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« Litter carbon in forests is a relatively small
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« In situ measurements of litter in forests of
the US have improved model predictions.
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Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary produc-
tion moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have
important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter
accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required
to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate
Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental
Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict
litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not as-
sociated with the litter samples collected over the last decade in the national forest inventory. Here we present, for
the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest
inventory of the United States. The field-based estimates mark a 44% reduction (2081 4 77 Tg) in litter carbon stocks
nationally when compared to country-specific model predictions reported in previous United Framework Conven-
tion on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults
and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate
the contribution of this pool in national carbon budgets.
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1. Introduction

The Intergovernmental Panel on Climate Change recognizes litter
carbon (C) as one of five C pools in forest ecosystems included in the
Agriculture, Forestry and Other Land Use sector of annual national
greenhouse gas inventories (IPCC, 2006). In the United States (US),
the national forest inventory (NFI) conducted by the US Department
of Agriculture, Forest Service, Forest Inventory and Analysis program is
used to compile annual estimates of forest C stocks and stock changes
for the national greenhouse gas inventory (US EPA, 2015). For more
than a decade, tree- and site-level variables related to each forest
ecosystem C pool have been measured in the NFI (O'Neill et al., 2005a;
Woodall and Monleon, 2008, and Domke et al., 2013). In recent years,
estimation approaches have been developed that rely directly on
measurements from the forest ecosystem attributes of interest (US
EPA, 2015), reducing the uncertainty associated with the estimates
of C stocks and stock changes in the national greenhouse gas inven-
tory and improving their sensitivity to natural and anthropogenic
disturbances.

The US uses a stock-difference C accounting approach (IPCC, 2006)
in United Nations Framework Convention on Climate Change reporting,
requiring estimates of litter C stocks, defined in this study as the pool of
organic C above the mineral soil (i.e., litter (Oi), fulvic (Oe), and humic
layers (Oa)) including woody fragments with large-end diameters of
up to 7.5 cm (Woodall et al., 2012), on every NFI plot across space and
time. Before extensive field data were collected on non-live tree attri-
butes, the Forest Service estimated litter C with a country-specific
model developed with data obtained from the literature using geo-
graphic region (a proxy for climate), forest stand age (an indication of
time since disturbance), and species composition (an indication of the
source and character of organic matter) as predictor variables (Smith
and Heath, 2002). Significantly, this model has served as a primary
source of information used in Intergovernmental Panel on Climate
Change guidance for temperate forest ecosystems in nations lacking
litter C estimates in their NFIs (IPCC, 2006 and US EPA, 2014).

Globally, the litter C pool accounts for an estimated 5% (43 Pg) of all
forest ecosystem C stocks (Pan et al., 2011). In contrast, the country-
specific model (Smith and Heath, 2002) used in the 1990-2012 US
national greenhouse gas inventory predicted litter C at 11.7% (5056 Tg)
of total forest C stocks (43,126 Tg), with an estimated net annual increase
of 14 Tg C yr~ ! over the last 5 years (US EPA, 2014). Although the US'
country-specific model uses NFI plot attributes to estimate litter C stocks,
these predictions are not associated with the litter samples collected over
the last decade by the Forest Inventory and Analysis program (O'Neill
et al,, 2005b and Woodall et al.,, 2012). General comparisons of the
country-specific model predictions to the NFI estimates suggest that the
country-specific model does not accurately characterize the litter C in
forests of the US.

Developing data-driven models to characterize the litter C pool is
challenging as it can be highly variable (Bottcher and Springob, 2001;
Schulp et al., 2008 and Woodall et al., 2012) with large differences
between forest types on the same soils (Ladegaard-Pedersen et al.,
2005) and variations in thickness across short distances (Smit, 1999).
This pool's vulnerability to disturbance, particularly wildfire (Stinson
etal, 2011), also contributes to the variability (Pan et al.,, 2011). There
are few NFIs with observations of litter C with which to build models
and evaluate litter C predictions at regional or national scales (Kurz
and Apps, 2006 and Keith et al., 2009).

The Forest Service has been measuring litter attributes, including C
content and bulk density, on a subset of the NFI plots since 2001
(O'Neill et al., 2005b and Woodall et al., 2012). Here, we show how
these data support a new approach to litter C estimation. Specifically,
we: 1) demonstrate the inadequacies of the country-specific model
currently used relative to estimates of litter C stocks obtained from the
NFI; 2) develop a new modeling framework based on litter measure-
ments in the NFI and stand, site, and climatic variables; and 3) use the

new modeling framework to estimate litter C in the 2015 US national
greenhouse gas inventory.

2. Methods

In this study, we used observations of litter variables - total C
(organic and inorganic) concentration in percent of the litter sample,
oven-dry sample weight of the litter material, and the per-unit-area
estimate of medium and large fine woody debris - to estimate C
from the annual NFI (2001 —2012). The sample included 4553 inventory
plots and 5263 unique forest conditions (i.e., domains mapped on each
plot using land use, forest type, stand size, ownership, tree density,
stand origin, and/or disturbance history — there may be multiple condi-
tions on a single inventory plot), hereafter referred to as plots (Bechtold
and Patterson, 2005) in the conterminous US (Fig. 1a). The annual NFI
includes a nationally consistent sampling frame and plot design so
the methodologies established for replacing the country-specific model
predictions of litter C stocks could be applied nationally to enable
stock-difference C accounting. Note that litter samples from Mississippi,
Oklahoma, and Wyoming were not available at the time of this study
(Fig. 1a).

2.1. Plot design and sampling

The Forest Inventory and Analysis program employs a multi-phase
inventory, with each phase contributing to the subsequent phase.
First, current aerial photography (e.g., National Agriculture Imagery
Program, USDA Farm Services Agency, 2008) is used in a prefield pro-
cess to examine all sampling points (i.e., plot locations) to determine
whether a forested condition exists at each point. Next, each sample
point is assigned to a stratum using satellite imagery or thematic prod-
ucts (e.g., National Land Cover Database, Jin et al., 2013) obtained from
satellites. A stratum is a defined geographic area (e.g., state or estima-
tion unit) that includes plots with similar attributes; in many regions
strata are defined by predicted percent canopy cover. Base intensity
permanent ground plots are distributed approximately every 2428 ha
across the 48 conterminous states of the US in four geographic regions
(Fig. 1). Each permanent ground plot comprises a series of smaller
fixed-radius (7.32 m) plots (i.e., subplots) spaced 36.6 m apart in a
triangular arrangement with one subplot in the center (Fig. 2). Tree-
and site-level attributes — such as diameter at breast height (dbh) and
tree height - are measured at regular temporal intervals on plots that
have at least one forested condition (i.e., there may be multiple condition
plots) defined in the prefield process (USDA Forest Service, 2014a). Litter
samples are collected along with other non-standing tree ecosystem
attributes (e.g., downed dead wood) on every 16th base intensity plot
distributed approximately every 38,848 ha (Bechtold and Patterson,
2005). Although sample intensity was 1/16th of the base plot intensity
during this study's time period (2001-2012), there may be opportunities
to increase the sample intensity in future NFIs.

Litter variables are sampled as a complete unit on plots adjacent to
subplots 2, 3, and 4 using a circular sampling frame that is 30.48 cm in
diameter (Fig. 2; USDA Forest Service, 2011). At each sample point,
the entire litter thickness (i.e., duff and litter layers) is measured to
the nearest 0.25 cm at points in each cardinal direction within the
sampling frame to the point where mineral soil (A horizon) begins
(O'Neill et al., 2005b). The entire litter layer (excluding live vegetation,
woody debris > 0.64 cm in diameter, rocks, cones, and bark) within
the confines of the sampling frame is removed for lab analysis. Litter
samples are analyzed for bulk density, water content, total C, and
total N (O'Neill et al., 2005b) and the laboratory results are managed
as part of the Soils Lab Table (SOILS_LAB) in the publicly available
Forest Inventory and Analysis database (USDA Forest Service,
2014b and Woodall et al., 2010).
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Fig. 1. Distributions of NFI plots by region in the conterminous US that have at least one
forested condition and include measurements of litter attributes (n = 4553). Note that
plot locations are approximate.

Estimates of litter (Mg C ha—') obtained directly from the NFI
observations, Fyg, were calculated as:

~_ ~(SWop
FNFI*C< A

>+FWD (1)

where C was the total C (organic and inorganic) concentration in
percent of the litter sample, SWop was the oven-dry sample weight
of the litter material collected from the sampling frame, A was the
area (1 - 15.24 cm?) of the sampling frame, and FWD was the per-
unit-area estimate (Mg C ha—!) of medium and large fine woody debris
with large-end diameter < 7.50 cm (Woodall and Monleon, 2008).

The country-specific model (Smith and Heath, 2002) included two
basic components, net accumulation and decay. The assumption was
that net accumulation of litter C mass increased with stand age. The
model passes through the origin, represents continuous net accumulation
with stand age, and the rate of accumulation decreases so that the line
approaches an asymptote. The country-specific predictions of litter
C, Fcs, included medium and large fine woody fragments and were
calculated as:

_ CaAge = —(%)
FCSfCB_"_—Age""DAe 5 (2)

where C4 and Cp were region- and forest type-specific coefficients
describing net litter C accumulation based on the assumption that
litter C mass increased with Age, which was stand age in years, D4 was
the mean litter C mass of mature forests, Dy was the mean residence
time of litter C mass, and e was the exponential function.

2.2. Country-specific model evaluation

Before evaluating an alternative approach for estimating litter C
in the national greenhouse gas inventory, the country-specific
model predictions currently used in the national greenhouse gas invento-
1y (F¢s) were compared with estimates from the NFI (Fyg) using two ap-
proaches. First, two one-sided tests of equivalence (Wellek, 2003 and
Robinson and Froese, 2004) were used to compare Fcs and Fyg by forest
type and region. We used a conservative region of indifference
(i.e., tolerance interval 4= 25% of the standard deviation) for the equiva-
lence test, although any region may be specified for comparison. Under
the two one-sided tests, when using a nominal o = 0.05, equivalence is
demonstrated if the 90% confidence limit of the absolute value of the
mean of the differences between estimates fall within the tolerance inter-
val. Confidence intervals (t-based) for the mean were calculated following
standard parametric procedures.

O Subplot - 7.32 m radius
« \: Annular plot — 17.96 m radius

~

wH  Litter sampling line

Fig. 2. Forest inventory and analysis plot diagram. Each permanent ground plot comprises a
series of smaller fixed-radius (7.32 m) plots (i.e., subplots) spaced 36.6 m apart in a triangular
arrangement with one subplot in the center. Litter variables are sampled as a complete unit
on plots adjacent to subplots 2, 3, and 4 using a circular sampling frame that is 30.48 cm in
diameter. Litter samples are collected at every other plot remeasurement at a new location
along the litter sampling line.
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Next, region- and forest type-specific predictions of litter C were
compared with estimates from the NFI using a metric known as modeling
efficiency (Nash and Sutcliffe, 1970 and Vanclay and Skovsgaard, 1997):

> (Fyn—Fcs)

EF—1— - 3)
Z (Fna— FNFI)2

where F and Fyg have previously been defined and Fyg is the mean
estimated litter C stock per unit area by region and forest type. Differences
between Fs and Fygm were also mapped to visually evaluate geographic
trends in litter C across the US.

2.3. Model development

Despite the considerable investment in sampling thousands of NFI
plots for litter attributes across the US, more than 96% of sample points
lack empirical estimates of litter C based on NFI measurements. Ignoring
the sample points that lacked litter C measurements was not an option
given the relatively small sample size and the fact that the litter C
sample in the NFI did not extend across the entire United Nations
Framework Convention on Climate Change reporting period. As an
alternative, replacing Fcs predictions with estimates from the NFI
using imputation procedures was investigated during initial data explo-
ration. The imputation approaches included: 1) replacing Fcs on plots
without Fyg with the mean from the same stratum to which a plot
with no Fyg was assigned; 2) replacing Fcs on plots without Fyg with
the stratum mean and a number represented the uncertainty in the
stratum sample mean and observed variability around this mean;
3) replacing Fcs on plots without Fyg randomly selected from Fyg
(k=1, 3,5, 10, 20) most similar (based on proxies for soil forming
factors and other site characteristics from the NFI) to plots lacking
an Fyg for each region; and 4) replacing Fcs on plots without Fyg
with the mean of Fyg (k = 1, 3, 5, 10, 20) most similar (based on
proxies for soil forming factors and other site characteristics from the
NFI) to plots lacking a Fyg for each region. However, the relatively
small number of Fyg estimates in the NFI and the lack of empirical
estimates on most NFI plots returned the same Fyg estimate many
times in the database used to compile estimates for the national
greenhouse gas inventory, resulting in bias and artificial reductions
in variance in all the aforementioned approaches evaluated. Several
parametric and nonparametric regression approaches were evaluated
to predict litter C for all NFI plots lacking observations. The first phase
of model selection was to partition the NFI data that included litter
observations into training and testing groups and then evaluate the
predictions against the observations — both graphically and using root
mean square error and modeling efficiency. In addition, the regression
approaches needed to easily accept a variety of data types, tolerate
missing observations, capture the range of variability of litter C observa-
tions, be adapted to accommodate data limitations, and incorporate
new information as it becomes available. Given all of these criteria, a
nonparametric modeling approach was selected for further evaluation.

Random Forests is a machine learning tool that uses bootstrap
aggregating (i.e., bagging) to develop models to improve prediction
(Breiman, 2001). Random Forests also relies on random variable selec-
tion to develop a forest of uncorrelated regression trees. These trees
recognize the relationship between a dependent variable (y), in this
case litter C stocks, and a set of predictor variables (X). The learning
algorithms use recursive partitioning to split the data based on the
predictors to create homogenous groupings of the dependent variable.
The recursive partitioning continues until either the subset of y at
each node is the same value or further splitting adds no value. Arandom
subset of predictors (selected without replacement) is used to determine
the split for each node. Bootstrap resampling is used to develop B
replicates of each regression tree, ©. Each b bootstrap sample is
selected by sampling n observation from (y, X) with replacement to

create (yb, Xb). Approximately two-thirds of the original estimates are
in the bootstrap sample (in bag) and one third is out of bag denoted
by the superscript b and — b respectively. ©b is then developed for
each b bootstrap sample. The random forest is the ensemble (01, ©2,
03, ..., 0B).

Many predictors were evaluated using random forests' variable
selection and Spearman's rank correlation coefficient. These included
attributes measured on base intensity plots in the NFI as well as auxiliary
information that directly or indirectly related to soil forming factors.
The attributes included in the variable selection (both continuous and
categorical variables) obtained from the NFI included: latitude, longi-
tude, elevation, slope, aspect, forest type group, water code, stand age,
physiographic class, site index, stand origin, natural disturbance code,
treatment (silvicultural) code, basal area, stand density index, relative
density, years since disturbance, and aboveground live tree C. United
States Geological Survey digital elevation products (Danielson and
Gesch, 2011) and 30-year climate norms from 1981 to 2010 (PRISM,
2012) were also included in the variable selection process. Digital
elevation data were used only when NFI data were not available.
Climate norms included mean annual maximum temperature, mean
annual precipitation, and two variables obtained from climate norms:
degree days above 5 °C, and degree days above 5 °C during the growing
season (Rehfeldt, 2006). A ratio of precipitation to potential evapotrans-
piration was also included as a growing season moisture index (Akin,
1991).

Due to regional differences in sampling protocols during periodic
Forest Inventory and Analysis inventories (pre-1999) many of the pre-
dictors included in the variable selection process were not available
across the entire United Framework Convention on Climate Change
reporting period. To avoid problems with data limitations and model
overfitting, the list of variables were pruned using training and testing
groups to reduce the random forests to the minimum number of
relevant predictors (including both continuous and categorical vari-
ables) without substantial loss in explanatory power or increase in
root mean square error. The random forests models were trained
using 70% of the NFI dataset (n = 3684) and tested using the remaining
data (n = 1579). This process was repeated multiple times, splitting the
data randomly each time. The general form of the final random forests
models were:

Fgrr = f(elev,lon,above, gmi, fortypgrp, ppt, t max, lat) 4)

where elev = elevation, lon = longitude, above = aboveground live tree
carbon (trees > 2.54 cm dbh), gmi = the ratio of precipitation to potential
evapotranspiration, fortypgrp = forest type group, ppt = mean annual
precipitation, tmax = mean annual maximum temperature, and lat =
latitude. The random forests model predictions, Fgr, were then summed
with a number, , to represent the uncertainty in the predictions resulting
from the sample-based estimates of the model parameters and observed
residual variability around the predictions. For each replacement, u was
independently and randomly generated from a N(0,0) distribution with
o incorporating the variability from both sources. Each model prediction
was replaced independently m times and m separate estimates were
combined following Rubin (1987):

— 1
Fre=—>" Fe )
mis

where Fgr is the estimate of the mean for the kth completion of the data
set. In this study, m = 1000, which is markedly larger than the m = 2-10
recommended by Rubin (1987) but given the small number of plots that
included litter attributes in the NFI (n = 5263) relative to all base
intensity plots lacking litter attributes it was deemed necessary (Bodner,
2008). The predictions, Fgr, from the test groups were compared to Fyg
estimates graphically and using the root mean square error, two
one-sided tests, and modeling efficiency. All analyses were conducted
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using R statistical software, version 2.15.2 (R Development Core Team,
2014). Specifically, the ‘randomForests’ package (Liaw and Wiener,
2002) was used to develop the random forests model, the ‘equivalence’
package (Robinson, 2014) was used for model comparisons, and the
‘ggplot2’ package (Wickham, 2009) was used to develop figures.

3. Results

Estimates of litter stocks, Fyp, obtained from measurements of litter
attributes and estimates of FWD in the NFI ranged from 0.0004 to
238.71 Mg C ha— !, with an estimated mean of 9.99 + 0.14 Mg C ha~!
(mean + standard error) (Table 1). The wide range of litter C stocks
observed was not indicative of the distribution of litter estimates from
the NFI (Fig. 1b) but rather a single plot with the maximum estimated
number of FWD pieces allowed (n = 999) which resulted in an estimated
227.94 Mg C ha™! from FWD alone. In most regions and forest types, FWD
represented a relatively small proportion of total litter C stocks (Table 1).
Mixed hardwood stands in the North and South had the largest ratio
(0.40) of FWD to litter material in stocked forests while conifer-
dominated stands generally had a smaller proportion of FWD. That
said, conifer-dominated stands generally had the highest mean estimated
litter C stocks across the US (Table 1).

Regionally, forests in the Pacific Northwest had the highest estimated
mean litter C stocks at 13.91 + 3.48 Mg C ha— ! and also the highest esti-
mated mean aboveground live tree C stocks (85.23 + 21.35 Mg Cha™ ).
Southern forests had the lowest estimated mean litter C stocks at 7.04 +
0.78 Mg C ha— ! and the lowest estimated mean aboveground live tree C
stocks (33.07 + 3.01 Mg C ha™'). Both hardwood (i.e., aspen-birch and
maple-beech-birch) and softwood (spruce-fir and pine) forests in
the Northern US had high mean estimated litter C stocks relative to
the aboveground live tree C stocks seen in other regions. In the
West, mixed conifers and pine forests had the highest mean estimated
litter C, 15.55 + 0.45 and 12.08 + 0.57 Mg C ha™ !, respectively.

3.1. Model comparisons
3.1.1. Country-specific predictions vs. NFI estimates

In general, the country-specific model predictions ( Fcs) showed a
substantial upward bias resulting in statistically significant differences

Table 1

from NFI estimates ( Fyg ) in nearly every region and forest type
(Fig. 3, Table 1). The country-specific model predictions of litter C
stocks (per-unit-area) were, on average, more than 87% (8.77 +
0.19 Mg Cha™ ') larger than NFI estimates. In nearly all cases, the estimat-
ed means, Fyg, were better predictors of litter C stocks by region and
forest type than the country-specific model with an overall modeling
efficiency = — 1.63 and a root mean square error = 16.12 Mg C ha— .
While country-specific model predictions for mixed hardwood forests in
the North and mixed conifer-hardwood and mixed hardwood forests in
the South were statistically equivalent to NFI estimates (Table 2), only
the Fc for mixed hardwood forests in the North was a marginally better
predictor (modeling efficiency = 0.06) than the estimated mean, Fyg for
that region and forest type (Table 2).

The range of F¢s was relatively narrow (2.23-72.18 Mg Cha™ ')
compared to the broad range of Fyy (0.0004-238.71 Mg C ha™!)
resulting in poor model fits and large differences by forest type
group and region (Fig. 3). The largest differences in litter C stocks,
excluding the redwood/sequoia forest type which only had 2 observa-
tions for comparison, were in the Western US (Table 2) where F¢s in
the pinyon-juniper, hardwood, and nonstocked forest types were 4.3
(16.15 Mg Cha 1), 3.6 (2048 Mg C ha™ '), and 3.5 (12.03 Mg C ha™ 1)
times larger than NFI estimates, respectively. The nonstocked forest
types in the Pacific Northwest and South were more than 2 times
(10.58 and 2.74 Mg C ha™ ', respectively) smaller than NFI estimates
of litter C stocks (Table 1).

3.1.2. Random forests predictions vs. NFI estimates

The relationships between the dependent variable, litter C stocks,
and the 7 continuous predictor variables identified by random forests
variable importance were evaluated using Spearman's rank correlation
to identify potential relationships. Aboveground live tree C was positively
correlated (0.38) with litter C stocks as were gmi (0.36), lat (0.32), ppt
(0.18), elev (0.06), and lon (0.06) while tmax was negatively correlated
(—0.36). The random forests model with error term (Eq. (5)) had an
overall modeling efficiency = 0.25 and a root mean square error =
8.83 Mg C ha™!. Mean differences between Fyg and Fgr ranged from
—1.28 Mg C ha™ ! in the spruce/fir/hemlock forests of the Pacific North-
west to 3.63 Mg C ha™ ' in nonstocked stands in the same region, although

Summary statistics (mean and standard deviation (SD)) of country-specific litter predictions (Fcs), litter estimates (Fng), aboveground live tree C (AGLTC) stocks and estimated fine woody
debris and litter material (all in Mg C ha—') from observations obtained from the Forest Inventory and Analysis database by region and forest type group.

Fes Frr Fine woody debris Litter material AGLTC
Region Forest type n Mean SD Mean SD Mean Min Max Mean Min Max Mean SD

All regions All forest types 5263 18.77 11.88 9.99 9.94 2.19 0.00 227.94 8.01 0.00 111.59 4723 47.87
Aspen/birch 216 8.64 1.67 12.28 9.83 3.25 0.00 3745 9.20 0.07 62.74 3149 21.05

Mixed conifer/hardwood 58 26.91 5.21 9.77 7.38 1.99 0.00 7.36 7.78 0.31 32.38 52.51 29.07

Mixed hardwood 858 7.66 1.91 8.75 8.77 2.51 0.00 82.30 6.29 0.07 111.59 56.88 35.00

North Nonstock 20 4.80 0.00 5.44 9.50 0.83 0.00 445 435 0.08 17.85 0.67 0.86
Northern hardwood 466 26.56 413 12.98 13.59 3.67 0.00 227.94 9.36 0.09 73.67 63.27 35.85

Pine 129 12.88 1.77 14.20 9.98 2.74 0.00 45.18 11.53 0.17 56.84 47.71 30.22

Spruce/fir 178 31.40 7.45 13.07 10.01 2.39 0.00 19.64 10.74 0.04 54.03 31.35 22.51
Douglas-fir/hemlock 182 32.34 13.38 14.77 12.49 3.12 0.00 15.88 13.14 0.55 86.10 136.59 112.29

PNW Hardwood 51 8.48 3.09 9.75 10.99 2.04 0.00 6.32 8.67 0.33 64.96 83.73 91.30
Nonstock 7 7.50 0.79 18.08 23.30 16.01 0.13 37.98 11.22 0.06 27.12 0.89 1.12
Spruce/fir/hemlock 19 37.12 8.23 13.04 9.18 1.75 0.24 4.58 12.21 1.76 31.07 119.72 138.82

Mixed conifer/hardwood 112 934 217 8.49 9.39 2.36 0.00 73.14 6.13 0.17 27.56 43.97 30.02

South Mixed hardwood 651 6.06 2.16 6.73 6.04 193 0.00 3431 4.82 0.06 48.86 46.17 39.18
Nonstock 20 2.70 0.00 5.17 5.26 0.85 0.00 9.21 4.59 0.29 29.92 1.04 2.00

Pine 421 9.64 2.63 7.48 6.21 147 0.00 16.48 6.03 0.02 74.07 41.46 33.40

Hardwood 378 28.41 4.04 7.86 7.94 1.46 0.00 15.91 6.73 0.00 65.44 32.48 39.76

Mixed conifer 627 37.19 3.95 15.55 11.38 2.14 0.00 36.47 13.82 0.03 68.77 53.11 49.35

West Nonstock 77 17.30 0.00 498 6.30 1.26 0.00 9.63 3.84 0.02 31.18 1.55 3.10
Pine 331 23.12 3.30 12.08 10.41 1.54 0.00 10.44 10.85 0.15 96.37 37.90 28.82
Pinyon/juniper 460 21.10 0.00 4.95 6.01 1.21 0.00 14.59 3.85 0.00 33.01 13.02 10.77
Redwood/sequoia 2 60.37 2.11 8.99 9.33 0.78 0.78 0.78 8.60 1.61 15.59 301.08 3.48
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Fig. 3. Differences between estimates of litter C stocks (Mg ha~—') from the national forest inventory (NFI) and country-specific (CS) model predictions previously used in National
Greenhouse Gas Inventory reports. Only NFI plots which include measurements of litter attributes in the conterminous US are displayed.

both types had a relatively small number of plots for comparison (n = 19
and 7, respectively). In general, the random forests model slightly
overpredicted litter C stocks relative to NFI estimates in most regions
and forest types, although most of the overpredictions were not statisti-
cally significant (Table 2, Fig. 4). In the nonstocked forest type across
all regions, the Frr was statistically significantly different than Fyg;.
Otherwise, significant differences were only observed in regions

Table 2

and forest types with a relatively small number of samples for model
fitting and comparison.

3.1.3. Country-specific predictions vs. random forests predictions

The country-specific model was previously used to predict litter C
stocks for all sample points included in the estimation of litter C in the
national greenhouse gas inventory report (US EPA, 2014). To evaluate

Equivalence test results of litter C stocks (Mg C ha~!) by region and forest type group. Mean = mean difference, SE = standard error of the mean difference, and TOST is two-one-sided test
results where NE = not equivalent and E = equivalent where the absolute value of the mean of the differences is +25% of the standard deviation.

Fnp—Fes Fnp—Fre Fes—Fre
Region Forest type group Mean SE TOST Mean SE TOST Mean SE TOST
All regions All forest type groups —8.77 0.19 NE —0.11 0.06 E 8.67 0.16 NE
North Aspen/birch 3.65 0.67 NE 0.01 0.30 E —3.64 0.41 NE
Mixed conifer/hardwood —17.14 1.02 NE —0.48 0.42 NE 16.66 091 NE
Mixed hardwood 1.09 0.30 E —0.15 0.13 E —1.24 0.20 NE
Nonstocked 037 1.18 NE —0.64 0.55 NE —1.02 0.75 NE
Northern hardwood —13.58 0.64 NE —0.09 0.32 E 13.49 0.36 NE
Pine 1.32 0.84 NE 0.25 0.38 E —-1.07 0.54 NE
Spruce/fir —1833 0.95 NE —0.22 0.33 E 18.11 0.73 NE
PNW Douglas-fir/hemlock —17.57 1.19 NE —0.02 0.38 E 17.55 1.00 NE
Hardwood 1.27 1.63 NE —0.35 0.72 NE —1.62 1.00 NE
Nonstocked 10.58 8.84 NE 3.63 4.90 NE —6.95 4.01 NE
Spruce/fir/hemlock —24.08 2.72 NE —1.28 0.98 NE 22.80 2.08 NE
South Mixed conifer/hardwood —0.85 0.89 E 0.39 0.44 E 1.24 0.50 NE
Mixed hardwood 0.67 0.24 E —0.14 0.10 E —0.81 0.17 E
Nonstocked 2.74 2.12 NE —0.13 0.81 NE —2.87 1.47 NE
Pine —2.16 0.30 NE —0.20 0.13 E 1.96 0.21 NE
West Hardwood —20.55 0.45 NE —0.14 0.16 E 2041 0.36 NE
Mixed conifer —21.64 0.46 NE —0.03 0.20 E 21.61 0.32 NE
Nonstocked —12.32 0.72 NE —0.34 033 NE 11.97 0.47 NE
Pine —11.04 0.58 NE —0.15 0.26 E 10.90 0.38 NE
Pinyon/juniper —16.15 0.28 NE —0.09 0.13 E 16.07 0.18 NE
Redwood/sequoia —51.38 8.09 NE —0.37 3.66 NE 51.02 443 NE
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Fig. 4. Differences between estimates of litter C stocks (Mg ha~') from the national forest inventory (NFI) and random forests (RF) model predictions used in the 2015 National
Greenhouse Gas Inventory report. Only NFI plots which include measurements of litter attributes in the conterminous US are displayed.

the implications of replacing F¢s with Fgr in the national greenhouse gas Across all regions and forest types the differences between F¢ and Fgr
inventory report, we first compared the litter C stock predictions and were statistically significant (Table 2). The differences were consistent
then expanded the per-unit-area predictions to the population to assess with those observed between Fyg and F¢s given that the majority of

potential changes in litter C stocks by region. the region and forest type Fgr predictions were statistically equivalent
8 _
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Fig. 5. Population estimates of litter C stocks (with standard errors) by major US region (see Fig. 1) obtained from random forests (RF) predictions and country-specific (CS) model
predictions. Only NFI plots from the conterminous US were used to compile regional estimates.
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to Fnp. The largest mean differences (Fes — Fgr) were in the Western US
(17.52 Mg C ha™ 1) followed by the Pacific Northwest (16.94 Mg Cha™ 1),
North (4.50 Mg C ha— '), and South (0.40 Mg C ha™1).

The trends observed in litter C stock predictions carried through to
the population predictions for each region (Fig. 5). Overall, the Fcs
resulted in population estimates that were more than 44% (2081 +
77 Tg) larger than population estimates obtained from Fgr. The largest
differences were in the West where F¢ predictions resulted in popula-
tion estimates 62% (1517 4 86 Tg) greater than predictions obtained
using Fgr. In the Pacific Northwest, F¢s resulted in population estimates
that were 49% (158 + 22 Tg) larger than estimates obtained from Fge
and in the North and South, Fc predictions resulted in population
estimates that were 30% (349 £ 39 Tg) and 7% (56 + 5 Tg) larger,
respectively (Fig. 5).

4. Discussion

The development of litter C estimates to satisfy national C monitoring
efforts can be challenging given the variability associated with this C pool
(Yanai et al., 2000; Bottcher and Springob, 2001; Schulp et al., 2008 and
Woodall et al,, 2012). Litter C stocks can exhibit large differences in devel-
opment between forest types on the same soils (Ladegaard-Pedersen
et al., 2005) and depths at short distances (Smit, 1999) in combination
with a high vulnerability to disturbance, particularly wildfire (Stinson
et al., 2011). This variability complicates not only the inventories of litter
attributes but also the prediction of litter C stocks in NFIs lacking litter
measurements and reporting instruments (e.g., national greenhouse gas
inventory report) that require estimates that extend beyond the
longitudinal time series available for estimation. In general, the
Intergovernmental Panel on Climate Change guidelines for national
greenhouse gas inventories suggest that countries use estimation
methods consistent with their resources, and when properly imple-
mented, they should provide unbiased estimates of emissions and
sinks (IPCC, 2006).

In the US, the country-specific model has been used to predict litter C
stocks and stock changes in the Forest Inventory and Analysis program
and national greenhouse gas inventory report for more than a decade
and was developed using an extensive list of published estimates prior
to the start of litter sampling in the NFI. This approach may be character-
ized as an Intergovernmental Panel on Climate Change Tier 2 estimation
method since it relies on activity data specific to the US by major forest
type and includes other important country-specific variables (e.g., stand
age) that may influence the accumulation and decomposition of litter
biomass but does not directly rely on litter attributes from an inventory
system (IPCC, 2006). When the country-specific model was developed,
there were no NFI data available to evaluate the accuracy and precision
of the model predictions and since it relied on the available information
published on litter C in the US, the model predictions were assumed to
be accurate. In fact, Fcs from this study are well within the simulated
confidence bounds for the default litter C stocks specified in the Inter-
governmental Panel on Climate Change guidelines, although this may
be due in large part because the country-specific model developed by
Smith and Heath (2002) was one of sources used to inform the Inter-
governmental Panel on Climate Change defaults (IPCC, 2006).

With an extensive sample of litter C stocks across a national plot
network on forest land in the US (US Forest Service, 2014b) it is
now possible to evaluate the country-specific model predictions. It
is not surprising that the country-specific model did not fit the NFI
data well, given the high variability observed in litter C stock estimates
in this study and the literature (Webster and Oliver, 1990; Smit, 1999;
Yanai et al., 2000; Bottcher and Springob, 2001; Smith and Heath,
2002 and Schulp et al., 2008) and the fact the country-specific model
was developed prior to initiation of litter sampling in the NFI. In general,
the country-specific model produced predictions with a substantial
positive bias resulting in statistically significant differences between

Fnr and Fs in nearly every region and forest type. The large differences
between Fyg estimates and Fs predictions can be attributed to several
factors. First, the published estimates used to develop the country-
specific model predictions, while extensive (n = 582), did not capture
the range of variability in litter C stock estimates observed in the NFIL
Second, the mean litter C for “mature” forests was used to develop the
model coefficients, where forest stands were defined as mature when
“the age was greater than 90 percent of the minimum age set for mature
litter or sites where the researchers described the stand as mature”
(Smith and Heath, 2002). The model was then used for all age classes
and when a given forest type reached the “mature” threshold (identified
by stand age), the model predictions reached an asymptote intended to
represent litter C at an approximately steady state. While Smith and
Heath (2002) acknowledge this simplification, it restricted the range of
variability in model predictions and perhaps led to the upward-bias
documented in nearly all forest types and regions. Third, mean C content
estimates from the literature were used by broad forest type and region in
the country-specific model whereas plot-specific C content measure-
ments were used to obtain estimates of litter C from the NFI. Finally,
given the high variability observed in the NFI litter C estimates, the
country-specific model did not include important interactions
between the variables included in the model as well as other variables
(e.g., temperature, precipitation, biomass) that may directly and in-
directly influence litter biomass accumulation and decomposition
(Parton et al., 2007 and Garcia-Palacios et al., 2013). Models of litter
C that are sensitive to climate variables, physiographic factors and
vegetation type are consistent with our understanding of soil formation
(Jenny, 1941 and Simonson, 1959), forest growth and productivity
(e.g., Weiskittel et al., 2011 and Sabatia and Burkhart, 2014), and
woody debris decomposition (e.g., Russell et al., 2014).

Given the large investment in sampling litter attributes, it is now
possible to transition from the Intergovernmental Panel on Climate
Change Tier 2 estimation method which resulted in biased estimates
of litter C stocks to a Tier 3 approach which builds on the ecological
relationships identified in litter accumulation and decomposition stud-
ies (Wardle et al., 2004 and Parton et al., 2007) as well as the availability
of litter C estimates in the NFI. Several alternative approaches were eval-
uated to replace county-specific model predictions for sample points
used in the estimation of litter C stocks and stock change in the US
national greenhouse gas inventory. Ultimately a modeling framework
using random forests was implemented which allowed selecting from
a large suite of biotic and abiotic variables with potentially complex
interactions and develop a model that fit the NFI data reasonably well
(when compared to the country-specific model). There are several
advantages to this modeling framework over the country-specific
model. First and foremost, it was fit using estimates of litter C stocks
obtained directly from litter samples in the NFI. This improved both
the accuracy and precision of the model predictions used to compile
estimates for the national greenhouse gas inventory. Second, the
random forests modeling framework included site-, stand-, and
region-specific variables that make the model more sensitive to changes
in forest ecosystems. This is particularly important for stock change
estimates in the national greenhouse gas inventory where changes in
litter inputs are driven, in large part, by changes in aboveground
biomass (i.e., aboveground live tree C stocks) (Grigal and McColl, 1975
and Vogt et al., 1986). Likewise, the accumulation and decay of litter
material is driven largely by temperature and/or precipitation
(Meentemeyer, 1978; Berg et al., 1993; Wardle et al., 2004 and Parton
et al., 2007) and, to a lesser extent, by litter composition (i.e., forest
type) and soil organisms (Lavelle et al., 1993; Hattenschwiler et al.,
2005 and Garcia-Palacios et al., 2013). Third, the random forests model-
ing framework includes the uncertainty in the predictions resulting
from the sample-based estimates of the model parameters and
observed residual variability around those predictions and accounts
for the large data gap that exists between the subset of NFI plots that
include litter measurements and the sample points used to compile
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estimates from the national greenhouse gas inventory. Fourth, the
modeling framework is easily adapted to accommodate data limitations
over the national greenhouse gas inventory reporting period and updated
as new information becomes available. This is particularly important as
new litter samples and remeasurements of litter attributes become
available in the NFIL. The modeling framework can incorporate this new
information on an annual basis to produce the most up-to-date estimates
across the entire reporting period from 1990 to the present. These
updates will be documented in the “Recalculations” section of United
Nations Framework Convention on Climate Change reports to ensure
transparency. Further, estimates from different reporting years should
not be compared due to potential changes in methodology. Only
estimates in a given reporting year should be compared. Although it
requires additional investment to annually incorporate new measure-
ments of litter to increase the transparency and reduce the uncertainty
associated with the estimation of C litter stocks the cost may be worth
the reward given the dynamics and importance of the litter C pool to
global C monitoring efforts.

5. Conclusions

As we learn more about the ecological processes driving C accumu-
lation, sequestration, and emissions in forest ecosystems, we are not
only able to improve upon our estimates of forest C stocks and stock
changes but also better quantify the uncertainty associated with our
estimates. Thanks to a large investment in the comprehensive annual
inventory of forests in the US we were able to develop a new modeling
framework for the prediction of litter C stocks and stock changes that is
site-specific and sensitive not only to changes in vegetation but also to
major drivers of litter accumulation and decomposition in forest ecosys-
tems, temperature and precipitation. The transition from the country-
specific model to the random forests modeling framework resulted in
significant artificial reductions (i.e., decreases resulting from a change
in methodology rather than a biological change in litter) in C stock
predictions across all regions and forest types and thus, a decrease in
litter C stock estimates at the national scale. Under the Tier 2 approach,
litter C stocks represented an estimated 11.7% of all forest ecosystem C
in the US. The Tier 3 approach that was developed using NFI measure-
ments of litter C accounts for uncertainty in the predictions, is sensitive
to changes in forest biomass and climate, and reduces the contribution
of litter C stocks to ca. 7.0% (2831 Tg) of total forest C stocks (40,177 Tg)
nationally (EPA, 2015), much closer to the global estimate of 5% report-
ed by Pan et al. (2011) — with an estimated net annual increase of 3.0-
3.1 Tg Cyr~ ! over the last 5 years. We note that most estimates of litter
C stocks and stock changes compiled by other nations were developed
in much the same way as the country-specific model or are based on
Intergovernmental Panel on Climate Change defaults (IPCC, 2006)
which were developed, in part, using the country-specific model
described in this study. If the trends observed here hold true for tem-
perate forest ecosystems in other nations, the Intergovernmental
Panel on Climate Change default values for the litter C pool would
lead to substantial overestimates of litter C stocks and stock changes
in nations' C budgets. This is a concern as nations look to these budgets
to inform post-2020 C emission reduction targets and negotiate future
commitments.

Acknowledgements

We thank Ron McRoberts for suggestions on modeling tech-
niques throughout the study. We also thank John Stanovick, Robert
Slesak, Carolyn Smyth, Cindy Shaw and two anonymous reviewers for
thoughtful comments that improved the manuscript. The NFI data used
in this study may be accessed at http://apps.fs.fed.us/fiadb-downloads/
datamart.html.

References

Akin, W.E., 1991. Global Patterns: Climate, Vegetation, and Soils. University of Oklahoma
Press, Norman.

Bechtold, W.A,, Patterson, P.J., 2005. The Enhanced Forest Inventory and Analysis
Program—National Sampling Design and Estimation Procedures. Gen. Tech.
Rep. SRS-80U.S. Department of Agriculture, Forest Service, Southern Research
Station, Asheville, NC (85 p.).

Berg, B., Berg, M.P., Bottner, P., Box, E., Breymeyer, A., de Anta, R.C,, Couteaux, M.,
Escudero, A., Gallardo, A., Kratz, W., Madeira, M., Malkonen, E., McClaugherty, C.,
Meentemeyer, V., Munoz, F., Piussi, P., Remacle, J., de Santo, A.V., 1993. Litter mass
loss rates in pine forests of Europe and Eastern United States: some relationships
with climate and litter quality. Biogeochemistry 20 (3), 127-159.

Bodner, T.E., 2008. What improves with increased missing data imputations? Struct. Equ.
Model. 15 (4), 651-675.

Bottcher, J., Springob, G., 2001. A carbon balance model for organic layers of acid forest
soils. ]. Plant Nutr. Soil Sci. 164 (4), 399-405.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5-32.

Danielson, ].J., Gesch, D.B., 2011. Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010): U.S. Geological Survey Open-file Report 2011-1073 (26 p.).

Dombke, G.M., Woodall, CW., Walters, B.F., Smith, J.E., 2013. From models to measurements:
comparing downed dead wood carbon stock estimates in the US forest inventory. PLoS
One 8 (3), €59949.

Garcia-Palacios, P., Maestre, F.T., Kattge, ], Wall, D.H., 2013. Climate and litter quality differ-
ently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett.
16 (8), 1045-1053.

Grigal, D.F., McColl, ].G., 1975. Litter fall after wildfire in virgin forests of northeastern
Minnesota. Can. ]. For. Res. 5 (4), 655-661.

Hattenschwiler, S., Tiunov, A.V., Scheu, S., 2005. Biodiversity and litter decomposition in
terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191-218.

Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National
Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Japan
(www.ipcc-nggip.iges.or.jp/public/2006gl/index.html. Last accessed 18 December
2014).

Jenny, H., 1941. Factors of Soil Formation. McGraw-Hill, New York (281 p.).

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., Xian, G., 2013. A comprehensive change
detection method for updating the National Land Cover Database to circa 2011. Remote
Sens. Environ. 132, 159-175.

Keith, H., Mackey, B.G., Lindenmayer, D.B., 2009. Re-evaluation of forest biomass carbon
stocks and lessons from the world's most carbon-dense forests. Proc. Natl. Acad. Sci.
106, 11635-11640.

Kurz, W.A., Apps, M.J., 2006. Developing Canada's national forest carbon monitoring,
accounting and reporting system to meet the reporting requirements of the Kyoto
Protocol. Mitig. Adapt. Strateg. Glob. Chang. 11, 33-43.

Ladegaard-Pedersen, P., Elberling, B., Vesterdal, L., 2005. Soil carbon stocks, mineralization
rates, and CO; effluxes under 10 tree species on contrasting soil types. Can. J. For. Res.
35 (6), 1277-1284.

Lavelle, P., Blanchart, E., Martin, A.,, Martin, S., 1993. A hierarchical model for decomposition
in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25,
130-150.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3),
18-22.

Meentemeyer, V., 1978. Macroclimate and lignin control of litter decomposition rates.
Ecology 59 (3), 465-472.

Nash, J., Sutcliffe, ].V., 1970. River flow forecasting through conceptual models. Part I-A
discussion of principles. ]. Hydrol. 10 (3), 282-290.

O'Neill, K.P., Amacher, M.C., Palmer, CJ., 2005a. Developing a national indicator of soil
quality on US forestlands: methods and initial results. Environ. Monit. Assess. 107
(1-3), 59-80.

O'Neill, K.P., Amacher, M.C,, Perry, C.H., 2005b. Soils as an Indicator of Forest Health: A
Guide to the Collection, Analysis, and Interpretation of Soil Indicator Data in the Forest
Inventory and Analysis Program. Gen. Tech. Rep. NC-258U.S. Department of Agriculture,
Forest Service, North Central Research Station, St. Paul, MN (53 p.).

Pan, Y., Birdsey, R.A,, Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A, et al., 2011. A large
and persistent carbon sink in the world's forests. Science 333 (6045), 988-993.
Parton, W., Silver, W.L, Burke, .C,, Grassens, L., Harmon, M.E., Currie, W.S., King, ].Y., Adair,
E.C., Brandt, L.A., Hart, S.C., Fasth, B., 2007. Global-scale similarities in nitrogen release

patterns during long-term decomposition. Science 315, 361-364.

PRISM Climate Group (2012) Oregon State University, http://prism.oregonstate.edu, created
July 2012.

R Development Core Team, 2014. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austriahttp://www.R-project.org.

Rehfeldt, G.L., 2006. A Spline Model of Climate for the Western United States. Gen. Tech.
Rep. RMRS-GTR-165U.S. Department of Agriculture, Forest Service, Rocky Mountain
Research Station, Fort Collins, CO (21 p.).

Robinson, A.P., 2014. equivalence: Provides Tests and Graphics for Assessing Tests of
Equivalence. R Package Version 0.6.0 (http://CRAN.R-project.org/package=
equivalence).

Robinson, A.P., Froese, R.E., 2004. Model validation using equivalence tests. Ecol. Model.
176, 349-358.

Rubin, D., 1987. Multiple Imputation for Nonresponse in Surveys. Wiley, New York, USA.

Russell, M.B., Woodall, CW., D'Amato, AW., Fraver, S., Bradford, ].B., 2014. Technical note:
linking climate change and downed woody debris decomposition across forests of
the eastern United States. Biogeosciences 11, 6417-6425.

Sabatia, C.0., Burkhart, H.E., 2014. Predicting site index of plantation loblolly pine from
biophysical variables. For. Ecol. Manag. 326, 142-156.


http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0005
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0005
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0010
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0010
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0010
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0010
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0015
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0015
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0015
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0020
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0020
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0025
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0025
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0030
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0035
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0035
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0040
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0040
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0040
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0045
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0045
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0045
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0050
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0050
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0055
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0055
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0060
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0060
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0060
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0060
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0065
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0070
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0070
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0070
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0075
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0075
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0075
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0080
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0080
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0080
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0085
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0085
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0085
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0085
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0090
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0090
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0090
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0095
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0095
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0100
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0100
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0105
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0105
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0110
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0110
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0110
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0115
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0115
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0115
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0115
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0120
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0120
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0125
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0125
http://prism.oregonstate.edu
http://www.r-project.org
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0135
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0135
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0135
http://CRAN.R-project.org/packagequivalence
http://CRAN.R-project.org/packagequivalence
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0145
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0145
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0150
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0155
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0155
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0155
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0160
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0160

478 G.M. Domke et al. / Science of the Total Environment 557-558 (2016) 469-478

Schulp, CJ., Nabuurs, GJ., Verburg, P.H., de Waal, RW., 2008. Effect of tree species on carbon
stocks in forest floor and mineral soil and implications for soil carbon inventories. For.
Ecol. Manag. 256 (3), 482-490.

Simonson, RW., 1959. Outline of a generalized theory of soil genesis. Soil Sci. Soc. Am. J.
23 (2), 152-156.

Smit, A., 1999. The impact of grazing on spatial variability of humus profile properties in a
grass-encroached Scots pine ecosystem. Catena 36, 85-98.

Smith, J.E., Heath, L.S., 2002. A Model of Forest Floor Carbon Mass for United States Forest
Types. Res. Pap. NE-722U.S. Department of Agriculture, Forest Service, Northeastern
Research Station, Newtown Square, PA (37 p.).

Stinson, G., Kurz, W.A., Smyth, C.E., Neilson, E.T., Dymond, C.C., Metsaranta, J.M.,
Boisvenue, C., Rampley, GJ., Li, Q., White, T.M,, Blain, D., 2011. An inventory-based
analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Glob. Chang.
Biol. 17 (6), 2227-2244.

US Environmental Protection Agency (US EPA), 2014. Forest sections of the land use, land
use change, and forestry chapter, and annex. In: US Environmental Protection Agency
(Ed.), Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2012 (http://
www.epa.gov/climatechange/ghgemissions/usinventoryreport.html. Last accessed 4
March 2016).

US Environmental Protection Agency (US EPA), 2015. Forest sections of the land use, land
use change, and forestry chapter, and annex. In: US Environmental Protection Agency
(Ed.), Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2013 (http://
www.epa.gov/climatechange/ghgemissions/usinventoryreport.html. Last accessed 4
March 2016).

USDA Farm Services Agency, 2008. Qualitative and quantitative synopsis on NAIP usage
from 2004 to 2008. Available online at http://www fsa.usda.gov/Internet/FSA_File/
naip_usage.pdf (Last accessed 22 December 2014).

USDA Forest Service, 2011. Phase 3 Field Guide — Soil Measurements and Sampling
(Version 5.1). (http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2012/
field_guide_p3_5-1_sec22_10_2011.pdf. Last accessed 28 October 2015).

USDA Forest Service, 2014a. The Forest Inventory and Analysis Database: database
description and user guide for phase 2 (version 6.0.1). http://www.fia.fs.fed.us/

library/database-documentation/current/ver6.0/FIADB%20User%20Guide%20P2_6-0-
1_final.pdf (Last accessed 28 October 2015).

USDA Forest Service, 2014b. Forest Inventory and Analysis Database (FIADB) version 5.1.
http://apps.fs.fed.us/fiadb-downloads/datamart.html (Last accessed 28 October 2015).

Vanclay, ].K., Skovsgaard, J.P., 1997. Evaluating forest growth models. Ecol. Model. 98,
1-12.

Vogt, K.A,, Grier, C.C,, Vogt, D.J., 1986. Production, turnover, and nutrient dynamics of
above- and belowground detritus of world forests. Adv. Ecol. Res. 15, 303-377.
Wardle, D.A., Bardgett, R.D., Klironomos, ].N,, Setala, H., van der Putten, W.H., Wall, D.H.,
2004. Ecological linkages between aboveground and belowground biota. Science

304, 1629-1633.

Webster, R,, Oliver, M.A., 1990. Statistical Methods in Soil and Land Resource Survey. Oxford
University Press.

Weiskittel, A.R., Crookston, N.L., Radtke, P.J., 2011. Linking climate, gross primary
productivity, and site index across forests of the western United States. Can. ]. For. Res.
41,1710-1721.

Wellek, S., 2003. Testing Statistical Hypotheses of Equivalence. Chapman & Hall, London,
England.

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.

Woodall, CW., Monleon, VJ., 2008. Sampling, Estimation, and Analysis Procedures for the
Down Woody Materials Indicator. USDA Forest Service General Technical Report
NRS-22Northern Research Station, Newtown Square, PA.

Woodall, CW., Conkling, B.L., Amacher, M.C,, Coulston, JW., Jovan, S., Perry, CH., Schulz, B.,
Smith, G.C., Will-Wolf, S., 2010. The Forest Inventory and Analysis Database Version
4.0: Description and Users Manual for Phase 3. Gen. Tech. Rep. NRS-61U.S. Department
of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA (180 p.).

Woodall, C.W., Perry, CH., Westfall, J.A., 2012. An empirical assessment of forest floor carbon
stock components across the United States. For. Ecol. Manag. 269, 1-9.

Yanai, R.D., Arthur, M.A,, Siccama, T.G., Federer, C.A., 2000. Challenges of measuring forest
floor organic matter dynamics: repeated measures from a chronosequence. For. Ecol.
Manag. 138 (1), 273-283.


http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0165
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0165
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0165
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0170
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0170
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0175
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0175
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0180
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0180
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0180
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0185
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0185
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0185
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://www.fsa.usda.gov/Internet/FSA_File/naip_usage.pdf
http://www.fsa.usda.gov/Internet/FSA_File/naip_usage.pdf
http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2012/field_guide_p3_5-1_sec22_10_2011.pdf
http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2012/field_guide_p3_5-1_sec22_10_2011.pdf
http://www.fia.fs.fed.us/library/database-documentation/current/ver6.0/FIADB%20User%20Guide%20P2_6-0-1_final.pdf
http://www.fia.fs.fed.us/library/database-documentation/current/ver6.0/FIADB%20User%20Guide%20P2_6-0-1_final.pdf
http://www.fia.fs.fed.us/library/database-documentation/current/ver6.0/FIADB%20User%20Guide%20P2_6-0-1_final.pdf
http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0220
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0220
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0225
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0225
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0230
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0230
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0235
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0235
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0240
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0240
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0240
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0245
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0245
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0250
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0255
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0255
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0255
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0260
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0260
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0260
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0265
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0265
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0270
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0270
http://refhub.elsevier.com/S0048-9697(16)30514-9/rf0270

	Estimating litter carbon stocks on forest land in the United States
	1. Introduction
	2. Methods
	2.1. Plot design and sampling
	2.2. Country-specific model evaluation
	2.3. Model development

	3. Results
	3.1. Model comparisons
	3.1.1. Country-specific predictions vs. NFI estimates
	3.1.2. Random forests predictions vs. NFI estimates
	3.1.3. Country-specific predictions vs. random forests predictions


	4. Discussion
	5. Conclusions
	Acknowledgements
	References


