotes the jth feature variable,
and p and q are the numbers of response and feature variables,
respectively. The solutions are obtained using canonical decomposi-
tions for which the eigenvectors, also designated canonical correla-
tion coefficients, are denoted Γ, and the corresponding eigenvalues,
also designated canonical correlations, are denoted λ. Feature
space distances with this metric are expressed as,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi−X j
� �0ΓΛ2Γ 0 Xi−X j

� �q
ð8Þ

where the elements of the diagonal matrix, Λ, are the squares, λ2, of
the canonical correlations. The CCA metric was first proposed by
Moeur and Stage (1995) who used only a single neighbor, but it
has also been used with multiple neighbors (Maltamo et al., 2003,
2009; Packalén and Maltamo, 2007).
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3.4. Feature variables

Feature variables that are unrelated to the response variables intro-
duce randomness into distance calculations and thereby contribute to
selection of spurious neighbors and less accurate predictions. Langley
and Iba (1993) and Blum and Langley (1997) characterize such feature
variables as irrelevant. Metrics such asWEUCL and CCA theoretically se-
lect negligible weights for irrelevant feature variables and thereby min-
imize their adverse effects. Nevertheless, Packalén et al. (2012) reported
detrimental effects of not eliminating such variables altogether. Thus,
one approach to optimization is to identify and then eliminate irrelevant
feature variables. Multiple methods may be considered for
accomplishing this task. Stepwise selection techniques have been used
successfully for this purpose for some problems. However, as noted by
Harrell (2001, pp. 64–65) stepwisemethods are considerably less effec-
tive when the feature variables are strongly correlated such as is the
case with large numbers of ALS metrics. McRoberts (2012) and
McRoberts et al. (2015) evaluated all combinations of all numbers of
feature variables and selected the combination that optimized a criteri-
on of interest or the combination with the smallest number of feature
variables beyond which little or no statistically significant optimization
was realized. Although effective, these approaches can be extremely
computationally intensive, particularly for large numbers of feature var-
iables and/or large reference sets. Packalén et al. (2012) compared sim-
ulated annealing and random forests for selecting feature variables and
reported that the most effective technique depended on the particular
response variable.

3.5. Genetic algorithms

GAs are search heuristics that mimic natural selection to solve opti-
mization problems (Holland, 1975). GAs havemultiple advantages over
other optimization algorithms: first, they can deal with very large
search spaces such as the large numbers of combinations of feature var-
iables or large dimension continuous spaces of weights for feature var-
iables; second, GAs do not remain trapped in local sub-optimal
solutions; third, GAs do not require starting values; and fourth, GAs
can deal with objective functions such as k-NN sum of squared errors
surfaces that are neither smoothnor continuouswith respect to variable
weights and thereby preclude gradient and derivative methods. The
only serious disadvantage is that optimal solutions are not guaranteed.
Tomppo and Halme (2004) first proposed GAs to select feature variable
weights for use with the WEUCL metric. Subsequent research has
shown the approach to have considerable promise (McRoberts, 2012;
McRoberts et al., 2015; Tomppo et al., 2009; Latifi et al., 2010). However,
GAs are not known to have been used in two-step procedures for which
the first step is to select feature variables and the second step is to opti-
mize weighting of the selected variables using metrics such as WEUCL
or CCA.

GAs are iterative and start from a population of randomly generated
individuals, each consisting ofmultiple genomes,with the population in
each iteration called a generation. For this k-NN application, a genome is
a value for one element of a diagonal distancematrix, and a full set of ge-
nomes or diagonal values constitutes an individual. In each generation,
each individual in the population is evaluated with respect to its fitness
which, for k-NN applications, is typically a criterion related to the sumof
squared errors for continuous response variables or classification accu-
racy for categorical response variables. Each subsequent generation
consists of the most fit individuals from the previous generation, modi-
fications of them, and a small number of new randomly generated indi-
viduals representing immigration into the population. Modifications
take multiple forms: (i) cross-over consisting of combinations of pairs
of individuals obtained by randomly selecting one genome from each
pair to construct a new individual, (ii)mutation consisting of small ran-
dom perturbations of randomly selected genomes for individuals, and
(iii) immigration consisting of randomly generated new individuals.
The new generation of individuals is then used in the next iteration of
the algorithm. The algorithm terminates following a maximum number
of generations or when a satisfactory fitness level has been reached for
at least one individual in the population (Fig. 3).

Implementation of a GA requires choices for multiple parameters.
First, because GAs ensure only near optimal solutions, the algorithm
should be independently replicated NREP times with entirely new ran-
domly generated initial populations. Within each replication, the num-
ber of individuals, designated the population size and denoted NPOP,
must be selected. For a given starting population, the algorithm iterates
throughmultiple generations denotedNGEN. The number ofmost fit in-
dividuals from a previous generation selected to enter the next popula-
tion is designated NFIT. For this study, subsequent populations
consisted of four components: (i) the NFIT individuals from the previ-
ous generation, (ii) NCROSS=NFIT ⋅(NFIT−1) crossovers obtained by
combining each of the NFIT individuals with the NFIT-1 other individ-
uals, (iii) NMUTmutations obtained by randomly increasing or decreas-
ing the value for one randomly selected genome for randomly selected
individuals from among the NFIT most fit individuals from the previous
generation; and (iv) NIMM immigrants constructed by randomly
selecting values for each genome for new individuals. Values selected
for these parameters are discussed in Section 4.1.

GAs can be used in twomodes. The objective of thefirstmode is sim-
ply to identify and eliminate irrelevant feature variables without regard
to the metric with which the remaining variables will be used. The ob-
jective of the second mode is to select positive values for the diagonal
matrix for use with the WEUCL metric.

3.6. Assessments

3.6.1. Prediction accuracy
Prediction techniques can be evaluated at either the individual pop-

ulation unit level or at the overall population level. At the individual
population unit level, commonmeasures of prediction accuracy for con-
tinuous response variables are typically in terms of squared deviations
between sample observations and their corresponding predictions cal-
culated as,

SSdev ¼
Xn

i¼1

yi−ŷið Þ2 ð9Þ

or equivalently as a pseudo-R2,

R2⁎ ¼ SSmean−SSdev
SSmean

ð10Þ

where SSmean is the sum of squared deviations of reference set observa-
tions from their mean. For this study, the accuracy of individual popula-
tion unit predictions was assessed using the popular leave-one-out
methodwhereby the prediction for each reference set unitwas calculat-
ed using only the observations for the other reference set units (Elisseeff
and Pontil, 2002).

3.6.2. Population parameter inference
Although maps and prediction accuracies for sample units are of in-

herent interest, increasingly they are recognized as only intermediate
steps enroute to an inference in the form of a confidence interval for a
population parameter such as mean volume per unit area. Confidence
intervals can be expressed as,

μ̂ � t1−α=2 � SE μ̂ð Þ ð11Þ

where μ̂ is the estimate of the mean per unit area, SEðμ ̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðμ̂Þ

p
is

the standard error of μ̂ , t1−α/2 is the 1−α/2 percentile of Student's t-
distribution, and α is the significance level. For this study, the ultimate
focus of the analyses was estimation of the population mean and the



Fig. 3. Flow chart for genetic algorithm.
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SE of the estimated mean using simple random sampling and model-
assisted regression estimators.

The simple random sampling (SRS) estimator of the populationmean
is,

μ̂SRS ¼
1
n

Xn

i¼1

yi ð12Þ

where n is the reference set size, i indexes the reference units (plots),
and yi is the reference unit observation. The estimator of the variance
of μ̂SRS is,

Vâr μ̂SRSð Þ ¼ 1
n � n−1ð Þ

Xn

i¼1

yi−μ̂SRSð Þ2: ð13Þ

For systematic samples, as used for this study, variances may be
slightly overestimated relative to estimates based on a simple random
sample (Särndal et al., 1992, p. 83). The primary advantages of the SRS
estimators are that they are intuitive and unbiased, but the disadvan-
tage is that variances may be large, particularly for small sample sizes
and/or large within-population variability.

Model-assisted regression estimators use models based on auxiliary
data to enhance inferences but rely on the probability sample for valid-
ity (Särndal et al., 1992). An initial estimator of the population mean is
formulated as,

μ̂ Init ¼
1
N

XN

i¼1

ŷi ð14Þ

where N is the target set (population) size and ŷi is the k-NN prediction
for the ith population unit. Systematic prediction errors induce bias into
this estimator which can be estimated as,

B̂ias μ̂ Initð Þ ¼ 1
n

Xn

i¼1

εi ð15Þ

where εi ¼ ŷi−yi. Themodel-assisted, generalized regression (GREG) es-
timator is then defined as,

μ̂GREG ¼ μ̂ Init−B̂ias μ̂ Initð Þ

¼ 1
N

XN

i¼1

ŷi−
1
n

Xn

i¼1

ŷi−yið Þ

ð16Þ

with variance estimator,

Vâr μ̂GREGð Þ ¼ 1
n n−1ð Þ

Xn

i¼1

εi−εð Þ2; ð17Þ

whereε ¼ 1
n∑

n

i¼1
εi (Särndal et al., 1992; Särndal, 2011). Despite use of the

term regression in the label characterizing the GREG estimators, multi-
ple prediction techniques other than linear models have been used
with the GREG estimators (Breidt and Opsomer, 2000, 2009; Lehtonen
et al., 2005; Särndal, 2011; Zheng and Little, 2004).

The utility of auxiliary information such as the ALS metrics can be
evaluated using relative efficiency (RE) calculated as,

RE ¼ Va ̂r μ̂SRSð Þ
Vâr μ ̂

GREGÞ
� ð18Þ

and interpreted as the factor bywhich the sample sizewould have to be
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increased to achieve the same precision using the SRS estimators with-
out the auxiliary information as was achieved using the GREG estima-
tors with the auxiliary information. For each combination of dataset,
distance metric, and weighting scheme, μ̂SRS , SEðμ̂SRSÞ, μ̂GREG, SEðμ̂GREGÞ,
2-SE confidence intervals, and RE were calculated.

3.7. Analyses

The analyses were conducted in three steps. In the first step, GAs
were used in the first mode to identify and eliminate irrelevant feature
variables for each combination of dataset, distance metric and
weighting scheme. For this application, GA individuals consisted of ge-
nomes, one for each feature variable, with values of either 0 or 1
where 0 indicated the variable was not selected and 1 indicated it was
selected. For the t-weighting scheme, the leave-one-out cross-
validation technique was used to evaluate the fitness for each individu-
al, including selecting the values of k and t that minimized SSdev, and for
the d-weighting scheme, the leave-one-out cross-validation technique
was also used to evaluate fitness including selecting the value of k that
minimized SSdev. Values of k were permitted to range from 1 to 35,
and values of t were permitted to range from 0 to 6.0.

The second step was used only for the WEUCL metric and entailed
using the GA in the second mode to select weights for each of 50 combi-
nations of feature variableswith the smallest values of SSdev from thefirst
step. A 51st combination that included all feature variableswas also eval-
uated in the second step as ameans of assessing the detrimental effects of
not optimizing the selection of feature variables. GA individuals consisted
of genomes corresponding to the weights in the WEUCL metric, one for
each feature variable, with values in the interval [0,1]. As for the first
step, the leave-one-out cross-validation technique was used to evaluate
fitness including selecting the values of k and t. When using all feature
variables for the 51st combination, successful application of the GA in
the second step required that genomes for one of the individuals in the
initial population be set to the proportions of times the respective feature
variables were selected among the NREP replications in the first step.

In the third step, confidence intervals were constructed using both
the SRS and GREG estimators. For the SRS estimators, the estimates
were based only on the reference data for the two datasets. Confidence
intervalswere also constructed using theGREG estimatorswith selected
feature variable combinations for both datasets, both metrics and both
neighbor weighting schemes. For the CCA metric, confidence intervals
were constructed for the feature variable combination from the first
step with the smallest SSdev and also for the combination that included
all feature variables. For the WEUCL metric, confidence intervals were
constructed for three feature variable combinations with their respec-
tive weights from the second step: (i) the combination with the
smallest SSdev from the second step, (ii) the combination with the
smallest SSdev from the first step and with weights selected in the sec-
ond step, and (iii) the combination with all feature variables and with
the weights from the second step.

4. Results and discussion

4.1. Inventory consequences

For both datasets, estimates of the population mean of volume per
unit area, μ̂MA, were generally similar; precision as represented by stan-
dard errors,SEðμ̂MAÞ, as proportions of μ̂MAwere less than 0.05; andmax-
imum REs for optimized k-NN configurations were between 7.53 and
9.00. For comparison purposes, these RE values are substantially greater
than RE = 5.36 and RE = 6.38 for two Norwegian datasets (Næsset
et al., 2011; McRoberts et al., 2013), RE = 3.66 for a Brazilian dataset
(d'Oliveira et al., 2012), and RE = 3.76 for a Washington, USA dataset
(Strunk et al., 2012), all ofwhichwere obtained using regressionmodels
with similar ALS metrics.
Importantly for inventory applications, RE can be interpreted as the
factor by which the sample size for use with the SRS estimators would
have to be increased to achieve the same precision as was achieved
using the GREG estimators with the current sample size. Given the cur-
rent considerable expense associatedwith any kind of ground sampling,
REs as large as 7.53 are substantial and have the potential to greatly en-
hance NFI estimation.

4.2. Genetic algorithm performance

The GA approach to first-step identification and elimination of
feature variables for both the WEUCL and CCA metric worked well,
as did the approach for the second-step selection of weights for the
WEUCL metric. GA parameter values were subjectively selected,
albeit following experimentation: NFIT = NMUT = NIMM = 10,
which produces NCROSS=NFIT ⋅ (NFIT− 1)= 90 and
NPOP=NFIT+NCROSS+NMUT+NIMM=120. Graphs of maxi-
mum R2⁎ versus both numbers of replications and numbers of
generations were constructed to ensure that both NREP = 50 and
NGEN = 50 were sufficiently large.

4.3. Prediction accuracy

For theHedmark dataset, the greatest R2⁎ values for theWEUCLmet-
ric resulting from the first-step of application of the GAs were 0.75 for
the t-weighting scheme and 0.74 for the d-weighting scheme
(Table 1). R2⁎ values when using all features variables were smaller by
factors of approximately 0.13. For the CCAmetric, the greatest R2⁎ values
for both weighting schemes were approximately 0.87 which were only
slightly larger than when using all feature variables.

For the Itasca dataset, the greatest first-step R2⁎ values for the
WEUCL metric were 0.85 for the t-weighting scheme and 0.84 for the
d-weighting scheme, both of which were smaller by factors of approxi-
mately 0.07 thanwhen using all feature variables (Table 2). For the CCA
metric, first step R2⁎ values were 0.89 for both neighbor weighting
schemes which was larger by factors of approximately 0.05 than when
using all feature variables.

Two patterns were apparent in these results. First, fewer variables
were selected for the WEUCL metric, regardless of the neighbor
weighting scheme, and second, R2⁎ values were larger for the CCA met-
ric, again regardless of the neighbor weighting scheme. Both patterns
can be attributed to the feature variable weighting inherent in the CCA
metric which permits marginally irrelevant feature variables to have
nearly negligible weights.

The second-step application of the GAs, which selected weights for
the variables selected in the first-step, was used only for the WEUCL
metric. The second-step produced R2⁎ values that were greater than
first-step values by factors of 0.10 to 0.13 for the Hedmark dataset but
only by factors less than 0.04 for the Itasca dataset. For both datasets
and neighbor weighting schemes, the combinations of feature variables
that produced the greatest first-step R2⁎ values were not the combina-
tions that produced the greatest second-step R2⁎ values, although the
R2⁎ differences were small. In addition, the greatest R2⁎ values obtained
in the second-step following elimination of irrelevant feature variables
in the first-step were greater by factors of 0.12 to 0.16 for the Hedmark
dataset but by factors less than 0.04 for the Itasca dataset.

Overall, the greatest R2⁎ values, regardless of metric or neighbor
weighting scheme, were generally similar. For these similar values, the
CCA metric produced slightly greater values as did the t-weighting
scheme, although the differences for the two weighting schemes were
quite small. An additional advantage of the CCA metric is that no
second-step application of the GAs was necessary. First-step identifica-
tion and elimination of irrelevant features variables followed by second-
step selection of variable weights produced substantially greater R2⁎

values for the WEUCL metric than when using all feature variables,
even following second-step selection of variable weights. For the CCA



Table 1
Results for Hedmark study area.

Selection of feature variables Selection of feature
variable weights

Mean volume per unit area population estimates (m3/ha)

Rank No. variables R2⁎ Generation Rank R2⁎ Generation μ̂GREG SEðμ̂GREGÞ CIa RE

WEUCL/d-weighting
1 8 0.74 7 7b 0.82 17 77.13 3.07 70.99–83.27 5.87
10c 3 0.72 39 1 0.83 16 74.64 3.05 68.54–80.74 5.97
– All 20 0.64 – 51 0.69 1 83.69 4.16 69.63–92.01 3.21

WEUCL/t-weighting
1 10 0.75 39 26b 0.82 33 78.79 3.18 72.43–85.15 5.50
6c 3 0.74 5 1 0.84 48 76.18 2.95 70.28–82.08 6.40
– All 20 0.65 – 51 0.74 37 82.60 3.80 75.00–90.20 3.85

CCA/d-weighting
1 18 0.87 7 – – – 84.27 2.72 78.83–89.71 7.53
– All 20 0.84 – – – – 84.99 3.02 78.95–91.03 6.08

CCA/t-weighting
1 18 0.87 1 – – – 84.32 2.66 79.00–89.64 7.85
– All 20 0.84 – – – – 85.63 2.97 79.69–91.57 6.31

a 2-SE confidence interval.
b Second-phase results for variable combination with greatest first-phase R2⁎.
c First-phase results for feature variable combination with subsequent greatest second-phase R2⁎.
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metric, the first-step application of GAs to select feature variables pro-
duced greater R2⁎ values, but not to the same degree as for the WEUCL
metric.
4.4. Population inference

For each dataset, the four combinations of metrics and neighbor
weighting schemes produced similar estimates for the population
mean, μ̂GREG, with the possible exception of the WEUCL metric for the
Hedmark dataset (Tables 1, 2) for which no reason is apparent. Bias es-

timates, B̂iasðμ̂ InitÞ, as proportions of μ̂GREG were small, less 0.04 for all
combinations; standard errors, SEðμ̂GREGÞ, as proportions of μ̂GREG were
also small, less than 0.05; and all confidence intervals overlapped.

Relative efficiencies, RE, for optimized first-step selection of feature
variables and second-step selection of variable weights for the WEUCL
metric were in the range of 5.97 to 6.40 for the Hedmark dataset and
in the range 6.71 to 7.40 for the Itasca dataset. For the CCA metric, REs
for the optimized first-step selection of feature variables were 7.53 to
7.85 for the Hedmark dataset and 8.94 to 9.00 for the Itasca dataset.
Table 2
Results for Itasca study area.

Selection of feature variables Selection of feature
variable weights

Rank No. variables R2⁎ Generation Rank R2⁎

WEUCL/d-weighting WEUCL/d-weighting
1 10 0.84 23 21b 0.84
4c 11 0.83 15 1 0.85
– All 25 0.78 – 51 0.82

WEUCL/t-weighting WEUCL/t-weighting
1 11 0.85 18 9b 0.86
32c 14 0.83 8 1 0.86
– All 25 0.78 – 51 0.83

CCA/d-weighting
1 20 0.89 6 – –
– All 25 0.85 – – –

CCA/t-weighting
1 18 0.89 1 – –
– All 25 0.84 – – –

a 2-SE confidence interval.
b Second-phase results for variable combination with greatest first-phase R2⁎.
c First-phase results for feature variable combination with subsequent greatest second-phas
Overall, for the same dataset and neighbor weighing scheme, the CCA
metric produced greater RE values than the WEUCL metric by factors
of 0.18 to 0.25. For the optimized configurations, the t-weighting
scheme produced greater RE values than the d-weighting scheme by
factors of 0.07 and 0.09 for the WEUCL metric and by factors of 0.01
and 0.04 for the CCA metric.

For all combinations of datasets, metrics, and neighbor weighting
schemes, use of all feature variables, even with second-step weighting
for theWEUCL metric and the inherent weighting with the CCAmetric,
produced RE values that were smaller than the values for optimized
configurations by factors in the range 0.18 to 0.46. This result confirms
the recommendation of Chirici et al. (2016) that an optimization
phase should be used when applying the k-NN technique and the par-
ticularfinding of Packalén et al. (2012) that optimization should include
selection of a subset of feature variables.

5. Conclusions

Six conclusions were drawn from the study. First, optimized k-NN
configurations have the potential to greatly increase the precision of
Mean volume per unit area population estimates (m3/ha)

Generation μ̂GREG SEðμ̂GREGÞ CIa RE

1 50.34 2.38 44.58–56.10 6.28
16 51.60 2.30 47.00–56.20 6.71
8 53.30 2.56 48.18–58.42 5.43

10 52.34 2.25 47.84–56.84 6.99
14 53.89 2.19 49.51–58.27 7.40
12 51.05 2.42 46.21–55.89 6.04

– 52.88 1.99 48.90–57.72 8.94
– 53.74 2.30 49.14–58.34 6.73

– 53.10 1.99 49.12–57.08 9.00
– 53.82 2.36 49.06–58.58 6.38

e R2⁎.
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population estimates of NFI population parameters. Second, genetic al-
gorithms are an effective and computationally effective approach for
identifying and eliminating irrelevant k-NN feature variables, regardless
of the distance metric and for selecting feature variable weights for the
weighted Euclidean distance metric. Third, identifying and eliminating
irrelevant feature variables substantially improved both the accuracy
of predictions and the precision of estimates of population means for
both metrics, although more so for the weighted Euclidean metric
than for the canonical correlation analysis metric. Fourth, the canonical
correlation analysis distancemetric produced greater prediction accura-
cies and greater precision for population estimates than the weighted
Euclidean metric, and with considerably less computational effort.
However, caution should be exercised when generalizing this finding
for other datasets and other response variables. Fifth, the t-weighting
scheme for weighting neighbors produced slightly greater prediction
accuracies and precision for population estimates than the Dudani (d-
weighting) scheme. However, because optimization of the t-weighting
scheme entails considerably more computational effort, the Dudani
scheme merits additional consideration. Sixth, considerable gain may
be realized by simultaneously optimizing all four k-NN selections: the
distance metric, the feature variables used with the distance metric,
the number of nearest neighbors, and the neighbor weighting scheme.
The overall conclusion is that the k-NN technique is now sufficiently
mature and optimization techniques have been sufficiently demonstrat-
ed that users who do not optimize must justify their decision.

Several aspects of the methods demonstrated for this study merit
additional consideration. First, because genetic algorithms do not guar-
antee optimal solutions, a comparison of genetic algorithm and exhaus-
tive search solutions would be appropriate. For this study, however,
genetic algorithm solutions produced solutions that were comparable
to regression solutions. Second, demonstration of the utility of the com-
bination of genetic algorithms and nearest neighbors techniques for
more tropical and more complex temperate forest ecosystems would
be welcome. Finally, one of most appealing features of nearest neigh-
bors techniques is their multivariate capability. Thus, a multivariate ap-
plication for a suite of forest attributes such as volume, stem density,
and mean height would be a useful extension of this study.
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