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Abstract Over the course of 1681 hours between May 5 and
September 30, 2006, air temperatures measured at the 1.5-m
height at seven sites in and near the city of Baltimore, MD

were used to empirically model A T r-p» the difference in air
temperature between a site in downtown Baltimore and the six
other sites. Variables in the prediction equation included dif-
ference between the downtown reference and each of the other
sites in upwind tree cover and impervious cover as obtained
from 10-m resolution geographic information system (GIS)
data. Other predictor variables included an index of atmo-
spheric stability, topographic indices, wind speed, vapor pres-
sure deficit, and antecedent precipitation. The model was used
to map predicted hourly A T rp across the Baltimore region
based on hourly weather data from the airport. Despite the
numerous sources of variability in the regression modeling,

the method produced reasonable map patterns of A T r-p that,
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except for some areas evidently affected by sea breeze from
the Chesapeake, closely matched results of mesoscale model-
ing. Potential applications include predictions of the effect of
changing tree cover on air temperature in the area.

1 Introduction

Despite being the subject of vast numbers of investigations
over the last several decades, methods for evaluating urban
temperature patterns continue to be of scientific interest be-
cause of the possibility of using urban planning to ameliorate
excessive temperatures (Grimmond et al. 2010). Studies have
been published for hundreds of cities worldwide, including
almost every major city in Europe, North America, and East
Asia (Grimmond 2011; Heisler and Brazel 2010; Roth 2007;
Roth et al. 2011; Stewart 2011).

This plethora of studies has left gaps in knowledge about
the effects on air temperature of certain differences in urban
structure, including how to quantify the effects of differences
in vegetation, especially differences in tree cover. Although
high building and road density generally lowers the opportu-
nity for high tree cover, in many developed areas, particularly
in areas of single-family homes, a wide range of tree cover is
possible. Few studies have sampled the full range of vegeta-
tion differences that are possible within a given built structure.

There are multiple concerns about urban temperature that
create a need for tools to predict urban temperature patterns in
time and space. Over much of the world, high temperatures in
cities are a health risk for the ever-increasing human popula-
tions. Other concerns about urban climate include energy use
for space conditioning of buildings, high peak-power de-
mands for air conditioning, the relationship of urban climate
to global climate change (Mills 2007; Oke 1997; Roth et al.
2011), and high temperatures increasing ozone production
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(Nowak et al. 2000; Taha 1996). Both direct and indirect ef-
fects of temperature changes influence human health and com-
fort. Several studies have demonstrated that temperature
threshold exceedance and air pollution in cities exacerbate
human discomfort, heat-related health incidences, and mortality
(Baker et al. 2002; Grass and Crane 2008; Harlan et al. 20006;
Kalkstein and Smoyer 1993).

For tourist information and promotion, city climate is gen-
erally reported by data from the main weather station, usually
an airport, which may have significantly more or less dis-
agreeable climate than most of the city (Hartz et al. 2006).
Given knowledge of temperatures in different parts of a city,
the temperature influence on human comfort can be quantita-
tively modeled (Hartz et al. 2006; Heisler and Wang 2002;
Matzarakis et al. 2007), so that more accurate indices of com-
fort in a city are possible.

Any successful method of modeling urban temperatures
will account, either directly or indirectly, for the physical pro-
cesses that create differences in temperature across the city
and its surrounding area. These processes are hypothesized
(Brazel and Quatrocchi 2005; Oke 1979) to include: (1) an-
thropogenic heat from buildings (Sailor 2011), (2) greater than
normal shortwave radiation absorption due to canyon geome-
try (Oke 2011), (3) differences in net longwave loss due to
differences in sky view factor by canyon geometry (Oke
1987), (4) greater urban daytime heat storage and nocturnal
release due to differences in thermal admittance of building
materials compared to rural land cover (Cleugh and
Grimmond 2012), (5) greater sensible heat flux in more ur-
banized areas due to decreased evaporation resulting from
removal of vegetation and ground surface waterproofing by
concrete and asphalt (Grimmond and Oke 1999), and (6) con-
vergence of sensible heat due to reduction of wind speed in an
urban canopy layer compared to an agricultural rural area
(Comrie 2000). The successful model must also include the
fact that all of these effects are minimized as cloud cover
increases and synoptically forced wind speed increases
(Morris et al. 2001).

Modeling of urban temperature regimes includes empirical
regression methods, which permit an examination of the in-
fluences of tree and impervious cover at a relatively fine scale
(Ellis 2009; Heisler et al. 2007, 2010), as compared to model-
ing of urban temperatures by mesoscale modeling (Georgescu
et al. 2011; Rosenzweig et al. 2006; Taha 1996; Taha et al.
1997; Zhang et al. 2011). Regression models also offer the
possibility of making predictions over a larger spatial domain
and for a larger range of times than has sometimes been done
by computational fluid dynamics models (Ashie and Konob
2011) or numerical modeling (Krayenhoff and Voogt 2010;
Krayenhoff et al. 2009), though domains of numerical model
studies are increasing. The empirical methods also permit con-
sideration of the lower urban canopy layer atmospheric urban
heat island, in contrast to the upper urban surface “skin”
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temperature that is measured by remote sensing of thermal
emissions from satellites or aircraft (Voogt and Oke 2003),
which also is available for only limited times. On the other
hand, empirical methods have the challenge of dealing with
collinearity in the dependent variables and the concern that
model results should not be extrapolated beyond the range
of measurements of the independent variables. In the case of
this study, that range of measurements includes the impervi-
ous cover, tree canopy cover, the topographic descriptors, and
the ambient meteorological conditions—vapor pressure defi-
cit and antecedent precipitation. Although atmospheric stabil-
ity classes were not equally represented, at least the full range
of classes was included.

The empirical model results permit several important ap-
plications. One is in picturing with relative ease and in rela-
tively high resolution, the urban influences on predicted tem-
perature in space and time using a GIS. Another is the possi-
bility of estimating the effect of temporal changes in urban
structure, for example changes in urban tree canopy cover.
Another application is in defining the maximum urban heat
island intensity, a fundamental goal of many urban climate
studies (Oke 1973). Generally, the maximum urban heat is-
land intensity (maxT,_,) is estimated as the difference between
the warmest point in a city and the temperature in a rural
location. A common difficulty is that although temperature
is available from somewhere within the city and also in a rural
location, these points are not the very warmest and coolest
locations. Our GIS maps permit predicting the warmest urban
temperature to compare with either the coolest temperature in
the modeling domain or the temperature in a particular land
use, such as agricultural or forest.

The analysis in this paper is based on air temperature
measurements at the 1.5-m height at seven stations in and
near Baltimore, Maryland during the summer of 2006.
Atmospheric stability, cloud cover, and wind speed were
accounted for by airport weather data. Land cover was
derived by GIS averaging of differences between the refer-
ence and other stations in upwind tree canopy, impervious
cover, and water cover from light detection and ranging
(LiDAR) data. Results are presented as maps of predicted
temperature difference from the predicted warmest point
within the modeling domain, which was invariably near
the city center.

Our anticipated primary application of the analysis method
is for evaluating urban forest effects on air temperature (Ellis
2009). Modifications to the urban forest by tree management
have the potential for increasing air quality (Nowak et al.
2006), reducing energy use for building space conditioning
(Heisler 1986; Simpson 2002), affecting human health and
comfort (Hartz et al. 2006), and modifying sequestration of
carbon (Nowak and Heisler 2010). Long-term trends in the
urban heat island (UHI) in Baltimore have been described by
Brazel et al (2000).
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2 Methods

The study described here developed an equation for predicting
air temperature differences, A T rp at the 1.5-m height above
ground level (agl), where A T rp=Tr—T,, T, is temperature
at any point in the modeling domain, and 7% is a measured
reference temperature. The model method was empirical mul-
tiple linear regression analysis with the dependent variable,

AT,,, being equivalent to A T rp» €xcept that AT, was the
measured difference between Tk, hourly temperature at the
reference weather station, and 7, temperature at other stations
within the modeling domain. Predictor variables were derived
from differences in land cover and topography along with
forcing atmospheric conditions. Independent variables includ-
ed: (1) difference between weather station sites in upwind land
cover, (2) descriptors of topography around the sites, (3) a
thermal stability index, (4) vapor pressure deficit, and (5) an-
tecedent precipitation. The land-cover differences were from
remotely sensed tree cover, impervious cover, and water cover
over a range of distances upwind. Reference T was from a
National Weather Service station in downtown Baltimore, and
values of T, were from six other weather stations within the
modeling domain. Application of the model includes mapping

AT rp across the Baltimore region. The current modeling

analysis of A T r-p Was based on previous work for the
Baltimore area (Ellis 2009; Heisler et al. 2007, 2010).

Our previous modeling studies for Baltimore also related
temperature differences between points in urban areas to up-
wind land cover, modeled solar input, vapor pressure deficit,
and antecedent precipitation. In the current study, additional
predictor variables are considered along with methods to deal
with the correlation between many of the potential indepen-
dent variables. We also compare our model results to meso-
scale model runs by Zhang et al. (2011).

2.1 Measurement sites

The size and shape of the modeling domain were chosen to
include all of Baltimore, MD, along with the suburbs that are
of most interest to the Baltimore Ecosystem Study (BES,
http://www.beslter.org/), of which this study was a part. As a
contribution to BES, a US National Science Foundation Long
Term Ecological Research (LTER) site, we measured weather
variables continuously at five locations near Baltimore. We
also used data from two National Weather Service
Automated Surface Observing System (ASOS) stations
(Downtown and Airport, Table 1). The non-ASOS station
locations were selected for purposes other than the particular
analysis described here, so that although they represent a va-
riety of land-use types, they are somewhat clustered with three
stations being within about 1 km of each other and two others
having only about 0.5 km between them (Fig. 1a). The

clustering probably was not much of a problem regarding
assumptions of regression analysis, but clustering and the type
of sites selected did somewhat limit the range of the indepen-
dent variables. For example, the site selection probably in-
creased the range of elevations beyond what would have been
the range if sites had been selected by a purely random meth-
od; two sites were near hill tops and three were in valleys near
small streams.

The locations of the weather stations except at the airport
Site 7 and the rural open Site 5 are decidedly not at sites like
those recommended by Oke (2006) for urban climate studies,
where microscale influences are minimized (see Oke (1987)
for scale definition). Our interest in urban climate is to
include the influences of finer scale urban structures—
trees, buildings, grass, and impervious ground surfaces,
so that station locations close to trees and buildings are
acceptable. Unfortunately for the data used in this analysis,
although Site 6 was close to a large building, it was not
an inner-city street canyon. While city canyon sites were
not sampled directly, Site 6 was within 1 km of the city
center with tall buildings and street canyons. Except for
the Woods site, which had a deciduous leaf litter layer, the
weather station locations had short grass ground cover.
However, except for the Woods Site, no site was more
than 100 m from significant impervious cover.

Stewart and Oke (2012) describe and urge use of Local
Climate Zones to categorize sites of measurements for urban
canopy layer temperature analysis. They also suggest locating
temperature measurement sites away from Zone borders.
In our case, measurement sites were previously decided,
especially for the ASOS stations, and one of these, the
Downtown site, was near the edge of several LCZs.
Estimates of LCZs are included in the last column of
Table 1, with two classifications given for the Downtown site,
4 (Open highrise) and G (Water), because the station is within
60 m of the Baltimore Inner Harbor. Other sites were 55 (Open
midrise with scattered trees) for Site 1, 95 (Sparsely built with
scattered trees) for Site 2, 65 (Open lowrise with scattered
trees) for Site 3, A (Dense trees) for 4, and D (Low plants)
for Sites 5 and 7.

Urban air temperatures within the canopy layer are strongly
related to sky view through the influence of trees and build-
ings on solar irradiance and thermal radiation exchange with
the sky (Lindberg and Grimmond 2011; Oke 1987). Sky view
factor was not explicitly included in the AT modeling here,
but we did evaluate sky view from 180° hemispherical photos
taken looking directly upward from the 1-m height agl at each
site except at the airport, Site 7, where sky view was assumed
to be 98 %. Sky view values were derived from the hemi-
spherical photos by analysis with the Gap Light Analyzer
(GLA) program (http://www.ecostudies.org/gla/). Measured
sky view percentages ranged from 6 % at the woods, Site
4, to 96 % at rural open, Site 5 (Table 1).
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Table 1  Weather station sites, sky view, topographic indices, and Local Climate Zones. See text for full definitions of columns

Site Sky view %  Station elevation, E, (E<-E;2)? Eris® (EnrE)° Erm® Du° Dps'  Steepest slope?, deg. LCZ"
m m m m m

1 Apartment 31 101 40 045 49 0.55 18 27 26 S

2 Resid. with overstory 25 145 108 0.96 4 0.04 104 0 68 98

3 Resid. open 37 103 65 0.58 47 0.42 38 19 18 65

4 Woods 6 139 16 022 58 0.78 4 45 33 A

5 Rural open 96 157 35 053 32 0.47 19 15 21 D

6 Downtown 78 3 3 0.11 34 0.89 0 30 24 4,G

7 Airport 98 42 26 057 19 0.43 15 8 26 D

#Height in meters above lowest elevation within 2 km of the site

b Ratio of height of the site above the lowest elevation within a 2-km radius of the site to total relief within 2 km, (Es—E)(Emn—Ers)

¢ Height in meters below the highest elevation within 2 km

4 Ratio of site elevation below the highest elevation within 2 km to total relief within 2 km, (Ez,—E)/(Epn—Er>)

¢ Cold Drainage Away, Eq. 1 in text
fCold Drainage Toward, Eq. 2 in text

£ Slopes from USGS National Elevation Dataset (NED) with about 10-m resolution

"L ocal Climate Zone of Stewart and Oke (2012)

Figure 1b shows the larger regional setting of our study
area. The map shows the domain of our modeling along with
the partly overlapping domain of a mesoscale modeling study
by Zhang et al. (2011) that we compare to our results. Possible
regional influences on Baltimore area temperatures include
sea breeze effects from Chesapeake Bay and long-distance
advection from the Washington, DC area.

2.2 Measurements and instrumentation

The observations of AT, covered the period from May 5,
2006 to September 30, 2006. Trees were essentially in full
leaf during this time. For the analysis, we used only hours that
had temperature measurements for all sites.

At the non-ASOS sites, instrument packages with data log-
gers recorded wind speed, wind direction, and air temperature,
but the sensors differed somewhat. At all sites, including the
ASOS sites, air temperature (7,,,, which consists of Ty and Ty)
is measured at 1.5 m above ground. At Sites 1, 3, and 4
(Fig. 1a), T, is measured with thermistors in naturally venti-
lated Gill-type radiation shields (Table 2). With these systems,
maximum errors with high radiation loads and low wind
speeds probably exceed 1 °C (Gill 1983). Station 2 measured
T,, with a thermistor in a double-tube, power-aspirated radia-
tion shield for which maximum combined electronic and ra-
diation errors probably are +0.3 °C. The Rural Open Site 5 is
the primary weather station for the BES LTER site (Heisler
et al. 2000). Here, a platinum resistance thermometer (RTD)
device in a double-tube, fan-aspirated radiation shield (REBS
Radiation Energy Balance, Inc., Bellvue, WA) measures air
temperature with maximum errors of about +0.1 °C. The
ASOS sites have temperature sensors in well-protected and
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aspirated radiation shields, but reporting resolution is only to
the nearest 1 °F (0.55 °C).

The non-ASOS sites sample air temperature at 5-s intervals
and average over 15 min. For this analysis, the averages from
15 min before the hour to the top of each hour were compared
to data from the ASOS sites, which measure at 10-s intervals
and record average temperature and relative humidity over a
2-min period at 6 to 8 min before each hour.

The precipitation measurement was also derived from the
Airport ASOS station, where measurements are made with a
tipping-bucket gage with a 12-in (305-mm) orifice. In addition
to current precipitation during the previous hour, antecedent
precipitation variables consisted of total precipitation during
the last 24 h, the last 7 days, and the last 28 days.

2.3 Atmospheric stability

The AT variables (A T rp OF AT,) are essentially a manifes-
tation of the UHI effect. It is well-known that the UHI is
greatest with light winds and clear skies at night (Oke 1982).
The effect is reduced by high wind speed and cloud cover.
Wind speed and cloud cover also affect atmospheric thermal
stability (Stull 2000). Our method of modeling AT makes use
of'the fact that wind speed and cloud cover are incorporated in
indices of atmospheric stability.

In the regression analysis to predict A7, we combined the
forcing effect of cloud cover and wind speed by the Turner
stability index, S (Panofsky and Dutton 1984; Turner 1961,
1964), that is derived from standard airport weather observa-
tions of wind speed at 10 m agl and cloud cover including cloud
height (National Climatic Data Center 2011). Turner Class is
based on wind speed and a “Net Radiation Index” calculated
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Fig. 1 a Land cover in the area modeled in this study, along with the
location of the seven weather stations that provided data. Source of land
cover: 30-m resolution 2006 National Land Cover Database (U.S.
Department of the Interior 2011). b The location of our modeling

from solar altitude and cloud cover. The seven discrete S values
range from 1 for very unstable conditions when wind is light
and insolation is high during the day, to 4 for neutral stability
when wind is strong or clouds prevail or when both strong wind
and overcast skies are present, to 7 for very stable conditions
when wind is light and the sky is clear at night. Actual atmo-
spheric boundary layer stability varies with Earth surface rough-
ness, which is a function of ground cover and built structure, so
that actual stability in rural and urban areas at a given time are
likely to differ; with more urban areas becoming less stable at
night than S might indicate, because the urban structure has
greater thermal entropy and remains warmer than rural areas
(Panofsky and Dutton 1984). In our application, the calculated
S serves as an indicator of UHI forcing, and estimating actual

3 1t
UTM 18N NAD 83
0 5 10

domain (thin black line) within the region including the location of
Washington, DC, the Chesapeake Bay, and the approximate area (heavy
black line) of near-surface (at 2 m agl) air temperature modeling by Zhang
et al (2011) shown in Fig. 8. Land cover categories are as in Fig. la

stability is not the object. To estimate S for each hour, we used
wind speed and cloud cover from the Baltimore Washington
International Airport (BWI). Cloud cover in our model domain
is readily available only from the airport weather station.

Prior to modeling AT as a function of the full set of vari-
ables including upwind land cover, we examined the relation-
ship between average AT, and S. We looked at the difference
between the means of AT, in the seven different classes of S
using a Tukey mean separation test (SAS Institute Inc. 2003).

2.4 Land cover

Land cover variables, tree canopy, impervious cover, and wa-
ter cover were derived from LiDAR collected in 2007 and
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Table 2 Characteristics of temperature sensors used in this study

Sites Sensor Sensor accuracy ~ Radiation shield Full-sun radiation error
1,3,4  Model 107 thermistor, (Campbell Scientific, 0.1 °C Model 41003 multi-plate (R.M. Young, <l.5°C
Logan, UT) Traverse City, MI)
2 Model 107 thermistor +0.1 °C Fan-aspirated, double-walled. (Designed by ~ Estimated at <0.3 °C
R.H. Grant, Purdue University)
5 RTD (REBS: Radiation and Energy Balance ~ +0.01 °C Fan-aspirated, double-walled. (REBS) <0.1 °C
Systems, Inc., Bellvue, WA)
6,7 Platinum wire Resistive Temperature Device ~— +1 °C ASOS Hygrothermometer <0.6 °C

(RTD), (NOAA 1998)

analyzed by the Spatial Analysis Laboratory (http://www.
uvm.edu/rsenr/sal/index.html) at the University of Vermont
using the methods of Zhou and Troy (2008). The original
resolution of these data is typically 1 m. However, in this
study, we modeled A T over a domain of nearly 40 by
50 km, about 1667 km? excluding water and a small portion
outside the LiDAR coverage, and we had to aggregate the
high-resolution land cover to make file sizes manageable.
Thus, we re-sampled cover from the original 1-m pixel reso-
lution to 10 m (Fig. 2).

To derive upwind land-cover differences between sites, we
assumed that wind direction over the entire model domain was

uniform during each hour and represented by airport wind
reports. We used the uniform wind direction assumption for
several reasons. The weather station at Site 6 had no wind
sensors. The wind sensors at Sites 1 through 5 were at only
2 magl, and at Sites 1 through 4, wind direction at 2 m agl was
influenced by nearby trees and buildings and not likely to be
representative of the general flow over and through the area.
Also, one goal was to develop methodology that might be
applied to other urban areas, many of which have limited
sources of measured wind direction such as at an airport.
The assumption of uniform wind flow over the entire area is,
of course, one source of uncertainty in the modeling, because

“. 4 NoCover Data

Baltimore City @ \Weather Stations Baltimore City s \Weather Stations

Tree Cover (%) UTM 18N NAD &3 Impervious Cover (%) UTM 18N NAD 83
[T | e km IE km

0 50 100 0 3 6 12 0 50 100 0 3 6 12

Fig. 2 a Tree cover in the study area derived from LiDAR analysis. b Impervious cover in the study area derived from LiDAR analysis
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flow will differ over such a large area, especially given the
potential for sea breeze (Zhang et al. 2011) and topographically
induced katabatic flows (Brazel et al. 2005; Hirano et al. 2004).

A major challenge is created by the range of the spatial
scales of cover influences on temperature. To create indepen-
dent land cover variables, we generated an ArcGIS-based
Python program to average tree, impervious, and water cover
fraction over segments created by circles with 0.020, 0.0625,
0.125-, 0.250-, 0.5-, 1-, 2-, 3-, and 5-km radii centered on
each of the sites, and by lines radiating from the sites to
create 45° pie-shapes centered on the eight compass direc-
tions (N, NE, E, etc.), as illustrated in Fig. 3. The radii of
the wedge-shaped areas for land-cover analysis were intui-
tively selected to provide increasing resolution for areas
closer to the weather stations.

2.5 Topography

Baltimore and the suburban areas included in our study span
the transition from the Atlantic Coastal Plain in the southeast
of'the area and the Piedmont Plateau to the northwest. The line
between these physiographic provinces is known as the fall

line and marks the limit of navigable waterways (http://www.
mgs.md.gov/geology/). The lower elevation Coastal Plain is
differentiated by the lighter areas in Fig. 4. In that figure and in
our analysis, we used the USGS 2006 10-m digital elevation
model (http://rmmcweb.cr.usgs.gov/elevation/dpi_dem.html).
Elevation across the domain of the study ranges from sea
level to 230 m. Elevations of the weather station sites
range from 3 m at the Downtown Site 6 to 157 m at
the Rural Open Site 5. The area includes some steep
slopes, as indicated by the maximum slopes within 2 km
of the weather stations (Table 1).

Topography has several influences on air temperature, in-
cluding the atmospheric lapse rate and cold air drainage. The
effect of average lapse rate was accounted for by elevation
difference (AEp.) as a predictor variable in the regression mod-
el, where AEy_, is elevation at the reference site minus elevation
at other sites, thus AFEy_ is negative for all six “s” sites.

The possible effects of cold air drainage were modeled by
intuitive indices of drainage to and away from the sites. For
cold air drainage away (D,,) the index was defined as the
product of relative elevation over 2 km around the point and
absolute height above the lowest elevation within 2 km, where

Fig. 3 Tree cover (leff) and
impervious cover (right) wedge
patterns at the reference station in
the Inner Harbor area of
downtown Baltimore, from
NLCD 2001 at 30-m resolution
(top) and LiDAR-derived 10-m
resolution data (bottom)

@ Springer


http://www.mgs.md.gov/geology/
http://www.mgs.md.gov/geology/
http://rmmcweb.cr.usgs.gov/elevation/dpi_dem.html

504

G.M. Heisler et al.

Piedmont Plateau

~ Atlantic Coastal Plain

H@\T" w ‘ s
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Baltimore City e Weather Stations
Elevation (m) UTM 18N NAD 83
- km
-2 191 380 "0 3 6 12

Baltimore City e Weather Station
Cold Drainage Away UTM 18N NAD 83
[ km
0 105 210 M0 3 6 12

Fig. 4 Elevation over the study area from the 10-m resolution DEM
available at http://ned.usgs.gov via the Seamless Data Warehouse
(http://seamless.usgs.gov)

relative elevation (Ex;) was the difference in elevation of the
site (Ey) and the lowest elevation (£;,) within 2 km, divided
by the total range of elevation within 2 km (Table 1, Fig. 5).

E, —Ep

Dyp = 5712
2 Emy —Ep

(Es — Ep) (1)

Note in Fig. 5 that valley bottoms have low values of D 4,
and valley side slopes have high D 4,. Cold, dense air is pulled
by gravity down the side slopes, but tends to settle in low-
sloping valley bottoms. Similarly, for cold air drainage toward
a station, an index (D7,) was defined as the product of relative
elevation below the highest elevation over 2 km around the
point and absolute elevation below the highest elevation with-
in 2 km (Table 1).

EHZ - Es

Drpg = —————
" Em—En

(EH2 - Es) (2)

This simplified approach does not consider inhomogenei-
ties in land cover, vegetation, and built features that may alter
local flow patterns by turbulent friction (Brazel et al. 2005).
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Fig. 5 Index of D, Cold Drainage Away, at all pixels over the Baltimore
AT modeling domain

A related geographical feature is the Chesapeake Bay to the
east and southeast of Baltimore (Fig. 1b). While the main part
of the bay is nearly 20 km away from the heart of the city of
Baltimore, the Patapsco River (Fig. 4) protrudes to within our
modeling domain, and the Patapsco is more than 1.5 km in
width well within city limits. Interaction terms of spatial water
cover fraction with the temperature difference (73— 1) be-
tween the reference station air temperature and water temper-
ature were also tested as predictor variables. The Ty came
from a National Oceanic and Atmospheric Administration
buoy in the Chesapeake Bay near Baltimore. The possible
influence of these water bodies on air temperature is discussed
in the Results section.

2.6 Regression method

To develop a prediction equation with the temperature differ-
ences AT, (that is, Tr—T,, with six values each hour) as the
dependent variable, we derived GIS layers of tree-cover dif-
ferences, impervious-cover differences, and water-cover dif-
ferences (Downtown reference—other site values) by distance
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and compass direction. The cover areas for tree and impervious
cover are illustrated in Fig. 3. The cover differences, for exam-
ple for impervious cover, /;z.y), for distance d were formed as
impervious cover averaged over the 45° wind direction seg-
ment and from the coordinates of the station out to d. Thus,
D>somr-s) for Site 1 when wind was from an azimuth of 80° was
Lsom@) —1250mc1)» Where Ipsg,z) was impervious cover at the
reference site over the 45° wedge between 67.5 and 112.5°
and extending from the reference station out to 250 m, and
Lsom1) was the average cover over the same shaped wedge,
but with its apex at Site 1. The process was similar for tree and
water cover for other wedge directions and distances. We also
derived site differences for the topographic variables, elevation
as Ep_, and cold air drainage as D s>y and Dz z.g).

We then created interaction terms of cover differences with
forcing atmospheric and topographic variables. Because there
are nine distances (20, 62.5, 125, 250, 500, 1000, 2000, 3000,
and 5000 m) and 11 possible forcing variables (wind speed,
vapor pressure deficit, cold air drainage indices, stability in-
dex, four antecedent precipitation times, elevation difference,
weekend or not, and water temperature) most of which are
applied as interaction terms with the three cover types, there
were a total of 190 possible independent variables.

We used SAS Proc Reg (SAS Institute Inc. 2003) to derive
the prediction equation for A T & as a function of the upwind
cover differences and forcing variables. This analysis rests upon
the coincidence that the urban heat island intensity is approxi-
mately proportional to the S index category numbers from 1 to 7,
so that a function of the index number may be used as one of the
forcing variables. To select candidate predictors from among the
190 possibilities, we first used Excel spreadsheet correlation to
get the correlation of all the possible independent variables with
ATpg.. We then selected, from terms that were more highly
correlated with AT, a group that was most physically mean-
ingful as independent variables for predicting A T r-s- We used
the highly correlated group in stepwise regression with ATy ¢ as
the dependent. We did not include atmospheric forcing variables
alone as independent variable candidates, but only in interac-
tions with cover terms. In theory, if there were no cover differ-
ences, the atmospheric forcing variables antecedent precipita-
tion, wind speed, and vapor pressure deficit would not cre-
ate temperature differences. Although elevation difference is
in a sense a forcing variable, it can stand alone because it is
related to air temperature almost linearly because of the
change in pressure with elevation. The cold air drainage
index is another topographic variable, but we used it only
as an interaction with stability class S because it generally
becomes effective only with stable atmospheric stratification.

To sort out independent variables with high collinearity, we
used the Tolerance option in Proc Reg. After the first stepwise
run, we removed from the candidate variable list those that
were not significant. If any Tolerance values were less than
0.4, we also removed the one with the lowest Tolerance from

the candidate list. We then reran the stepwise, repeating the
process until all variables had a Tolerance value of at least
0.40. Though there is no strict rule for minimum acceptable
tolerance, Allison (1999) suggested that tolerance should be at
least 0.40 to avoid excessive multicollinearity.

2.7 Mapping temperature differences

We produced hourly maps of predicted temperature differ-
ence, AT rp With ArcGIS. This required using the regression

prediction equation to calculate A T r-p for each 1/3 arc second
(or 10x10-m pixel) in the modeling domain, that is for each
point p. We mapped layers of tree canopy and impervious
cover differences from reference site values, again pixel by
pixel, for each of the eight wind directions and significant
distances in the prediction equation. Similarly, we created
layers of indices of cold air drainage differences, D45z )=
D 42y~ D 42, Where D g5z is cold air drainage index at the
reference location, Site 6, and D5, is the index at each
10-m pixel. We then used the cover and cold air-drainage
difference layers along with airport weather data and S

Class to map A T Rp across the domain. We then modified

the maps of A T r.p to have a temperature scale ranging from 0
for the warmest pixel on the map to negative values that
ranged up to the temperature of the coolest pixel on the map.

3 Results

There were 3528 hours between May 5, 2006 and September
30, 2006, but the measurements of air temperature were si-
multaneously complete at all seven of our sites for just 1681 of
those hours. There were six temperature differences (reference
site—each of the other sites each hour, AT, z.)), thus there
were a total of 10086 observations of AT, x.). Most com-
monly, it was the ASOS sites with missing data. The number
of observations varied by S from 234 in S 1 to 3204 in S 4
(Table 3).

3.1 Dependence of AT, on stability class

For the seven Baltimore stations, mean AT,z generally
increased with S (Fig. 6, Table 3), though not monotonically.
Very unstable S 1, which occurs with low wind speed, clear
skies, and high solar elevations, had the lowest mean AT, z.).
Stability Class S 1 occurs in midday when the sky is clear and
wind speed is relatively low. The small AT,,, ) with S 1 occurs
in part because urban surfaces are slower than rural surfaces to
warm after the large nighttime temperature differences (Oke
1987). The AT, is also small with S 1 because vertical
convection mixes air aloft with air near the Earth surface, thus
tending to equalize temperatures across the landscape.
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Table 3 Mean AT,,x.,) and standard error (SE) by stability class,
significant differences of mean AT, determined by a Tukey’s HSD
mean separation test (shown by different letters in the Significance
column, with means having different letters being significantly different)

Stability ~ Stability Number Mean AT, Significance
description and SE

class

7 Very stable 1362 427+0.048 a

6 Moderately stable 1554 3.75+0.046 b

5 Slightly stable 696 2.84+0.057 ¢

3 Slightly unstable 1878 2.54+0.037 d

2 Moderately unstable 1158 2.3140.046 de

4 Neutral 3204 2.13+0.023 ef

1 Very unstable 234 1.99+0.095 f

With neutral stability, S 4, mean AT,z was slightly
higher than with S 1 but the difference was not statistically
significant (Table 3). Moderately unstable S 2 had higher
mean AT, than S 1, and the difference was statistically
significant. At the highest stability, S 7, the mean temperature
difference was more than double that of the least stable.

3.2 Prediction equation for A T

The regression analysis resulted in an equation for A T R-s that
uses a total of 14 variables, combined into 10 predictor terms,
9 of which are multiplicative interactions (Table 4). The ad-
justed R? of 0.50 indicates the equation explains about 50 % of
the variance in the A T r.s- Variables are defined in Table 5.
The form of the model in Table 4 is:

ATy = 0.669 + 0.00851 (1250,,,(,?,5.) . (S3)3>7O.00252(1500m(k,x) *End)

+ ... 4+ 0.00945(E-) (3)
S 5
g .
=]
g .
b=
=
g 3 .
= *
g *
3 .
22e
£
2
§1
=
0

1 2 3 4 5 6 7

Turner Class

Fig. 6 Mean AT, ). by Tumer Class. Significant differences among
AT, z.s)-shown in Table 3
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Table4 Regression equation for A T r-s» given all stability classes, n=
10,086, R*=0.50, 10 significant terms with a=0.05, and a total of 14
variables according to variable definitions in Table 5

Cover or Atmosphere 1) Tolerance
topographic  interaction terms
variables

Intercept 0.670
L50mr-5) (53)3 0.00851 0.43
L500mr-s) End -0.00252  0.96
Lsr-s) (3’ 0.0166  0.40
1125m(R-s) (53)3 -0.00316 041
Ls2m(r-5) Usioo —0.0912 0.59
L25omr-s) Uy 0.00853 041
120m(R-s) VPD -0.00676  0.83
D.ixres) (S3)’ -0.0112 053
Lomr=s) Rain 0.00488  0.67
Eps —0.00945  0.82

The predictor variables include upwind tree cover and imper-
vious cover differences, interactions with S, a weekend versus
weekday indicator, airport wind speed and vapor pressure def-
icit (VPD), an index of likely cold air drainage away from the
site, rainfall within the last hour, and elevation difference from
the reference station. Significant upwind impervious cover
differences extended from 20 m up to 5 km, whereas signifi-
cant tree canopy cover differences extended from only 20 to
125 m. This does not suggest that tree cover has an influence
over only a distance of 125 m; tree cover is inversely corre-
lated with impervious cover. Moreover, in the land-cover anal-
ysis, where tree canopy was over impervious cover, that arca
was counted as tree.

The model in Table 4 has an intercept of about 0.67. An
intercept can be viewed as the result of variability in the mea-
surements that is not accounted for by cover, topography, or
atmospheric forcing variables. In prior modeling for the sum-
mer of 2004, Heisler et al. (2007) finished by running the
regressions a final time with the No Intercept option. We have
not done that in this analysis, partly because the intercept was
sufficiently small that it would have little practical signifi-
cance (and because with No Intercept, the coefficient of deter-
mination, R, loses meaning).

Interpretation of the influences of the predictor variables
in Table 4 necessitates remembering that the cover and
topographic variables are differences, reference site — others.
Because the reference point, Site 6, had high impervious cover
and low tree cover, the impervious cover differences (1250 z-s)»
Lspomr-s)> €tc.) were usually positive, and tree cover differences
(B20mer-s)> t125m(r-s)) Were usually negative. If a point s away
from the reference had a lower value of I>5¢,,z.5 than the ref-
erence, then I554,,z.5) at s would be positive, and the positive 3

and (S;)* would indicate a positive influence on A 7", which
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Table 5 Definition of variables

Variable®  Variable definition

D 42r-s Cold Drainage Away, Within 2 km, (elevation—lowest)"2/
(highest—lowest)

Epg Elevation at reference weather station—elevation at
other weather station

End Weekend=1, weekday=0

Loom(r-s) Difference in impervious cover, 0 to 20 m upwind,
Site 6—other sites

L50mer-s) Difference in impervious cover, 0 to 250 m upwind,
Site 6—other sites

L500m®-s) Difference in impervious cover, 0 to 500 m upwind,
Site 6—other sites

Lsir-s) Difference in impervious cover, 0 to 5 km upwind,
Site 6—other sites

Isomem-s) Difference in impervious cover, 0 to 62 m upwind,
Site 6—other sites

U; 1/wind speed (m s~') with wind speed set to 1 if
reported as 0

Uoo Wind speed (m s ')/100 with wind speed set to 1 if
reported as 0

Rain 1/((Current hour rainfall in inches)x 100+1)°

t125m(R-5) Difference in tree canopy cover, 0 to 125 m upwind,
Site 6—other sites

120m(R-s) Difference in tree canopy cover, 0 to 20 m upwind,
Site 6—other sites

S;)° The cube of Turner Class stability index averaged
over the last 3 h®

VPD Vapor pressure deficit, mb

#The subscript (R-s) indicates difference between the reference site, R,
and other weather stations, s

® Precipitation in the USA is commonly reported in inches, 1 in.=
25.4 mm

¢ The capital full-size S represents stability index

equates to cooler temperature at s. The same rationale applies to
the Isyr-*(S 3)3 term. The interaction for tree cover over 125 m
and stability, #; 25m(R_s)-(S3)3, has a negative 3 indicating an
increase in A T (cooler temperature) as tree cover increases
at point s. Similarly, for the tree cover interaction with vapor
pressure, tpmr-)* VPD, with greater VPD, the dryer air will
increase evapotranspirational cooling from tree cover, and the
combination of greater tree cover at s and higher VPD will lead
to a larger magnitude negative that, with the negative 3, will

increase A 7", meaning cooler temperature at s.

On weekdays, measured temperature differences between
the reference site and other sites averaged about 0.18 °C great-
er than on weekends, that is, the reference site was relatively
warm. The difference in means was statistically significant.
This effect may be caused by the fact that the reference site
is the most urbanized, and its greater density of transportation
and industrial heat sources may lead to higher temperature on
week days. The weekend effect was included in the model by

the I59pm(r-s)*End interaction, where End=0 on weekdays and
1 on weekends. The sign of the 3 in Table 4 indicates that at
points with lower impervious cover than the reference point
(Isoom(r-s) positive), predicted A T will be more negative, that
is, temperatures at points with low impervious cover will be
relatively cooler on weekends compared to weekdays. The
500 m of upwind impervious cover difference is an intuitive
estimate of a significant extent of impervious cover that would
produce significant anthropogenic emissions.

The two terms containing interactions with impervious
cover and wind speed counteract or combine with other vari-
ables that include impervious cover. The Z42,z-5)* U100 term
with its f of —0.091 reduces A T (makes a point s with low
I52m(r-s) Warmer), but the reduction is larger as wind speed
increases. This counteracts the effect of increased A T in other
terms with low impervious cover. In the U; interaction with
L>50mr-s)» @ point s with low /550,,r.5) has increased A T when
wind speed is low, but as wind speed increases, the term be-
comes smaller.

Table 4 includes no term for water cover effects, despite the
presence of significant water area within the modeling domain
(Fig. 1). In a previous analysis with separate regression anal-
ysis for each S (Ellis 2009; Heisler et al. 2007), an interaction
term for water cover and the difference in temperature be-
tween air and water temperature did appear as significant for
S classes 2 and 6. Part of the reason for water cover not
appearing in the current analysis is that the large areas of
Chesapeake Bay are to the southeast, a direction little repre-
sented in the general wind climatology for the area.
Furthermore, our modeling domain is sufficiently far from
the main part of the Bay that the weather stations may be
generally beyond a classic daytime bay breeze influence, al-
though the bay breeze effect requires further study. Zhang
et al (2011) did find a bay breeze effect on temperature
and a bay breeze shift in wind in their mesoscale model-
ing of temperatures in the Baltimore Washington metropol-
itan area for mid-afternoon on July 8 and 9, 2007 (see sec-
tion 3.3 below). The wind shift extended from the main por-
tion of the bay nearly, but probably not quite, to our Sites 6
and 7 (Downtown and airport).

Sikora et al. (2010) pointed out that bay breezes extend
relatively shorter distances inland from the western shore of
the Chesapeake than water body breezes from larger bodies of
water, such as Lake Michigan. They detected bay breezes at
the BWI airport, about 23 km from the bay, on 7, 12, 10, 12,
and 9 % of the days in the months of May, June, July, August,
and September, respectively, from 2001 through 2005. On the
days when bay breezes extended as far as the BWI airport, our
model would have at least somewhat reflected the bay breeze
influence, because the assumed wind direction over our
modeling domain is based on the airport data. However, bay
breeze frequency is greater closer to the bay; for example at an
ASOS station to the northeast of our model domain and just
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2 km inland, bay breezes were found on 25 % of the days in
June (Sikora et al. 2010).

In general, regression modeling has the potential for
arriving at a large range of somewhat different models
and requires use of considerable judgment regarding the
physical processes at work (Burnham and Anderson 2002).
For example, in our stepwise regression, Ex_¢ was initially not
selected as a significant variable. Physically, an elevation dif-
ference coefficient of about 0.01 is expected in order to ac-
count for the average atmospheric lapse of about 0.01 °C/m.
Therefore, we added Ex., as an additional variable after the
stepwise regression was complete, and it was then significant
and had a Tolerance >0.40.

A possible alternative to a regression model that includes
the data for all of the stability classes together would be to do
separate analyses and produce separate regressions for each of
the seven S classes. One reason for analysis by separate S
classes is that for studies of the effect of tree cover and tem-
perature on air quality, the unstable classes occurring in day-
time with warmer temperatures will be of most interest.
Because neutral stability, S 4, has more hours of observation
than unstable Classes 1, 2, and 3, a model of all classes com-
bined may be weighted away from the unstable classes. Bay
breeze effects may also be more easily captured in models that
include the unstable daytime classes individually.

Initial analysis of the regression residuals, ATy —A T Ross
measured minus predicted values of the dependent variable,
suggested that further exploration would lead to model im-
provements. At some sites, in times of early morning transi-
tion, residuals were large, apparently because the 3-h average
of Sis too long to adjust to the rapid change in solar input. The
additional analysis of model residuals could examine whether
large residuals occur for particular stations, times of day, or
stability indices.

Larger residuals may also have occurred at times of frontal
passage across the domain. In a study of UHI effects in Lodz,
Fortuniak et al. (2006) excluded data during times when fron-
tal systems moved across the city. For our Baltimore study, we
excluded hours of data from all stations only if one or more of
the sites had missing temperature values.

3.3 Mapping A T

Using the airport weather data to represent synoptic condi-
tions, we mapped the Eq. 3 (Table 4) model across the
Baltimore region for individual hours. For each pixel in the
domain, upwind land cover and topographic differences from
the reference Site 6 were determined so that A T rp could be
derived from Eq. 3 for each point p in the domain. That is, the
subscripts of A T and the land cover values became Rr.p rather
than .. To somewhat enhance viewing the pattern, we adjust-

ed the A T r-p Maps to create images with the warmest
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location on the map having a temperature difference, A T
e OF 0, and all other pixels having negative A T re- This
yielded results as illustrated in Fig. 7. The times for these
illustrations were selected for having as little ambiguity in
thermal stability conditions as possible; in that S was un-
changed for at least 3 h. In Fig. 7a, c represent times of rela-
tively clear skies, conditions in which S 1 and 7 occur.
Figure 7b shows an S 4 example with low wind speed at
midday with cloudy skies. Maps for all S (Turner Class)
values are included in Online Resource 1.

By removing the AEg  and D 45z.5*(S. 3)3 terms from the
model, the topographic influence is removed, leaving only
impervious cover and tree canopy cover effects on A T.
Figure 7d illustrates a map without elevation influence for S
7 conditions. On the Coastal Plain where relief is small, there
is little difference from the case with elevation, Fig. 7c.
Differences are larger in the higher elevation in the northern
part of the region. The maps in Online Resource 1 include
examples with and without elevation for all S’s.

We evaluated heat island intensity, maxT,,_,, as the differ-
ence between the warmest and coolest pixels on each hourly
map. These are noted near the upper right corner in each of the
map labels in Fig. 7, and for representatives of all S’s in
Table 6. With topographic terms in the model, maxT7,,_,. ranged
from 4.4 for S 2 to 12.4 °C for § 7. With topographic terms
removed, 2.3<maxT,_,<10.5 °C. For S 6 and S 7, the warmest
locations turned out to be in Developed Open Spaces, which
were large stone quarries that had dense impervious surfaces.

In most studies, the rural location for determining maxT,_,
represents an agricultural area, and thus max7,,_, does not ap-
proximate simply a difference caused by human impact; be-
cause both urban and rural sites are strongly human influ-
enced. The A T maps could permit estimation of a maxT,_,
that would be more representative of human influences on
temperature by evaluating maxT,,_, with a forested rural refer-
ence that would approximate conditions before major human
encroachment. The examples in the Fig. 7 legends represent
merely the largest maxT,_,. on the maps, without specific se-
lection of the rural land use, though most of the cool rural land
uses were deciduous forest. This is illustrated in Table 6,
which lists examples of maxT,,.. for each of the seven S classes
along with the land uses in which the coolest and warmest
points were located.

Depending upon the general climate, recent precipitation
patterns, and particular land uses, we would expect that for
very stable night conditions, air over open spaces with short
vegetation would be cooler than air below a forest canopy (at
1.5 m, as in our data). Our results in Table 6 for S=7 indicate
forests were predicted to be coolest. All of the Table 6 exam-
ples were taken from mid-September, and the especially cool
forests may have been caused by soils in open areas being still
moist from precipitation early in September, which could have
resulted in high thermal admittance that affected temperatures
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Fig. 7 a Example of mapped
predicted temperature difference,
A?,e; (the warmest map location
having A?rel=0), with S=1 over
the last 3 hours, in this case for
12:00 noon, on September 7. b
Example of mapped AT, 11:00
on September 6, with S=4 over
the last 3 h. ¢ Example of mapped
Af’,el, 23:00 on September 17,
with S=7 over the last 3 h. d
Example of mapped A?rel, 23:00
on September 17, with S=7 over
the last 3 h, but with no elevation
terms in the equation

a
Baltimore, MD o Turner Class: 1

(® 3hrTumer: 1 G
7 September 2006 12:00

b

Baltimore, MD Turner Class: 4 0

- 3hr Turner: 4

* Weather Stations [__] Baltimore City

Heat Ieiand Intensity: 46 C 6 Septernber 2006 11 :00

Heat Island Intensity: 4.9 C
¥ Madel allDBan

* Weather Stations [__] Baltimore City

Water """  Gwyns Falls Watershed
Temp. Difference (°C) UTM 18N NAD 83
t _:—km
-5 0 0 3 6 12
c
Baltimore, MD Turner Class: 7 J

@ 3hr Turner: 7

Heat Island Intensity: 12.4 C 17 Septemb

Water {1 Gwyns Falls Watershed
Temp. Difference (°C) UTM 18N NAD &3
£ —:—kﬂ'l
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Table 6 Maximum heat island

intensity by S with and without Turner class, S MaxT, . with  MaxT,_,, no Elevation effect ~ Coolest, warmest land uses

elevation in the model and land elevation, °C  elevation, °C ~ on Max T,,.,, °C

covers (as depicted in Fig. 1) of Coolest Warmest

maximum and minimum

temperatures without elevation in 1 4.6 23 23 Forest High intensity develop

model, from maps of A T . in 2 44 2.3 2.1 Dev. open”  High intensity dev.

Online Resource 1 3 48 2.8 2.0 Forest Medium intensity dev.
4 49 3.1 1.8 Forest High intensity develop
5 6.1 4.6 1.5 Forest High intensity develop
6 8.0 6.5 1.5 Forest Medium intensity dev
7 12.4 10.5 1.9 Forest Medium intensity dev.

 Park land

over open more than in forests. This is an area for additional
investigation.

For planning purposes, political or specific topographic
areas may be of interest. Mapping of A T could permit such
analyses. For example, Fig. 7 maps include the bound-
ary of the City of Baltimore and of a topographic fea-
ture, the Gwynns Falls Watershed, which has been used
as a planning unit in the Baltimore region and which is a
focal point for the Baltimore Long Term Ecosystem Study
(http://www.beslter.org/). Also, temperatures of large urban
parks can become evident. For example, in Fig. 7c, d, the
cool rectangle near the center of the city is the 56-ha Patterson
Park.

3.4 Comparison to mesoscale model

Our empirical results can be compared to the pattern of air
temperature using the Weather Research and Forecast
(WRF) mesoscale model combined with a single-layer urban
canopy model' by Zhang etal. (2011). They predicted 2-m agl
temperatures at 15:30 on July 8 and July 9, 2007 for the
Baltimore and Washington metropolis as shown in Figs. 1b
and 8. Our domain overlapped part of theirs. We used the
weather data from July 8 and 9, 2007 at 15:00 and 16:00
LST along with Eq. 3 to create maps of predicted temperature,
which we then averaged to create Fig. 9, which is comparable
in time to Fig. 8 adapted from Zhang et al. Note that Fig. 9
shows actual temperature rather than AT as in Fig. 7.

! The numerical model used by Zhang et al. (2011)is a two-way inter-
active, “quadruply” nested version of the Weather Research and
Forecast (WRF-V2.2) model, coupled with a single-layer urban canopy
model with a finest grid size of 0.5 km (Chen et al. 2010). Zhang et al.
found generally good agreement of the spatial pattern of their simulated
ground surface temperatures (Tskpy) with observations of Tskxpy by
MODIS satellite measurements at 1840 UTC July 8 and 1745 UTC
July 9, 2007. Reasonable agreement was also found between simulated
air temperature 2 m agl at four ASOS stations (BWI, Aberdeen Proving
Grounds, downtown Baltimore, and Washington National Airport) and
the 1.5-m height temperature measurements there. Similar comparisons
were made for wind.
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The general pattern of temperatures in the overlapping do-
mains of Zhang et al (Fig. 8) and this study (Fig. 9) are re-
markably similar within the limitation of the resolution, partly
because of the larger area included, in Fig. 8. On July 9, Fig. 8
shows cooling along the eastern edge because of modeled bay
breeze while in Fig. 9 that area is about 1.5 to 2.0 °C warmer.
On July 8, wind direction at the BWI airport was from 270 and
250° at 15:00 and 16:00, so for these hours our model runs
assumed upwind cover in the 45° segment centered on west
(W) over the entire domain. The corresponding BWI wind
directions on July 9 were 230 and 250°, so we averaged maps
that assumed upwind cover in the SW and W 45° segments.
For July 8, the wind vectors are also from W over the entire
area of our domain in Fig. 8, which matches our assumption.
On July 9, our assumption of SW to W wind direction matches
Fig. 8 over the northeastern half of our domain, but the wind
vectors on the eastern and southern edges of our domain in
Fig. 8 are predicted to be decidedly S to SE because of bay
breeze.

The bay breeze on July 9 may have been unusually strong
because of the unusually high temperatures over land. In gen-
eral, bay breezes may be relatively minimal compared to other
land locations near large bodies of water because in the rela-
tively shallow bay, water temperatures are rather warm. The
NOAA Interpretive Buoy System (buoybay.noaa.gov) mea-
sures bay water temperatures, including at a buoy near
Baltimore called Patapsco. There, peak water temperatures
in mid-afternoon in July 2007 frequently exceeded 27 °C
and reached as high as 30.1 °C.

Maximum and minimum temperatures over our domain
agree closely with those of Zhang et al. (2011). Our maximum
temperatures were 34.7 and 36.1 °C on July 8 and 9, respec-
tively, which compares to 34.0 and 36.0 °C as best one can
extrapolate from Fig. 8. Our minimum temperatures were 31.2
and 32.7 °C, which compares to about 29.0 and 32.0 °C in
the area of our domain in Fig. 8. The elevation of up to
about 230 m explains part of the reason for cooler temper-
atures in the northwest corner of our domain. The Ex co-

efficient of —0.00945 °C/m indicates a A T rs 0f 2.2 °C,
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Surface air temperature °C 9
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Fig. 8 Distribution of 2-m agl air temperature (°C) shown by shading,
wind vectors (scale shown by vectors), contours of potential temperature
fora July 8,2007 at 15:30 LSTand b July 9,2007 at 15:30 LST by Zhang

which means that more than half of the temperature range
of 3.5 and 3.4 °C on July 8 and 9 in our model results
was owing to elevation differences. Extrapolation from
Fig. 8 suggests a range of about 5 and 4 °C within our
domain area in the Zhang et al. study. Thus, our results
indicate a smaller UHI by 1.5 and 0.6 °C, but not significantly
smaller maximum temperatures.

Fig. 9 Our model runs

8 July 2007 15:00 & 16:00 Baltimore, MD

—

Surface air temperature °C 8

eom—
26 27 28 29 305 315 325 335 345 355 365

et al (2011); and the approximate domain (white lines) of our empirical
model temperatures as shown in Fig. 9 [Figure adapted from Zhang et al.
(2011) ©American Meteorological Society. Used with permission. ]

A primary conclusion of Zhang et al. (2011) was that the
Baltimore UHI is influenced by upwind development as dis-
tant as Washington, DC, about 60 km SW of Baltimore, and
that the long-range advection added about 1.5 °C to the
Baltimore UHI. In contrast, the most distant cover considered
in Eq. 3 is only 5 km. Because our model results begin with a
T that is fortuitously close to the warmest point in Baltimore,

9 July 2007 15:00 & 16:00

Baltimore, MD

corresponding to the times
modeled by Zhang et al. (2011),
15:30 on July 8 (leff) and July 9
(right)

No Cover Data

Temperature (°C)

& A% TR o ¢
» Weather Stations [__] Baltimore City » \Weather Stations [__] Baltimore City
Water Water

UTM 18N NAD 83

4 I —
305315 325 335 345 355 365 0 3 6 12

Temperature (°C) UTM 18N NAD 83
| | T e —hm
305315 325 335 345 355 365 0 3 6 12
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as indicated by both models, our maximum temperatures are
likely to be realistic. On the other hand, if 1.5 °C is routinely
added by long-range advection to the daytime UHI across the
city, it would be significant for many issues of environmental
concern and something that a model based on up to only 5 km
of upwind cover could not predict. However, the conditions of
July 9, including the very high temperatures, are somewhat
uncommon.

4 Discussion

The modeling method used here accounts for most of the
hypothesized causes of urban climate disparity from rural cli-
mate (see section 1), but in some respects the accounting is
indirect rather than explicit. For example, anthropogenic heat
emissions from transportation occur over impervious cover
and likewise buildings are impervious cover and thus percent
impervious cover is related to anthropogenic heat release.
Similarly, daytime heat storage and nighttime release are re-
lated to thermal admittance (Oke et al. 1991; Runnalls and
Oke 2000), which is high for impervious cover and usually
low for pervious cover. Thermal admittance of soil is in-
creased by increases in soil moisture (Oke et al. 1991), which
especially increases average thermal admittance of rural areas,
thus reducing urban to rural contrast and the UHI effect.
Difference in soil moisture is accounted for in our model by
the term for antecedent precipitation. Less well accounted for
is the difference in sky view caused by tall building. In future
modeling, this lack could be largely corrected by using
LiDAR data to estimate shortwave radiation penetration
(Lindberg and Grimmond 2011). The LiDAR data include
building and tree height, which can be combined with the
building cover and tree cover to estimate average building
and tree volume per pixel for use as predictor variables that
should be more closely related to sensible heat flux.

LiDAR data are becoming increasingly available. For ex-
ample, in addition to LiDAR coverage for all of Baltimore
County, Maryland and two adjacent counties, LIDAR cover-
age was recently provided for the city of Syracuse, NY and
analysis of LIDAR data are ongoing for New York City. Thus,
analyses similar to the one reported here may be possible in
many more cities. The extent to which empirical models de-
veloped for one city may apply to others remains to be tested.
A major concern is that the range of cover and topographic
variables will differ from city to city, so that in applying a
model from a different city, extrapolation beyond the range
of'independent variables used in developing the model may be
required, resulting in erroneous results.

We expect that high-resolution cover data, such as the 10-m
data used here are better able to account for small-scale struc-
ture, such as individual or small groups of trees. Our previous
analyses (Ellis 2009; Heisler et al. 2007) used 30-m resolution

@ Springer

National Land Cover Database (NLCD) (http://www.mrlc.
gov/nled01 _data.php) cover. With the lower resolution, the
shortest distance over which cover could be averaged for
creating independent variables was 125 rather than 20 m.
The NLCD is known to significantly underpredict both
tree cover and impervious cover (Greenfield et al. 2009).
The difference between tree cover and impervious cover in
NLCD and our high-resolution cover is obvious in Fig. 3.
The cover averaging did smooth over most of the detail in
our 10-m resolution cover. By including differences in
average cover over 20 and 62.5 m around the stations, the
finer 10-m cover resolution seemed to improve explanatory
power as indicated by increased R, but further comparison of
results with NLCD and high-resolution cover for identical
spatial domains and weather data are needed.

A number of additional steps could be carried out in future
analyses. Some of these include:

1. Include cover volume differences for tree and building
land use, where volume is average cover times average
height.

2. Check modeling results with other weather data. One pos-
sibility is the use of data from the Weatherbug school
weather station network or Weather Underground data.
These stations will probably have some differences from
the data used here, because most of the stations are above
school roofs, rather than near the ground at 1.5 m height.

3. Run regressions for winter periods. For some applica-
tions, like influences of trees on heating and cooling
buildings, the all-year influence is important.

4. Compare model results for all stability classes combined,
as in this study, to results of modeling individual stability
classes separately. A single model is somewhat simpler to
apply. However, the physical processes of urban heat is-
land formation are fundamentally different under the in-
fluence of stable as compared to unstable atmospheres, so
we might find more precision in models of AT'if separate
models are built for the different stability classes. This
might be tested by comparing individual models for un-
stable, neutral, and stable Turner Classes to the combined
classes model.

5. Account for differences in wind direction across the re-
gion, possibly by using wind data from networks such as
Weather Underground or Weatherbug.

5 Conclusions

A single regression model was developed for predicting the
temperature difference pattern across the Baltimore region
for any summer weather conditions. Predictor variables
were based on impervious cover, tree canopy cover, indices
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of topography, and interactions of these cover and topography
variables with atmospheric thermal stability, wind speed, an-
tecedent rainfall, vapor pressure deficit, and weekend versus
weekday. Tree cover generally led to cooler air temperatures,
and impervious cover caused warmer air temperatures. The
effect of land cover on temperature difference A T R.s between
a downtown reference location at R and temperatures at six
other sites s differed greatly with different values of the Turner
Class index of stability. Thus, interaction terms between sta-
bility and cover variables are included in our model.

The model explained about 50 % of the variance in tem-
perature difference. Some of the unexplained variability is
caused by a relatively few large residuals that are probably
caused by short-term fluctuations in temperature at the mea-
surement sites owing to times of rapid heating at some sites
shortly after sunrise. Another part of the variance is caused by
the short period of the averages of temperature and wind from
the airport station. The portion of variance explained might be
improved by the use of different averaging methods for the
stability index, rather than giving equal weight to the most
recent 3 hours as in the analysis here.

The regression model was applied to mapping temperature
differences across the entire city of Baltimore and suburban
areas. For most of the summer, temperatures differed by less
than 5 °C over the area of nearly 1700 km®. However, with
clear skies and low wind speeds at night, urban minus rural
temperatures, a measure of urban heat island intensity, differed
by up to 12.4 °C. Topographic influences accounted for be-
tween 1.5 and 2.3 °C of the downtown to rural area difference.

For the 2 h of temperature patterns evaluated by Zhang
etal. (2011) using a combined WRF and urban canopy model,
our results were similar except that ours apparently did not
account for bay breeze effects over part of our modeling do-
main, especially on one of the 2 days. The limitation of our
relatively simple empirical method to deal with advection be-
yond 5 km did not seem to greatly affect results.

The methods used here might be applied in similar studies
for other cities. However, in doing so, some care must be taken
because of the strong inverse correlation between tree cover
and impervious cover and the influence of topography on
near-surface air temperature. The use of regression analysis
requires cognizance of the physical processes at work and is
not amenable to a “cookbook” approach. Models of this type
could be useful in evaluating tree influences on temperature in
a manner similar to that used by Ellis (2009). Direct applica-
tion of the prediction equation developed here to other cities,
using land cover, topography, and weather data (including
wind speed and cloud cover from a primary station) from
the other city to develop the input variables, has not yet been
tested. There is considerable interest among urban foresters
and urban planners for valuations of large-scale tree planting
programs in reducing the warm season urban heat island ef-
fect, especially given the evidence of global warming that

exacerbates the effects of high temperature on human health
directly and by deterioration of air quality (Heisler and Brazel
2010; Nowak and Heisler 2010).
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