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Abstract 
Spatially explicit modeling of recovering forest structure within 
two years following wildfire disturbance has not been attempt-
ed, yet such knowledge is critical for determining successional 
pathways. We used remote sensing and field data, along with 
digital climate and terrain data, to model and map early-seral 
aspen structure and vegetation species richness following 
wildfire. Richness was the strongest model (RMSE = 2.47 species, 
Adj. R2 = 0.60), followed by aspen stem diameter, basal area 
(BA), height, density, and percent cover (Adj. R2 range = 0.22 to 
0.53). Effects of pre-fire aspen BA and fire severity on post-fire 
aspen structure and richness were analyzed. Post-fire recovery 
attributes were not significantly related to fire severity, while all 
but percent cover and richness were sensitive to pre-fire aspen 
BA (Adj. R2 range = 0.12 to 0.33, p <0.001). This remote map-
ping capability will enable improved prediction of future forest 
composition and structure, and associated carbon stocks.  

Introduction
Individual wildfires often include a range of impacts (i.e., 
severity), producing a mosaic of biological legacies that can 
have persistent influence on post-fire composition and suc-
cessional pathways (Franklin et al., 2007). Patterns of early-
seral forest composition and density established within a few 
years post-fire are strong predictors of the initial successional 
trajectory of a forest (Johnstone et al., 2004). In regions with 
rich fire legacies, the consequences for future dynamics of 
subsequent forests are dramatic (Johnstone et al., 2010). For 
example, in boreal and sub-boreal systems of North America, 
the relative dominance of conifer versus deciduous tree spe-
cies will strongly affect nutrient dynamics (Frelich and Reich, 
1995), fire behavior (DeByle and Winokur, 1985; Carlson et 
al., 2011), susceptibility to insect disturbance (Charbonneau 
et al., 2012), wildlife habitat (Pastor et al., 1988), and regen-
eration capacity in response to future disturbances (Frelich, 
2002). A growing body of literature suggests that anthropo-
genic activities and effects, including climate change, land 
use, and fire suppression, are modifying regional patterns in 
fire severity (Stephens et al., 2014). Yet current understand-
ing of the effects of fire severity on forest development lags 
behind (Keeley, 2009), in part because early-seral regeneration 
patterns are difficult to quantify at the scale of large burns. 
Hence, the ability to accurately characterize early-seral forest 
structure soon after disturbance is of critical importance for 
understanding successional trajectories.

Remote sensing has been used in boreal and sub-boreal 
forests of North America to reliably map mature forest 

composition and structure (Wolter et al., 2009; Wolter and 
Townsend, 2011). However, the spectral signal of early-seral 
forest regeneration (one to two years) following disturbance 
is often indistinct and may be confused with other vegetation 
life forms, coarse woody debris, and soil prior to canopy clo-
sure, which complicates the composition and structure map-
ping process using medium spatial resolution sensors such as 
Landsat (Veraverbeke et al., 2012). Nevertheless, the ability 
to map tree species recruitment and structure information so 
early in a forest’s successional state (over large landscapes) 
would be a valuable asset for forest managers and scientists in 
providing insight into future forest development patterns in 
time and space (Veraverbeke et al., 2012).

The Pagami Creek Fire (PCF, 18 August to 12 October 2011) 
burned over 38,000 hectares (ha) of the Superior National Forest 
(SNF), most of which (90.2 percent) occurred in the Boundary 
Waters Canoe Area Wilderness (BWCAW) (Figure 1). The PCF is 
the largest and most recent in a series of major fires affecting 
the BWCAW. The initial behavior of the fire was characterized by 
low-intensity surface fires, until mid-September when the fire 
transitioned to a high-intensity crown-fire, creating a range of 
fire severity patterns. Prior to the burn, this area served as a hot-
spot for remote sensing research mapping forest composition 
and structure (Wolter et al., 2008; Wolter et al., 2009; Wolter and 
Townsend, 2011). The PCF therefore provided a rare opportunity 
to investigate interactions between pre-fire forest conditions 
and fire severity as they affected post-fire regeneration patterns. 
Among the first tree species to emerge from the fire disturbance 
were quaking and bigtooth aspen (Populus tremuloides and P. 
grandidentata, respectively), which can sprout vigorously from 
clonal root networks (Frelich and Reich, 1995).

The objectives of our study were twofold. First, we as-
sessed the degree to which early regeneration structure of 
aspen and vegetation species richness could be reliably esti-
mated and mapped using field-collected data measurements, 
in conjunction with image-based remote sensing variables 
and other spatially-explicit biophysical information. To our 
knowledge, two years post-disturbance is the earliest that 
detailed mapping of aspen regeneration structure (i.e., height, 
basal area, stem density, stem diameter, and percent cover) has 
been attempted using image-based remote sensing techniques. 
Indeed, two-year aspen regeneration is expected to be short, 
mixed with both herbaceous and woody growth, with either 
sparse or heterogeneous leaf area that may be well below the 
spatial resolution of commonly-used satellite sensors such as 
Landsat (30-meter) to detect. We therefore integrated Landsat 
imagery with one meter spatial resolution National Agricul-
ture Imagery Program (NAIP) color-infrared aerial image data to 
develop image-based models of aspen regeneration abundance 
and structure, as well as vegetation species richness.

Rayma A. Cooley is with the US Forest Service, Six Rivers 
National Forest, 741 State Hwy 36, Bridgeville,  CA 95526, 
and formerly with the Iowa State University (raymacooley@
fs.fed.us).

Peter T. Wolter is with the Iowa State University, 339 Science 
Hall II, Ames, IA 50011.

Brian R. Sturtevant is with the US Forest Service, Northern 
Research Station,5985 Highway K, Rhinelander, WI 54501.

Photogrammetric Engineering & Remote Sensing
Vol. 82, No. 11, November 2016, pp. 853–863.

0099-1112/16/853–863
© 2016 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.82.11.853

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November  2016 	 853

08-16 November Peer Reviewed.indd   853 10/18/2016   11:23:38 AM



The development of empirical models of 
post-fire aspen abundance, aspen structure, 
and vegetation species richness maps set the 
stage for our second objective, i.e., evaluat-
ing (a) the degree to which mapped bio-
physical variables improved upon Landsat 
and NAIP predictors in modeling early-seral 
vegetation structure following fire, and (b) 
the relative consistency between empiri-
cal models and hypothesized relationships 
between biophysical variables and early-
seral vegetation response variables. Mapped 
biophysical variables include pre-fire aspen 
basal area (Wolter and Townsend, 2011), a 
fire severity proxy (i.e., relative difference 
normalized burn ratio, RdNBR; Miller and 
Thode, 2007), terrain, and climate variables. 
Prior research (Heinselman, 1996; Johnson et 
al., 2003) suggests that pre-disturbance forest 
species composition largely determines post-
disturbance forest regeneration, implying 
that pre-fire aspen abundance (irrespective 
of fire severity) would strongly correlate 
with post-fire aspen abundance. On the oth-
er hand, given sufficient fire residence time, 
heat penetration into soil can be damaging to 
aspen root stocks (Brown and DeByle, 1987; 
Perala, 1991). Other studies have found that 
fire severity can enhance subsequent domi-
nance by aspen (Frelich and Reich 1995; 
Fraser et al., 2004). In the case of the PCF, 
we hypothesized that higher fire severity 
areas would positively affect aspen abundance and negatively 
affect species richness (Turner et al., 1997; Wang and Kemball, 
2005). We also hypothesized that areas with higher pre-burn 
aspen abundance would have higher post-fire species rich-
ness, because the presence of aspen is known to mitigate fire 
severity (DeByle and Winokur, 1985; Carlson et al., 2011), as 
aspen stands tend to have lower fuel accumulations (DeByle 
and Winokur, 1985). Finally, environmental variables such as 
climate (precipitation and temperature) and terrain (elevation, 
slope, and aspect) affect both soil temperature and moisture, 
and vegetation response dynamics (Frey et al., 2003).

We applied xPLS regression (Wolter et al., 2012) to identify 
parsimonious sets of predictors (remote sensing and biophysi-
cal) to facilitate model calibration and mapping of respective 
aspen structural parameters and species richness (Objec-
tive 1). We then examined the degree to which biophysical 
predictor variables influenced modeled vegetation structure 
results (Objective 2) based upon (a) variable coefficients and 
component loadings produced by the xPLS models, (b) the 
relative consequence of dropping individual biophysical vari-
ables from xPLS models, and (c) the magnitude of correlations 
between these biophysical predictor variables and measured 
aspen and vegetation structure field data.

Methods
Study Area and Field Methods
The BWCAW is located on the southern edge of the North 
American boreal forest in northeast Minnesota (Figure 1). This 
landscape lies within the Northern Superior Upland phys-
iographic province and is characterized by numerous lakes, 
streams, bogs, forested peatlands, and variable soil textures 
(Heinselman, 1996). The climate is characterized by long cold 
winters and short warm summers. Mean annual tempera-
ture (TEMP) and precipitation (PRECIP) are 3.5°C and 65.0 cm, 
respectively (NCDC NOAA, 1999-2012). Prevailing winds are 
from the west (Heinselman, 1996). Lightning-caused wildfires 

in the region, such as the PCF, are generally associated with 
clear, dry weather, high temperatures, and rapid fuel drying 
(Heinselman, 1996; Johnson et al., 2003).

Forest cover types in this region consist of conifer, decidu-
ous, and mixed wood forests. Jack pine (Pinus banksiana), 
black spruce (Picea mariana), and balsam fir (Abies balsamea) 
dominate coniferous stands, while quaking aspen and paper 
birch (Betula papyrifera) prevail in deciduous stands (Hein-
selman, 1996; MN DNR, 2003).

We established 81 field plots within three areas in the PCF 
(Figure 1) that were within 500 meters of either BWCAW hiking 
trails or accessible waterbody shorelines. Access to the interior 
of the BWCAW is difficult due to the roadless wilderness terrain. 
Within these three broad areas, all plot locations were defined 
prior to the first field survey using stratified random sampling. 
Two spatial variables were used for stratification: pre-burn 
aspen BA (Wolter and Townsend, 2011) and satellite-derived fire 
severity (RdNBR calculated using pre- [26 June 2009] and post-fire 
[06/10/2011] Landsat-5 data). These two spatial data layers were 
also used to assess whether the 81 field plots were representative 
of the entire PCF, by comparing standard descriptive statistics for 
the 81 sites to corresponding statistics for the entire PCF.

Vegetation measurements at these plot locations were 
collected between 27 May and 15 August 2013. We used two 
separate plot configurations in collecting our data: (a) the 
relevé method, as developed by the Minnesota Department of 
Natural Resources (MNDNR, 2013), was used to measure aspen 
percent cover and vegetation species richness; (b) all other as-
pen measurements were derived from subplot measurements 
(Figure 2). Within each plot, four subplots were arranged such 
that subplot 1 was plot center and subplots 2, 3, and 4 were 18 
meters from plot center with 120° spacing (Figure 2). The azi-
muth from plot center (subplot 1) to subplot 2 was randomly 
assigned. Subplots were circular with a 3-meter fixed radius 
(28.27 m2 area). Combined area of the four subplots, which 
comprised the full plot area, was 113.10 m2. The subplot 
configuration described above was designed to integrate with 
a range of sensor pixel resolutions (e.g., 2-, 5-, 10-, 20- and 

Figure 1. Location of the Pagami Creek Fire (PCF, August to October 2011) and field 
plot locations within the Boundary Waters Canoe Area Wilderness (BWCAW) of the 
Superior National Forest in northeast Minnesota.
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30-m). The combined area of the four subplots is 28.3 per-
cent of a 20-m pixel and 12.6 percent of a 30-m pixel. Relevé 
methodology was developed to describe and classify plant 
communities (MNDNR, 2013), and was thus more appropriate 
in measuring aspen percent cover and vegetation species rich-
ness. Percent cover of all vascular plant species present within 
a 20 × 20 meter area were classified into six categories across 
a range of 0 to 100 percent cover (class 1: <1 percent; class 2: 1 
to 5 percent; class 3: 5 to 25 percent; class 4: 25 to 50 percent; 
class 5: 50 to 75 percent; and class 6: 75 to 100 percent). If per-
cent cover was less than 5 percent, abundance of individual 
species was further divided into three sub-classes (sub-class 
1: single individual; sub-class 2: 2 to 20 individuals; and 
sub-class 3: many individuals. The relevé plot area (0.04 ha) 
represents approximately 44.4 percent of a 30-m Landsat pixel.

We collected aspen structure measurements (stem count, 
diameter, height, and BA) and soil depths to bedrock within 
each of the four subplots per plot (Figure 2). While all aspen 
stems were counted, a minimum of 10 stems per subplot were 
systematically selected for measurement by first counting all 
stems, dividing the count by 10 (count/10 = n), and then mea-
suring every nth stem for diameter at root collar and height. Soil 
depth to bedrock was measured by pounding a 1.5-meter steel 
rod into the ground at plot center and at the center of all sub-
plots, until either refusal at bedrock or maximum depth was 
reached. Aspen within field plots sampled in May and June of 
2013 (n = 32) were re-measured between 19 and 23 May 2014 
(while dormant) to account for early season growth, ensuring 
that measurements corresponded with late season sensor over-
pass times (Table 1A). In total, we sampled vegetation at 81 
plots: 28 in the northwest region of the burn, 22 in the central 
region, and 31 in the south-central region (Figure 1).

Aspen stem density (DEN), average number of aspen stems 
per square-meter, was calculated by dividing the total aspen 
count (TAC) of the pooled subplots by the pooled subplot 

Table 1. (A) Remote Sensing Source Imagery and Derived Indices (Predictors) Used with Ground Data (Response Variables) to Calibrate Aspen Structure 
and Vegetation Richness Models for the Pagami Creek Fire Study Area; (B) Ancillary Digital Variables Used in Addition to Derived Remote Sensing Indices as 
Predictors for Calibrating Vegetation Structure Models 

(A)

Image Data Image Codes Date Pixel (m) Bands Raw Bands (µm) Band Code Derived Indices

Landsat 8 L8 16/09/2013 30 7

0.435-0.451
0.452-0.512
0.533-0.590
0.636-0.673
0.851-0.879
1.566-1.651
2.107-2.294

CA/1
BL/2
GR/3
RD/4
NIR/5

SWIR1/6
SWIR2/7

SR1, NDVI2,  
MSI3, NBR4,  
RA5, SVR6

Landsat 7 W1 23/01/2014 30 6

0.441-0.514
0.515-0.601
0.631-0.692
0.772-0.898
1.547-1.749
2.064-2.345

BL/1
GR/2
RD/3
NIR/4

SWIR1/5
SWIR2/7

SR, NDVI, 
MSI, RA,  

SVR

NAIP7 N2, N5, N10, N20, N30 18/09/2013 2, 5, 10, 20, 30 4/res. blue, green, red, near-IR BL, GR, RD, NIR SR, NDVI (per resolution)

(B)

Ancillary Data Source Pixel (m) Layers Layer Name Layer Code

Climate PRISM 4000 4

Annual precip.
Mean temp.
Min. temp. 
Max. temp.

PRECIP
MEAN_TEMP
MIN_TEMP
MAX_TEMP

Terrain SRTM 30 3
Elevation

Slope
Aspect

ELEV
SLP
ASP

2011 Aspen BA Wolter & Townsend (2011) 30 1 Pre-fire aspen BA PF_ASP_BA
1 Simple ratio, NIR/red
2 Normalized difference vegetation index, {[(NIR-red)/(NIR+red)] +1}*100)
3 Moisture stress index, SWIR1/NIR
4 Normalized burn ratio, [(NIR-SWIR2)/(NIR+SWIR2)]+1]

5 Reflectance absorption index, NIR/(red+SWIR1)
6 Shortwave-IR to visible ratio, ((SWIR1+SWIR2)/(blue+green+red))*1.5
7 National Agriculture Imagery Program

Figure 2. Plot design for relevé and aspen measurements 
includes a large 20 × 20 m relevé plot and four, 3-m radius; sub-
plots: one at plot center and three, evenly placed, subplots.
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sample area (113.1 m2). Aspen stem diameter (DIA; mm) was 
calculated as the pooled subplot average diameter at root col-
lar. Aspen stem height (HT; cm) was calculated as the average 
height of stems in the pooled subplots. Average aspen dimen-
sions for each pooled subplot area (i.e., DIA and HT) were 
estimated using a systematic subsample of stems counted 
(i.e., every tenth stem). Aspen percent cover (PC) parameter 
was based on in situ ocular estimates of foliar cover according 
to relevé methodology (MNDNR, 2013). Aspen basal area (BA, 
mm2m–2) was computed as DEN multiplied by average stem 
cross-section area (mm2) divided by the combined area of 
the pooled subplots (113.1 m2). Vegetation richness (RIC) was 
calculated as the total number of plant species found in each 
plot’s 0.04 ha relevé sample area.

Predictor Variables
Both satellite- and aircraft-based remote sensing image data 
were used in this research (Table 1A). Two Landsat images 
from two sensors (Landsat-7 and -8; W1 and L8, respectively) 
were acquired from USGS Earth Resources Observation and 
Science Center (EROS, http://glovis.usgs.gov/) for the PCF area 
(WRS-2 path 27, row 27). We included winter Landsat-7 
imagery (W1; Table 1A) as a potential predictor of aspen 
abundance to take advantage of relationships between tree 
shadows cast on snow-covered ground and quantitative mea-
sures of wood volume (Wolter et al., 2012). It should be noted 
that the 23 January 2014 Landsat-7 winter image (W1) had 
known scan line corrector (SLC) failure errors, which result 
in a striped pattern of image data dropouts that radiate out 
(with increasing width) from the sensor’s nadir ground track. 
A total of 9 ground plots fell within these dropout areas, 
and were removed from models that retained this variable 
(described below in Analyses). One meter spatial resolution 
National Agriculture Imagery Program (NAIP) color-infrared 
aerial image data (flown August 2013) were also acquired 
(http://datagateway.nrcs.usda.gov/). Raw NAIP imagery (1 m) 
was too fine a resolution for predicting aspen abundance and 
structure estimated from our plot layout design, due to the 
spatial heterogeneity of observed aspen abundance. Nonethe-
less, it was unclear as to which spatial resolution would be 
optimal. Therefore, we degraded the raw NAIP imagery to 2-, 
5-, 10-, 20-, and 30-m resolutions (hereafter referred to as N2, 
N5, N10, N20, and N30, respectively) in an effort to identify 
appropriate spatial scales for model development (Table 1A).

We calculated several spectral indices (from imagery de-
scribed above) as additional predictors of post-fire vegetation 
structure (Table 1A). These indices are well established in 
vegetation remote sensing literature and include:
	 1.	 vegetation simple ratio (SR; Jordan, 1969), 
	 2.	 normalized difference vegetation index (NDVI; Rouse et 

al., 1974), 
	 3.	 moisture stress index (MSI; Rock et al., 1986), 
	 4.	 normalized burn ratio (Key and Benson 2005), 
	 5.	 reflectance absorption index (RA, Arzani and King, 

1997), and 
	 6.	 shortwave infrared to visible ratio (SVR, Wolter et al., 

2008).

Shortwave infrared bands and indices (e.g., Landsat-7 
bands 5 and 7, MSI, and SVR) were used as these wavelengths 
and indices are known to be sensitive to forest BA (Wolter et 
al., 2008) (Table 1A). The normalized burn ratio (NBR, [Band4-
Band7] / [Band4+Band7]), introduced by Key and Benson 
(2005), was used along with the other indices as potential 
post-fire predictors of aspen and vegetation structure. Later 
we calculate the relative difference NBR (RdNBR, Miller and 
Thode, 2007) as our specific proxy for fire severity to better 
understand factors leading to observed and modeled for-
est responses following fire.  In that capacity, RdNBR is the 
difference between pre- and post-fire NBR divided by the 
square root of the absolute value of pre-fire NBR/1000. This 
formulation is said to reduce sensitivities to species-specific 
chlorophyll type and density that otherwise bias the NBR and 
difference NBR (dNBR) formulations (Miller et al., 2009). Corre-
spondence between RdNBR values and ground-based measures 
of fire severity is known to be ca. 80 percent (R2) in conifer-
ous systems (Miller et al., 2009). We calculated RdNBR using 
pre- and post-fire Landsat-5 sensor data (26 June 2009 and 
06 October 2011, respectively; each having the highest image 
quality code) for the entire PCF region to serve as a spatially 
explicit proxy for fire severity (Plate 1). 

Terrain information (elevation, aspect, and slope) was 
derived from a 30-m digital elevation model (DEM) from the 
Shuttle Radar Topography Mission (http://www2.jpl.nasa.
gov/srtm/). Terrain aspect was converted to eight thematic 
direction classes prior to use in this study. Four kilometer 
spatial resolution climate data (precipitation and temperature 

estimates) for the region and 
time period were acquired from 
PRISM Climate Group, Oregon 
State University (http://prism.
oregonstate.edu). Lastly, mapped 
estimates of pre-fire aspen BA 
and distribution, as well as 
overall species composition, 
derived by Wolter and Townsend 
(2011), were acquired from the 
authors and used in this study 
(Table 1B). These ca. 2008 data 
consist of continuous estimates 
of mature forest BA mapped to 
30-meter spatial resolution for 
eight conifer and four hardwood 
species (aspen BA precision: R2 = 
0.89; RMSE = 6.64 m2.ha–1) across 
the entire PCF region. This initial 
set of 58 predictor variables 
was used with xPLS regres-
sion (see Wolter et al., 2012) to 
develop respective models of 
aspen structure and vegetation 
(described below in Analyses). 

Plate 1. Relative difference normalized burn ratio (RdNBR; Miller et al., 2009) calculated for the 
PCF using before (26 June 2009) and after burn (06 October 2011) Landsat imagery, from low 
(green) to extreme (red) fire severity.
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Spatially explicit proxies for soil depth did not exist at the 
time this research was conducted, which precluded use of our 
soil depth measurements for vegetation structure mapping. 
Hence, exploratory simple linear regressions of our soil depth 
measurements on aspen structure and vegetation richness 
were conducted at the plot-level only.

Analyses
Model calibrations between field estimates of aspen structure 
(i.e., DIA, HT, PC, BA) and vegetation richness (RIC) variables and 
image and biophysical predictor variables were accomplished 
using an iterative form of partial least squares regression (PLS; 
Geladi and Kowalski, 1986) called iterative exclusion partial 
least square regression (xPLS, Wolter et al., 2012). Center loca-
tions from the 81 field plots were used to extract respective 
point samples of all predictor variables in these analyses. Our 
goal in using xPLS was to find the most parsimonious model 
(i.e,. fewest variables) that would explain the largest amount 
of variation in the dependent vegetation structure variables. 
The iterative xPLS regression and variable selection approach 
is ideal (especially in remote sensing) because the underlying 
PLS regression routine provides a means to condense a large 
number of collinear variables down to a few salient, non-cor-
related, latent structures or components (Wolter et al., 2008). 
The xPLS approach differs from stepwise and AIC/BIC methods 
in that xPLS uses leave-one-out cross-validation to (a) choose 
the appropriate number of components to use at each step, (b) 
eliminate predictor variables that show no or low response to 
the dependent variables, and (c) validate resulting final models 
(Wolter et al., 2008). Issues related to multicollinearity related 
to the large number of potential predictor variables are mini-
mized but not eliminated using this method (see below).

The final, reduced set of image predictor variables and asso-
ciated regression coefficients were then used to map vegetation 
patterns (i.e., aspen abundance, aspen structure, and species 
richness) to upland areas of the PCF. Wetlands and non-forest 
areas were neither mapped nor considered in subsequent 
analyses. We used the US Fish and Wildlife Service’s National 
Wetlands Inventory Program (NWI) data (https://www.fws.gov/
wetlands/index.html) to mask all wetland areas. Weekly snow 
depth maps (http://climate.umn.edu/doc/snowmap.htm) were 
used to select Landsat imagery (08 February 2011) with suffi-
cient snow cover (76 to 80 cm) to assist in masking out snow-
covered, non-forest areas (see Wolter et al., 2008). We used 
standard descriptive statistics to evaluate the degree to which 
biophysical variables for the 81 field plot locations were rep-
resentative of the mapped and observed ranges of natural vari-
ability in these data, respectively, across the mapped PCF area. 
We mapped the final vegetation structure models across the 
PCF at 2 m pixel resolution, which was the minimum pixel size 
(NAIP) among the respective reduced sets of image variables.

We emphasize that xPLS regression iteratively determines 
the optimal number of latent structures (components) to use 
for each successive variable set under consideration (n − 1) 
within the iterative xPLS variable selection routine (Wolter et 
al., 2008; Wolter et al., 2012). While the final set of predic-
tor variables represents the optimal combination to enable 
effective mapping of the response variables, the regression 
coefficients linking the final set of correlated predictors to 
their associated, non-correlated latent structures remain 
interdependent. Hence, this fact may complicate the degree 
to which we can reliably use the coefficients themselves (i.e., 
direction, magnitude) to evaluate specific hypotheses regard-
ing the underlying causal relationships generating the pat-
terns. We therefore explored the role of individual biophysi-
cal variables (specifically pre-fire aspen basal area and burn 
severity) potentially affecting vegetation recovery patterns by 
systematically dropping these variables and repeating the xPLS 
procedure, and evaluating the consequences in terms of their 

significance (α ≤0.05), R2, RMSE, and the number of variables 
the alternate models retained. In addition, simple linear 
regression was used to evaluate the independent strength of 
correlations between each of the plot-derived values of DEN, 
DIA, HT, PC, BA, and RIC and both fire severity and pre-fire 
aspen BA predictor variables. 

Results
Plot Data
Two years post-fire, the average aspen cover recorded within 
the relevé plots was just under 10 percent, and ranged be-
tween 0 and 88 percent. Pooled subplot-level aspen regenera-
tion stem height averaged just over a meter (range 43 to 220 
cm), and basal area was low (mean 42 mm2m−2, range 0-299 
mm2m–2; where 1 mm2m–2 = 0.01 m2ha–1). On relevé plots, tree 
regeneration by 13 tree species was quantified, where seven 
of the more abundant species included two conifers: jack pine 
and black spruce; five deciduous species: red maple (Acer ru-
brum), paper birch, black ash (Fraxinus nigra), balsam poplar 
(Populus balsamifera), and quaking aspen. Other measured 
vegetation included six shrubs, 43 forbs, and seven graminoid 
species. Vegetation species richness was moderate, averaging 
20 species (range 8 to 32). Full descriptive statistics of the 
plots are provided in Table 5A. Field observations indicated 
there were substantial spatial pattern differences between 
aspen and herbaceous cover. Herbaceous vegetation patches 
were both larger and more evenly distributed compared to 
patterns observed among the much smaller aspen patches. 
Aspen stem distributions within relevé plots ranged from a 
few individuals to multiple, larger patches (2 to 5 m), with 
substantial variability in arrangements between relevé plots. 
Nonetheless, patch dimension and arrangement metrics were 
not explicitly recorded.

In general, the 81 plots were representative of the variability 
in biophysical attributes for upland regions of the entire PCF 
(Table 2A and B). Temperature, precipitation, and elevation were 
most similar between upland areas of the PCF and measured 
plots. Average plot slope and fire severity were also similar to the 
average estimated across upland areas of the PCF, but variability 
was more limited for these variables within measured plots. On 
average, pre-fire aspen basal area was greater within our 81 field 
plots compared to that for upland areas across the entire burned 

Table 2. Summary of Ecological Data Acquired for (A) Sampled Plot 
Locations; and (B) Modeled Estimates for the Entire PCF Area. Variables 
Include Climate (2012), Terrain, Soil Depth to Bedrock (A only), Fire 
Severity Proxy (Relative Differenced Normalized Burn Ratio, RdNBR), and 
Aspen Pre-Fire BA. Note that RdNBR is a Relative Measure of Fire Severity 
(Unitless), where Extreme Values are Generally Greater than 35.
(A)

Ecological Variable Average Minimum Maximum Std. Dev.
Precip. (mm) 795.35 778.28 816.09 13.56
Temp. (C) 4.79 -15.53 28.09
Elevation (m) 478.40 455.00 509.00 14.44
Slope (degrees) 2.06 0.00 8.00 1.58
Soil Depth (cm) 34.78 0.00 >150 30.14
Fire Severity 34.89 19.00 41.00 4.28
Pre-fire BA (m2/ha) 8.73 0.00 36.27 9.62
(B)  

Ecological Variable Average Minimum Maximum Std. Dev.
Precip. (mm) 803.72 770.68 852.11 22.32
Temp. (C) 4.74 -15.95 28.30
Elevation (m) 487.54 434.00 577.00 22.48
Slope (degree) 2.23 0.00 83.00 4.57
Fire Severity 36.00 1.00 44.00 6.83
Pre-fire BA (m2/ha) 1.52 0.00 56.00 4.79
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area (8.7 versus 1.5 m2 ha–1, respectively), while the range of plot-
wise basal areas was less (0-36 versus 0-56 m2 ha–1). 

Model Development
Respective cross-validated calibration of post-fire vegetation 
structure models (Table 3) using field data with remote sens-
ing and biophysical predictor layers resulted in substantially 
reduced subsets (Table 4) of the original 58 predictors. Reten-
tion of the spatially degraded NAIP predictor variables repre-
sented a suite of resolutions. For aspen structure, retention 
of NAIP predictors increased with resolution (i.e., 15, 15, 13, 
12, and 9 variables retained at 2-, 5-, 10-, 20-, and 30-m pixel 
resolution, respectively). For overall vegetation richness, re-
tention of NAIP predictors generally decreased with resolution 
with the highest variable retention at the 20-m scale (Table 4).

Model calibrations resulted in adjusted coefficients of deter-
mination (Adj. R2) of 0.60 (RMSE = 2.47 species) for vegetative RIC 
and 0.53 (RMSE = 2.21 mm) for aspen DIA, each with p <0.001. 
Calibration of the aspen stem DIA model was superior to all other 
aspen structure models followed by BA, HT, DEN, and PC (Table 3).  

Measured response variables and modeled estimates of 
those variables mapped for upland areas of the PCF (Plate 2), 
were most similar for aspen DEN, aspen BA and RIC (Table 5A, 

and B). For all variables except one (PC), the mapped range in 
variables contained the range observed in the plot data and 
fell within ecologically plausible bounds. 

Relationships between Predictor and Response Variables
Partial least squares regression component loading results for 
the six cross-validated models of post-fire aspen structure and 
species richness (Table 3, 4; Figure 3) show DEN as retain-
ing the highest number of predictor variables (32), followed 
by DIA, RIC, HT, BA, and PC (range 9 to 27). Model coefficient 
loadings on pre-fire aspen BA and elevation indicate that these 
variables were the strongest predictors, respectively, for DEN 
and BA (Figure 3). Elevation (used by all models except RIC) 
and climate variables (used by all models except PC and DEN) 
were also strong predictors for DIA, HT, and BA (Figure 3). The 
PC model had N5 (IR), L8 (GR), and elevation as the strongest 
predictors, while the RIC model showed strong loading coef-
ficients on both climate and L8 NDVI (16 September 2013).

Model calibrations for DIA, HT, BA, and RIC all retained 
climate predictor variables (PRECIP and TEMP, Tables 3, 4; 
Figure 3), which, due to their 4-km resolution, influenced the 
visual appearance of extrapolated estimates of these structure 
variables (Plate 2). Because accuracy and detail of information 

Table 3. Structure Model Calibration Regression and Leave-One-Out Cross-Validation Results. The Five Dependent Aspen Structure Variables are Stem 
Density (DEN), Stem Diameter (DIA), Stem Height (HT), Percent Foliar Cover (PC), and Basal Area (BA). The One Dependent Herbaceous Vegetation 
Structure Variable is Species Richness (RIC).

Dep. Variable n R2 Adj. R2 RMSE PRESS p-value Bo B1 Vars. Initial Vars. Used Predictor Images

DEN (stems*m-2) 81 0.41 0.40 0.43 0.84 <0.001 0.35 0.41 50 32 N2, N5, N10, N20, N30, L8, 
ELEV, PF_ASP_BA, SLP

DIA (mm) 81 0.54 0.53 2.21 0.75 <0.001 3.08 0.54 50 27
N2, N5, N10, N20, N30,  
L8, MIN_TEMP, ELEV,  
PF_ASP_BA

HT (cm) 81 0.43 0.42 25.55 0.82 <0.001 49.11 0.43 50 13 N2, N10, N20, N30, L8,  
MIN_TEMP, ELEV

PC (%) 72 0.23 0.22 5.72 0.92 <0.001 6.92 0.23 58 9 N5, N10, N30, L8, W1, ELEV

BA (mm2*m-2) 81 0.46 0.45 33.54 0.77 <0.001 22.69 0.46 50 10 N2, N5, N30, L8, MIN_TEMP, 
ELEV, PF_ASP_BA

RIC (spp*/0.04 ha-1) 81 0.60 0.60 2.47 0.68 <0.001 8.18 0.60 50 16 N5, N10, N20 N30, L8, 
MEAN_TEMP

Table 4. Predictor Variables Retained by xPLS Regression for Each of the 
Vegetation Structure Models. Structure Variables are Vegetation Species 
Richness (RIC) and Aspen Structure Variables: Density (DEN), Diameter 
(DIA), Height (HT), Percent Cover (PC), and Basal Area (BA).

Dependent Variable Predictor image variables

DEN (stems*m-2) GR10, RD10, IR10, SR10, NDVI10, BL20, RD20, 
IR20, SR20, NDVI20, BL2, RD2, IR2, SR2, 
NDVI2, BL30, RD30, IR30, SR30, NDVI30, RD5, 
IR5, SR5, NDVI5, LT8_4, LT8_5, SR, SVR, RA, 
Elevation, Pre-fire aspen BA, Slope

DIA (mm) BL10, GR10, RD10, SR10, NDVI10, BL20, 
GR20, RD20, SR20, NDVI20, BL2, GR2, IR2, 
SR2, NDVI2, GR30, BL5, GR5, RD5, IR5, SR5, 
NDVI5, MSI, RA, MIN_TEMP, Elevation, Pre-
fire aspen BA

HT (cm) BL10, RD10, RD20, IR20, RD2, SR2, NDVI2, 
BL30, SR, MSI, RA, MIN_TEMP, Elevation

PC (%) GR10, RD30, GR5, IR5, LT8_3, SVR, W3, W4, 
Elevation

BA (mm2*m-2) RD2, IR2, NDVI30, RD5, SR5, NDVI5, LT8_3, 
MIN_TEMP, Elevation, Pre-fire aspen BA

RIC (spp*0.04ha-1) SR10, NDVI10, BL20, GR20, RD20, SR20, 
NDVI20, BL30, GR30, RD30, SR30, BL5, 
NDVI5, LT8_2, NDVI, MEAN_TEMP

Table 5. Descriptive Statistics for (A) Ground-Measured Vegetation 
Recovery Data Across All Field Plots, and (B) Modeled Estimates of Aspen 
Structure and Richness for the Entire PCF. Listed are the five Post-Fire 
Aspen Regeneration Structure Estimates (Density [DEN], Diameter [DIA], 
Height [HT], Percent Cover [PC], and Basal Area [BA]) and One Vegetation 
Species Richness Estimate (RIC).
(A)

Structure Variable Average Minimum Maximum Std. Dev.

DEN (stems *m-2) 0.59 0.00 3.71 0.87

DIA (mm) 8.98 3.41 13.69 2.24

HT (cm) 109.27 42.80 219.85 28.11

PC (%) 8.73 0.00 88.00 13.32

BA (mm2*m-2) 41.60 0.00 299.40 66.92

RIC (spp*0.04ha-1) 20.51 8.00 32.00 5.02

(B) 

Structure Variable Average Minimum Maximum Std. Dev.

DEN (stems*m-2) 0.66 0.00 3.31 0.49

DIA (mm) 7.12 0.00 26.34 4.95

HT (cm) 94.39 0.00 318.93 54.89

PC (%) 10.75 0.00 42.65 6.38

BA (mm2*m-2) 59.40 0.00 298.33 46.21

RIC (spp*0.04ha-1) 21.95 0.75 38.56 3.78

858	 November  2016 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

08-16 November Peer Reviewed.indd   858 10/18/2016   11:23:40 AM



decreases as pixel-size increases, we 
experimented with calibrations that 
excluded climate variables. This resulted 
in slight decreases in model fit for DIA (Δ 
Adj. R2 = –0.03), HT (Δ Adj. R2 = –0.01), 
BA (Δ Adj. R2 = –0.02), and RIC (Δ Adj. R2 
= –0.05), but a more substantial decrease 
in model fit for RIC (Δ Adj. R2 = -0.25). 
All model calibrations excluding climate 
predictors remained significant (p <0.001; 
Table 6A).

Simple linear regression analysis 
between response variables and pre-burn 
aspen BA indicated significant (p <0.001) 
positive relationships in all but two cases 
(Table 7A). Pre-burn aspen BA was most 
strongly related to post-burn aspen BA 
(Adj. R2 = 0.33), followed by DEN (Adj. R2 
= 0.20), DIA (Adj. R2 = 0.17), and HT (Adj. 
R2 = 0.12), while pre-burn aspen BA did 
not significantly explain observed vari-
ance in PC (p = 0.03, Adj. R2 = 0.05) or RIC 
(p = 0.46, Adj. R2 = -0.01) (Table 7A). By 
contrast, fire severity (i.e., RdNBR) was not 
significantly related to any of the response 
variables (p-value range 0.14 to 0.57, Adj. 
R2 range 0.02 to –0.01, Table 7B). These 
results are consistent with the xPLS results 
that retained pre-burn aspen BA for cor-
responding variables (except HT), but did 
not retain RdNBR for any of the models. 
Excluding pre-burn BA from the three 
models that retained this variable did 
yield significant models (p <0.001; Table 
6B). However, for DEN and BA the number 
of predictors in the final models were sub-
stantially reduced (Figure 4), and corre-
sponding model fit was also reduced (DEN: 
Δ Adj. R2 = -0.25, BA: Δ Adj. R2 = -0.25). 
The model for DIA was far less affected, by 
excluding pre-burn BA (Δ Adj. R2 = 0.03).

Discussion
Mapping Early-Seral Forest Composition 
This study found that ground and remote 
sensing data may be used in combination 
to develop biophysical models of early-
seral stage forest vegetation recovery in bo-
real to sub-boreal forests of the upper Mid-
western US. This is particularly important 
as greater detail is needed to understand 
forest successional trends in a landscape 
dominated by fire, and to assist research 
that strives to forecast future forest compo-
sition in lieu of multiple stressors, such as 
climate change (Soja et al., 2007).

Remote detection of hardwood stand 
development two to three years follow-
ing disturbance using medium resolution 
satellite sensors is thought to be prob-
lematic (Coppin and Bauer, 1994), which 
has limited structural quantification to 
simple regeneration classes (Wolter and 
White, 2002) or age categories (Hall et 
al., 1991). While the use of Landsat time 
series has improved monitoring of forest 
recovery stages (Kennedy et al., 2010), 

Plate 2. Maps of modeled aspen structural parameters and overall richness. One image 
used to calibrate the aspen canopy cover model was the winter image (W1, Landsat-7, 
23 January 2014); hence, scan line corrector (SLC) failure errors are observed and mani-
fested in these model estimates.

Figure 3. Scaled component loadings for image predictor variables selected by iterative 
exclusion partial least squares regression (xPLS) during calibration of aspen abundance 
and vegetation richness models.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November  2016 	 859

08-16 November Peer Reviewed.indd   859 10/18/2016   11:23:44 AM



characterization of specific structural variables has lagged be-
hind. Airborne light detection and ranging (lidar) transect data 
were used recently with Landsat time series data in Canada to 
model 75th quantile heights and percent canopy cover (above 
two meters) for regenerating aspen patches in five-year incre-
ments up to 25 years following fire disturbance (Bolton et al., 
2015), which represented a significant advance over past re-
mote sensing efforts. The cross-validated accuracy results for 
percent aspen canopy across all age classes was reported as 
86.7 percent, while direct measures of aspen density were not 
reported. While our cross-validated accuracy results for aspen 
PC (Adj. R2 = 0.22; RMSE 5.7 percent), HT (Adj. R2 = 0.42; RMSE 
25.5 cm), and other structure estimates (mapped to the pixel-
level for a specific stand age (2 year)) are not directly compa-
rable to these results, Bolton et al. (2015) did recognize (as we 
found) that substantial variability among structure estimates 
was common. Hence, our detection, modeling, and mapping 
of specific aspen structural attributes two years after wildfire 

disturbance using optical imaging remote sensing data marks 
a first in the literature.

While RIC was stronger (Adj. R2 = 0.60, Table 3) than the 
aspen structure models, PCF-wide variation among these esti-
mates was relatively low (Plate 2). Most areas across the PCF 
study area were mapped as having between 15 and 30 species 
per 0.04 ha, which paralleled field measurements. Past re-
search has shown that vegetation establishment and variability 
in species richness are influenced by factors associated with 
distance to living forest following fire (Turner et al., 1998). If 
variability in species RIC recorded at our northern and southern 
plots (closer to PCF edges) was substantially different than RIC 

Table 6. Results of Aspen and Vegetation Structure Model Calibrations/Cross-Validations (n = 81) where (A) 4 km climate Predictor Variables, and (B) the 
Pre-Fire Aspen BA Predictor, Respectively, were Intentionally Withheld During the Iterative Exclusion Partial Least Squares (xPLS) Calibration Procedures.
(A)
Structure Variable R2 Adj. R2 RMSE PRESS Bo B1 p-value Vars. 

Init.
Vars. 
Used

Predictor Images

DIA (mm) 0.40 0.39 2.21 0.84 3.98 0.40 <0.001 46 23 N2, N5, N10, N20, N30, L8, ELEV, PF_ASP_BA
HT (cm) 0.42 0.41 25.45 0.84 50.22 0.42 <0.001 46 21 N2, N5, N10, N20, N30, L8, ELEV, PF_ASP_BA
BA (mm2*m-2) 0.44 0.43 33.43 0.79 23.35 0.44 <0.001 46 9 N2, N5, N30, L8, ELEV, PF_ASP_BA
RIC (spp*0.04ha-1) 0.55 0.55 2.51 0.73 9.16 0.55 <0.001 46 18 N2, N5, N10, N20 N30, L8, ELEV
(B)

Structure Variable R2 Adj. R2 RMSE PRESS Bo B1 p-value
Vars. 
Init.

Vars. 
Used Predictor Images

DEN (stems*m-1) 0.16 0.15 0.32 0.88 0.50 0.16 <0.001 49 6 N10, N20, N30, MAX_TEMP, ELEV
DIA (mm) 0.51 0.51 2.21 0.77 3.25 0.51 <0.001 49 20 N2, N5, N10, N20, L8, MIN_TEMP, ELEV
BA (mm2*m-2) 0.21 0.20 27.33 0.88 32.99 0.21 <0.001 49 9 N2, N10, N30, L8, MIN_TEMP, ELEV

Table 7. Plot-Based, Simple Linear Regression Results for Plot-Wise Aspen 
and Vegetation Dependent Structure Variables (n = 81): Stem Density (DEN), 
Stem Diameter (DIA), Stem Height (HT), Percent Cover (PC), Basal Area (BA), 
and Vegetation Species Richness (RIC); Each as a Function of the Independent 
Predictor (A) Pre-Fire Aspen BA and (B) RdNBR Fire Severity Proxy.
(A)

Plot Variable R2 Adj.
R2

p-
value

Bo

(95% C.I.)
B1

(95% C.I.)
DEN 
(stems*m-2) 0.21 0.20 <0.001 5.72

(3.41 - 8.03)
5.08

(2.87 - 7.30)

DIA (mm) 0.18 0.17 <0.001 2.59
(-0.94 - 6.13)

0.92
(0.48 - 1.37)

HT (cm) 0.13 0.12 <0.001 2.82
(-1.11 - 6.74)

0.07
(0.03 - 0.11)

PC (%) 0.06 0.05 0.03 7.18
(4.69 - 9.66)

0.18
(0.02 - 0.34)

BA 
(mm2*m-2) 0.34 0.33 <0.001 5.35

(3.31 - 7.39)
84.41

(57.87 - 110.96)
RIC 
(spp*0.04ha-1) 0.01 -0.01 0.46 12.01

(2.98 - 21.05)
-0.16

(-0.59 - 0.27)
(B)

Plot Variable R2 Adj. 
R2

p-
value

Bo  
(95% C.I.)

B1  
(95% C.I.)

DEN 
(stems*m-2) 0.01 -0.01 0.47 34.65

(33.50 - 35.81)
0.40

(-0.71 - 1.50)

DIA (mm) 0.01 -0.01 0.49 34.38
(32.65 - 36.11)

0.08
(-0.14 - 0.29)

HT (cm) 0.01 0.00 0.30 34.05
(32.19 - 35.92)

0.00
(0.00 - 0.03)

PC (%) 0.02 0.00 0.25 35.25
(34.12 - 36.39)

-0.04
(-0.11 - 0.03)

BA (mm2*m-2) 0.00 -0.01 0.57 34.72
(33.61 - 35.84)

4.12
(-10.35 - 18.60)

RIC 
(spp*0.04ha-1) 0.03 0.02 0.14 32.02

(28.04 - 35.40)
0.14

(-0.05 - 0.33)

Figure 4. Scaled component loadings for image predictor variables 
selected by iterative exclusion partial least squares regression (xPLS) 
during calibration of aspen abundance and vegetation richness 
models, with pre-fire aspen BA excluded as a predictor variable.
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observed at central plot locations (Figure 1) this would have 
been compelling evidence, but this was not the case. Also, 
given the fact that fire severity was generally high throughout 
the PCF (RdNBR >35, Plate 1), it seems reasonable that spatial 
variability in our mapped estimates of RIC were generally low 
(see Turner et al., 1997; Wang and Kemball, 2005).

Multi-Resolution Approach - What Did We Gain?
The finer spatial resolutions of the NAIP remote sensing data 
used in this study were instrumental predictors in all of the 
vegetation models developed. For each model calibration, the 
xPLS approach retained several resolutions of NAIP variables 
along with generally fewer Landsat predictor variables. This 
is compelling evidence for the strength of a multi-resolution 
approach in such studies. While we specifically quantified six 
vegetation parameters in this study, such as percent cover, to 
be used later for model development, we did not specifically 
quantify vegetation patch sizes or arrangement; although, we 
did make note of these general characteristics qualitatively 
across the 81 plots. Herbaceous vegetation patches were gen-
erally both larger and more evenly distributed compared to 
aspen patches. The fact that the automated predictor variable 
selection process for the aspen structure models generally 
drew more variables from the two smallest NAIP pixel sizes (2 
and 5 meters; 15 variables each) is compelling evidence for 
the need to include imagery at these spatial resolutions to de-
rive mapped estimates of aspen recovery from remote sensing 
(Table 4). By contrast, vegetation RIC models, with generally 
larger observed patch sizes, were weighted more heavily on 
NAIP predictors of larger pixel sizes (Table 4).

By extension, we expect the newer SPOT-6 and SPOT-7 satellite 
sensor data (launched in 2012 and 2014, respectively); each 
with 1.5 m panchromatic channels (450-745 nm), 6 m multi-
spectral channels, and a relatively large swath size (60 km) com-
pared to other high spatial resolution sensors should be more 
effective for monitoring early aspen recovery in this region. 
Indeed, fusion of either high resolution SPOT data or hyperspec-
tral sensor data with discrete-return or waveform lidar sensor 
data are certainly promising such applications (Anderson et 
al., 2008; Bolton et al., 2015). However, for regional monitoring 
efforts, the development of methods which take advantage of 
existing space borne assets will likely be more practical.

Biophyscial Factors Affecting Regeneration Patterns
Prior forest composition commonly influences subsequent, 
post-fire, forest species composition and abundance (Frelich 
and Reich, 1995; Heinselman, 1996; Johnson et al., 2003). Post-
fire tree seedling recruitment (especially quaking aspen, black 
spruce, and jack pine) is directly related to pre-fire abundance 
of the respective tree species (Frelich and Reich, 1995; Hein-
selman, 1996; Johnson et al., 2003), though specific recovery 
patterns may be modified by competition with regenerating 
herbaceous cover (Frey et al., 2003). For the PCF area, pre-burn 
forest structure and composition data (Wolter and Townsend, 
2011) indicated that mature aspen cover was prominent in 
the central, east, and southern regions prior to the PCF, while 
mature jack pine and black spruce were more dominant within 
the western region. This arrangement of pre-burn aspen abun-
dance generally mirrored our modeled post-burn mapped esti-
mates of aspen abundance and structure (Plate 2), which were 
produced both with and without the pre-burn aspen BA data as 
a predictive variable. Furthermore, gradients of abundance ob-
served among modeled aspen structure results are consistent 
with a land use history (i.e., logging) that promoted deciduous 
species including aspen (Heinselman, 1996). Hence, it seems 
reasonable to suggest that aspen legacy governs aspen response 
and recovery following wildfire in this region. However, aspen 
legacy had no effect on vegetative richness.

By contrast, we found no evidence for a relationship 
between the Landsat-based fire severity proxy (RdNBR; Miller 

and Thode, 2007) and vegetation regeneration patterns post 
burn. It is also important to note that the original formulation 
of this fire severity index, NBR (Key and Benson, 2005), was 
not retained by any of the six structure models as an important 
predictor during the xPLS calibration process (Tables 4 and 6). 
Available studies indicate conflicting patterns between fire 
severity and its influence on aspen regeneration (Brown and 
DeByle, 1987; Perala, 1991; Frelich and Reich, 1995; Fraser et 
al., 2004). Our results align with studies where ground-based 
measures of fire severity were unrelated to regeneration success 
among boreal forest species (Jayen et al., 2006). However there 
were limitations to our study that may have affected this result. 
Apart from the northwestern corner of the burn that burned 
more slowly as a surface fire (Plate 1), the vast majority of the 
PCF burned as a fast-moving crown fire. It is the combination of 
fire line intensity and residence time that affect heat penetra-
tion beneath the ground surface (Smith et al., 2005) known 
to impact aspen recovery (Brown and Debyle, 1987). Due to 
the high speed with which the PCF traversed this landscape 
(eastern 70 percent of the area burned in five hours), we sus-
pect fire residence times were likely low. Indeed, much of the 
variability in fire severity estimated by RdNBR is reflective of 
lowland forests that were comparably less impacted, and these 
lowlands were excluded from our analysis. It is possible that 
increasing the number and distribution of field plots across the 
burned area may have improved aspen and vegetation structure 
estimation models and provided greater power to assess poten-
tial relationships with Landsat-based measures of fire severity.

Notably, burn severity indices derived from Landsat are 
typically more a function of fire effects on overstory than on 
ground and soil variables (Lentile et al., 2006). The degree to 
which RdNBR correlates with these particular fire attributes at a 
Landsat scale is unclear (Smith et al., 2005; Lentile et al., 2006; 
Soverel et al., 2010), but the use of relatively low spatial reso-
lution sensors (e.g., Landsat) to characterize the fine-grained 
indicators of fire effects on soil, such as white-colored ash 
(Smith et al., 2005), are likely limited. Hence, more research 
should be conducted using improved and more highly resolved 
measures of fire severity (Parks et al., 2014), especially those 
derived using airborne hyperspectral imagery (with superior 
spatial and spectral resolution) that have been used to produce 
fire severity indices that better characterize conditions on the 
forest floor surface following wildfire (Kokaly et al., 2007).

Pre-burn aspen BA, climate (mean and minimum TEMP), 
and terrain variables (slope and elevation) were all found to be 
strong, empirical predictors of post-burn vegetation struc-
ture (Figure 3). Contrary to expectations, terrain aspect was 
not found to be an influential predictor for any of our model 
calibrations. This was surprising since aspect affects soil tem-
perature and moisture levels and, thus, vegetation response 
dynamics (Frey et al., 2003). With that said, topographic relief 
across the PCF is relatively gentle and fine-grained, which 
may not be adequately captured using 30-m DEM information. 
Hence, using higher spatial resolution aspect information in 
the future (e.g., lidar-derived) may reveal stronger underlying 
relationships between vegetation recovery patterns and terrain.

With respect to climate, because of the inordinately high 
predictive strength of climate variables (MIN_TEMP and MEAN_
TEMP) in some of the structure model calibrations, especially 
DIA and RIC (Figure 3), we suspected pixel size (4 km) effects 
were skewing calibration results. Indeed, distinct steps among 
climate data values were observed between northern plots (con-
tained within two climate pixels) and those of the central and 
southern plots (Figure 1); the results of which were manifest in 
modeled DIA, HT, BA, and RIC results (Plate 2). Therefore, climate 
predictor variables were intentionally withheld during the reca-
libration of these structure models. Climate excluded, signifi-
cant and viable models were still produced (Table 6A), therefore 
we posit that spatial integrity gained during model recalibration 
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(without climate predictors) far outweighs the slight loss in esti-
mation accuracy overall. Because of the positive relationship be-
tween temperature and species richness in other boreal ecosys-
tems (Kivinen et al., 2006), future investigations of this nature 
should explore the use of multitemporal Landsat thermal bands 
to supply finer-grained proxies of climate predictor variables. 

Implications and Directions for Future Study
It is clear that fire regimes throughout North America are 
changing (Soja et al., 2007; Westerling et al., 2011). Con-
sidering the influence of wildfires on carbon stocks (Bond-
Lamberty et al., 2007) and the likely shifts in the frequency 
and magnitude of these forest disturbance events (Flannigan 
et al., 2000), precise modeling of fire behavior and subsequent 
forest response is key for understanding and forecasting forest 
carbon dynamics. And, while adaptive forest management 
may be applied to mitigate fire behavior and intensity (Pollet 
and Omi, 2002), we must accept that large, stand-replacing 
fires will occur, especially in large wilderness areas such as 
the BWCAW. Because patterns of forest stand structure initiated 
within a few years after fire are maintained through subse-
quent decades of stand development (Johnstone et al., 2004), 
spatially-explicit remote sensing and modeling approaches 
such as those presented here can provide an earliest possible 
look at future forest composition and enable continued study 
of factors that may influence stand development through time. 
This mapping approach can further compliment more detailed 
field studies of vegetation dynamics by providing vegetative 
responses across the full range of environmental conditions, 
characteristic of large landscapes (Sturtevant et al., 2014). Fu-
ture research should address vegetation patch characteristics 
and scale, as well as species-specific associations and commu-
nities in terms of competition with forest regeneration (Frey et 
al., 2003), and how such associations might correspond with 
certain pre-fire cover types and structure as well as post-fire 
soil characteristics and fire severities (Kolka et al., 2014). 
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