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Abstract

Context No single model can capture the complex

species range dynamics under changing climates—

hence the need for a combination approach that

addresses management concerns.

Objective A multistage approach is illustrated to

manage forested landscapes under climate change. We

combine a tree species habitat model—DISTRIB II, a

species colonization model—SHIFT, and knowledge-

based scoring system—MODFACs, to illustrate a

decision support framework.

Methods Using shortleaf pine (Pinus echinata) and

sugar maple (Acer saccharum) as examples, we

project suitable habitats under two future climate

change scenarios (harsh, Hadley RCP8.5 and mild

CCSM RCP4.5 at *2100) at a resolution of 10 km

and assess the colonization likelihood of the projected

suitable habitats at a 1 km resolution; and score

biological and disturbance factors for interpreting

modeled outcomes.

Results Shortleaf pine shows increased habitat

northward by 2100, especially under the harsh

scenario of climate change, and with higher possibility

of natural migration confined to a narrow region close

to the current species range boundary. Sugar maple

shows decreased habitat and has negligible possibility

of migration within the US due to a large portion of its

range being north of the US border. Combination of

suitable habitats with colonization likelihoods also

allows for identification of potential locations appro-

priate for assisted migration, should that be deemed

feasible.

Conclusion The combination of these multiple com-

ponents using diverse approaches leads to tools and

products that may help managers make management

decisions in the face of a changing climate.

Keywords Decision support system � Tree habitat

suitability model � Tree species migration model � Tree

species distribution model � Forest management �
Climate change

Introduction

There is increasing need to develop models and

decision support systems to facilitate forest manage-

ment in the era of rapid climate change. Forest
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managers are facing mandates by state and federal

governments to adaptively manage forested land-

scapes for resilience under current and future threats,

taking into account disturbances augmented from

climate change. Building on our previous experience

in developing models for predicting future suit-

able habitats under climate change (e.g., Iverson

et al. 2008; Iverson et al. 2011; Matthews et al.

2011; Prasad et al. 2013), we provide a newer

multistage combination approach that we illustrate in

this paper.

Species distribution models (SDMs—also called

habitat distribution models, niche-based models) have

been used extensively to unravel the effects of climate

and other abiotic factors on the distribution of tree

species habitats. It comes with assets and liabilities

that need to be adequately addressed in order to

effectively fulfill its role (Araújo and Peterson 2012;

Peterson and Soberón 2012). SDMs are quite suit-

able for macroscale approaches where finer scale

species interactions are modeled as aggregate proper-

ties of regression-based models using relevant predic-

tors (Diniz-Filho and Bini 2008; Kühn et al. 2008;

McGill 2010; Bradter et al. 2013; Svenning et al. 2014;

Belmaker et al. 2015; Jackson and Fahrig 2015).

Therefore in a macroscale study involving tree species

ranges for large regions like the eastern United States,

an SDM approach that includes variation in abundance

via relevant environmental correlates is quite useful

for exploring broad-scale dynamics of habitat ranges

(Morin and Thuiller 2009; Dormann et al. 2012;

Franklin 2013; Merow et al. 2014).

SDMs can be improved to provide more compre-

hensive, yet robust predictions—for example, using

relative abundance rather than presence/absence, and

including edaphic and topographic variables in addi-

tion to climate to address some of the limitations

(Iverson et al. 2011, Warren 2012, Rehfeldt et al.

2015). Using robust decision-tree based ensemble

models that take into account nonlinearity and inter-

actions also helps match the large-scale processes

with the prediction (Elith et al. 2010; Guisan et al.

2013). This approach has also been used to project

habitats under future climates with the reasonable

assumption that the bias-variance tradeoffs are better

addressed by these data- driven ensemble models that

use various data partitioning techniques to limit

variance (Lawler et al. 2006; Randin et al. 2006;

Hastie et al. 2009).

However, when SDMs are used in isolation, some

limitations of a purely statistical approach become

evident. We are forced to accept that the suitable habi-

tats predicted by SDMs are all colonizable under

natural dispersal mechanisms, which obviously is not

true. Combining SDMs with colonization models at a

finer scale addresses this key limitation of the SDMs—

not all suitable habitats depicted by the SDMs can be

colonized. Modeling colonization can take several

forms—both phenomenological and mechanistic—the

former using various fat-tailed probability density

distributions and the latter relying on parameterization

of species-based seed dispersal values based on sparse

empirical data (Clark et al. 1999; Nathan et al. 2008).

A simpler but effective way is to simulate long

distance dispersals under current land-use and abun-

dance patterns is achieved by using calibration con-

stants that can match historical migration rates across

fully forested landscapes. This approach calculates

colonization likelihoods (CLs) based on habitat suit-

ability and strength of source abundance.

Once CLs are handled, comes the more difficult

task—how much of the colonizable habitats are likely

to become established. Answers to this question

translate to finer scale queries that local managers

need to rely on, such as their experience, the land-use

history, and other studies. Fine-scale studies on

species interactions and micro-climatic and edaphic

assessments, possibly through provenance studies or

process-based models, could be helpful in assessing

establishment probabilities, but are beyond the scope

of the present paper. However, addressing some

limitations of CLs can be addressed via non-model

approaches at a regional and local level, based on

relevant literature and local expertise. Some of the

biological and disturbance factors which are difficult

for models to handle can be accessed via a knowledge-

based scoring system that can modify modeled

outcomes.

The purpose of our current effort is to provide forest

managers, decision makers and researchers an

improved toolbox to aid in management decisions

under climate change. Many managers are especially

challenged by the need to manage landscapes incor-

porating climate change as mandated by governments

because ignoring future risks is no longer a viable

option (Wiens et al. 2009). Our three pronged

approach consists of combining SDM, simulated

colonization, and knowledge-based scoring system
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in stages and assembling them into a decision support

system. It attempts to achieve a favorable tradeoff

between generality, realism and precision (Levins

1966, 1993; Orzack and Sober 1993) by combining

macro-scale model-based approaches with a litera-

ture-based scoring system.

Methods

The multi-stage combination approach

The decision support system is achieved in multiple

stages, by combining: (a) a statistical ensemble model

(DISTRIB II); (b) a spatially explicit simulation model

(SHIFT), and (c) a knowledge-based scoring system

(MODFACs). We briefly describe our newer SDM

(DISTRIB II), SHIFT and MODFACs and then

assemble figures and table based on their integration

that is then used as a decision support tool. We have

used this tool in the development of several vulner-

ability assessments across the eastern United States, as

coordinated by the Northern Institute of Applied

Climate Science (NIACS) (e.g., Brandt et al. 2014;

Janowiak et al. 2014; Butler et al. 2015).

Previously, an older version of the habitat suitabil-

ity model DISTRIB (Iverson et al. 2008) was applied

to the tree species in the eastern United States. In this

study, we apply a newer version, DISTRIB II, an

enhanced version of the CL simulation model SHIFT

(Prasad et al. 2013), and a knowledge-based scoring

approach MODFACs (Matthews et al. 2011), to assess

current and potential future range dynamics of 134 tree

species in the eastern United States. We illustrate this

approach using shortleaf pine (Pinus echinata) and

sugar maple (Acer saccharum)—two common, com-

mercially important species; the former with its range

within, and the latter mostly within the eastern United

States, but also extending into Canada.

DISTRIB II model

The earlier habitat suitability model has been consid-

erably revised to provide a more robust estimate of

suitable habitats using newer Forest Inventory and

Analysis (FIA) data and newer results from general

circulation models (GCM) models. Like the earlier

version, DISTRIB II is a statistical, decision-tree

based ensemble model that uses RandomForest (RF)

to predict current and future habitats under several

climate scenarios (Prasad et al. 2006) for the eastern

United States, but now at a finer resolution of 10 km

(compared to the earlier 20 km). The response vari-

able is the importance value (IV) of each tree species,

which is a relativized measure of abundance, calcu-

lated from the annualized FIA data (Woudenberg et al.

2010) as follows for each species X in a FIA plot:

IVðxÞ ¼ 50 � BAðxÞ
PN

i¼1 BAðiÞ
þ 50 � NSðxÞ

PN
i¼1 NSðiÞ

BA is basal area, NS is number of stems

(summed for overstory and understory trees) and

N is the total number of species in the plot. If

0\ IV\ 1, it was assigned to 1 since rounding

would have falsely turned species-present cells to

species-absent cells. For each species, average IV

per 10 km cells was calculated by aggregating the

FIA annualized plot-level information.

Based on our previous experience with ensemble

models, we screened the predictor variables that

explained most of the variation in the model and

chose a parsimonious set of 12 variables for our

predictors (Table 1)—those we determined to be the

most relevant for explaining the variation in abun-

dance at a resolution of 10 km, and were least affected

by collinearity, although we deemed the ecological

importance of the variable to be of utmost importance.

The selected climatic variables address two key

temperature-based constraints to tree species ranges—

growing season temperature (May–September) and the

temperature of the coldest month (January). An aridity

index which is the ratio of May–September precipita-

tion to the potential evapotranspiration index (Thorn-

thwaite and Mather 1957), along with growing season

precipitation, adequately captures the moisture con-

straints (Bucklin et al. 2015; Pederson et al. 2015).

With parsimony in mind, we limited the soil variables

(Peters et al. 2013a) to six after a model-based

screening process that eliminated others that were less

explanatory (using RandomForest’s R2) (Table 1). We

retained two elevation-based variables (maximum

elevation and elevation standard deviation) because

these variables are useful in distinguishing between

species that prefer low elevation and habitats with

rugged terrain.

The current climate data were obtained for the

period 1981–2010 from the PRISM climate group

(PRISM; Daly et al. 2008). For future climate, we
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chose two newer GCMs: Community Climate Systems

Model (CCSM4—Gent et al. 2011) and Hadley Global

Environment Model (HAD, Jones et al. 2011). Two

representative concentration pathways (RCP 4.5 and

8.5) representing greenhouse gas emissions were used

to evaluate a range, corresponding to the estimated

lower and upper potential changes in climate (Mein-

shausen et al. 2011). For comparison purposes, we

used HAD RCP 8.5 as the ‘‘harsh’’ scenario because it

depicted the largest increase in temperature, while

CCSM4 RCP 4.5 depicted the least increase in

temperature and was chosen as the ‘‘mild’’ scenario;

these extremes were used to illustrate the utility of

greenhouse mitigation efforts. Future climate vari-

ables were included in the habitat models as delta

adjusted observations, where 30-year monthly nor-

mals (2070–2099) were subtracted from the GCM

projections for 1981–2010 and added to PRISM values

(Monahan et al. 2013).

In order to ensure good model fit, we screened

outliers by eliminating cells having zero or only a

single FIA plot with mean IV beyond the interquartile

range for that species. This ensured that the Random

Forest model was robust and relevant to the FIA data.

We used this FIA-plot-present model to impute at 10

km over the entire eastern United States for prediction.

We demonstrate the approach by using one species

with model outputs showing an increase in its range

within the United States (shortleaf pine) and another

which decreases its range within the US and extends

into Canada (sugar maple) to illustrate the diverse

aspects of future range dynamics. Both species have

good model reliability with shortleaf pine having an

R2 of 0.45 and True Skill Statistics (TSS) of 0.87

(Allouche et al. 2006); respective values for sugar

maple were 0.44 and 0.78. Shortleaf pine represents

the distribution of many tree species which occupy the

south, south-western (including the Ozarks), and

Appalachian corridors within the eastern United

States, with no suitable habitat extending as far north

as Canada so that we could adequately gauge the CL. It

also represents the loblolly/shortleaf pine forest type

and is a major component within the oak-pine forest

type. Sugar maple is a very important commercial

species that is valued for many ecosystem services

including timber and maple syrup. As a widespread

and tolerant species, it is a major component of several

forest types including maple-beech-birch and northern

hardwoods. It is, however, modeled to lose suit-

able habitat especially in the southern portions of its

range.

SHIFT model

The SHIFT model runs at a 1 km resolution and

simulates dispersal via a fat-tailed inverse power

function and calculates future CLs based on historical

tree migration rates and current fragmented land-

scapes (Schwartz 1992; Iverson et al. 2004; Prasad

et al. 2013). The two main parameters affecting the

migration are the calibration constant (C) that simu-

lates the historical migration and the generation time

of the species that spans approximately 100 years

(detailed in Prasad et al. 2013).

The range boundaries for the species are derived

from the latest FIA annualized data which depict both

Table 1 The predictors used in the DISTRIB II model with

sources

Climatea

TJAN Mean January temperature (�C)

TMAYSEP Mean May–September temperature (�C)

PMAYSEP May–September precipitation (mm)

GSAI Growing season aridity index (May–

September)

Elevationb

ELV_MAX Maximum elevation (m)

ELV_SD Elevation standard deviation

Soilc

CLAY Percent clay (\0.002 mm)

OM Organic matter content (% by weight)

PH Soil pH

SIEVE10 Percent passing sieve no. 10 (coarse)

SIEVE200 Percent passing sieve no. 200 (fine)

SPRODd Soil productivity index

a Data for the period 1981–2010 from (PRISM Climate

Group), GCM data from NEX-DCP30 (Thrasher et al. 2013)
b From the NASA’s Shuttle Radar Topography Mission

provided at a resolution of 300 (Guth 2006). We calculated

the maximum value and standard deviation at 10 and 20 km2

grids
c From Natural Resource Conservation Service’s County Soil

Survey Geographic (SSURGO) database (NRCS 2009). Data

was processed by Peters et al. (2013a) and aggregated to 10 and

20 km2 grids
d From Schaetzl et al. (2012). Mean productivity at 10 and

20 km2 were calculated from area-weighted percentages of

240 m2 values
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increases and decreases from the original Little’s

range maps (Little 1971), the latter representing a

generous notion of known range limits during the late

1960s. A technique based on ESRI’s (2015) ‘‘delineate

built-up areas’’ tool and the aggregated IV of FIA plots

within 10 km cells was used to generate an updated

estimate of the ‘core’ species boundary. This ‘core’

boundary, based on the current species distribution,

was used to depict the source region across which

propagules are launched in the SHIFT model.

Forested cells from within the core species

boundary (‘‘source’’) are modeled to contribute

propagules into forested cells outside the boundary

(‘‘sink’’). The source strength is a function of both

the propagule production and dispersal capability

across the boundary. We used the relative abun-

dance and frequency of the species inside the

current boundary to define the source strength;

locations with higher species abundance and closer

proximity to the boundary will create the highest

colonization probabilities near the current boundary.

Sinks are forests or woodlots of varying degrees of

fragmentation (based on the United States Geolog-

ical Survey’s 2006 National Land Cover Data with

at least 10 % forest at 1 km resolution) that provide

possible locations for the propagules to colonize

under current and future climates. The predicted

suitable habitats of the DISTRIB II model provide

the future (*2100) suitability of the sink habitats

based on projected relative abundance.

Colonization of initially unoccupied cells was

estimated as a function of recipient cell forest

availability and the sum of the likelihood of each

occupied cell sending a propagule to that cell. For each

cell outside the current occupied boundary, the model

estimates the likelihood that each unoccupied cell will

become colonized over a period of 100 years (which,

for shortleaf pine, amounts to four generations of

mature trees producing large numbers of seeds, and

three generations for sugar maple). SHIFT is a ‘fat-

tailed’ dispersal model that allows rare long-distance

dispersal events up to 500 km and assumes the release

of climatic restrictions to tree growth (Prasad et al.

2013). Although 500 km is a generous window over

which colonization can occur, the inverse power

function makes the likelihood of colonization decay

rapidly from the species front, yet will allow for rare,

long-dispersal events over historical periods that can

potentially seed colonizations far from the source.

Our approach uses historical information on rates of

past migration events (Davis and Shaw 2001) as a

guide for future potential migration. SHIFT is cali-

brated independently for each species through trial

runs to achieve migration rates ranging from approx-

imately \25 to [100 km per century (depending on

criteria of model runs) under high forest availability

(80 % cover, representing nearly fully forested con-

ditions, which more closely approximate Holocene

conditions), but with the current level of species

abundance. There is uncertainty about the historical

migration rates—which range from less than 10 to

greater than 100 km/century—although recent molec-

ular analyses point to the range of 10–25 km/century

because of glacial refugia effects (McLachlan and

Clark 2004; Yansa 2006; Svenning and Skov 2007;

Cole 2010; Dobrowski 2011). We chose the entire

range of \25 to [100 km/century to illustrate the

sensitivity of CL to historical migration rates—

although we used 50 km/century to test how this

optimistic assumption is going to affect the coloniza-

tion of suitable habitats.

MODFACs—knowledge-based scoring system

The main goal of MODFACs is to add to the

interpretative value of DISTRIB II/SHIFT outputs

and give users enhanced information that can be used

for better management decisions (Matthews et al.

2011). It scores nine biological traits of species that

may influence their population persistence and adap-

tation capacity under climate change, with the key

characteristics including shade tolerance, edaphic

specificity, environmental habitat specificity, disper-

sal, seedling establishment, and vegetative reproduc-

tion. Also included are twelve disturbance influences,

many of which are expected to increase under climate

change (e.g., disease, insect pests, drought, flood,

wind, fire topkill, etc.). Each characteristic was scored

on a -3 (highly negative) to ?3 (highly positive)

scheme based on literature. To arrive at an overall

adaptability score for the species that could be

compared across all 134 modeled tree species, the

mean, rescaled (0–6) values for biological and distur-

bance characteristics were plotted to form two sides of

a right triangle; the hypotenuse was then a combina-

tion (disturbance and biological characteristics) met-

ric, ranging from 0 through 8.5 (Matthews et al. 2011;

Iverson et al. 2012). The intention of the scoring

Landscape Ecol (2016) 31:2187–2204 2191
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system was to enhance the interpretation of modeled

outcomes in order to make them amenable to regional

and local needs, and to account for certain situations

that were not captured in the models (for example,

emerald ash borer killing ash trees).

The future climate outputs of DISTRIB II are then

intersected with the CLs calculated by SHIFT using

the optimistic migration rate of 50 km/century for the

year 2100. The results from DISTRIB II, SHIFT and

MODFACs were assembled to develop a flow diagram

of maps as well as a table that quantifies the maps. This

illustrates one way in which the decision support

framework can be used by managers.

Results

Using shortleaf pine and sugar maple to demonstrate

this multistage approach (Fig. 1), we first reclassified

DISTRIB II and SHIFT outputs to simplify evaluation:

low, medium, and high habitat quality (HQ) or CL

(Fig. 2). These combinations resulted in nine HQ–CL

classes which are presented in Figs. 3 and 4. To enable

comparisons among climate scenarios (see later), the

12 classes were themselves simplified into three HQ–

CL classes of low, medium, and high ‘success’ for

species attempting to migrate from source into sink

locations (Fig. 5). Figures 3 (shortleaf pine) and 4

Fig. 1 A schematic depicting the flow of information in the

multistage decision support system. DISTRIB II models relative

abundance in the form of importance values (IV) based on the

Forest Inventory Analysis (FIA) using current and future climate

as well as soil and elevation variables to predict current and

future suitable habitats. The SHIFT model uses a randomly

generated nearly fully forested landscape to simulate historical

migration rates to estimate future colonization likelihood based

on current IV, the highly fragmented landscapes, and species

generation times. When combined with future suitable habitats

predicted by DISTRIB II, a reasonable depiction of spatially

explicit corridors and patches with varying patterns of

colonization likelihoods can be mapped. The MODFACs

scoring system, which scores biological and disturbance factors

based on species literature, is used in conjunction with outputs

of DISTRIB II and optionally SHIFT, to provide a synthetic tool

for managers in appraising the adaptation options for forest

management in the face of climate change
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(sugar maple) present mapped outputs produced at

each stage of the flow diagram (Fig. 1), and with

reclassification schemes from Fig. 2. We then provide

a detailed assessment of the metrics available from the

analysis (Table 2) along with a narrative to exemplify

a process to interpret the findings towards manage-

ment. The intention of this example analysis is to

provide visual and tabular information for managers as

they pursue actions relative to securing refugia,

advancing silvicultural methods to favor particular

species, or encourage migration (natural or assisted) as

an adaptation measure for the changing climate.

Shortleaf pine is a commercially important species

with a wider range than any other southern pine. It

tends to grow well under a variety of soil and climatic

conditions. It is classed as a pioneer, dry-site, shade

intolerant species, and it competes well in dry sites and

in nutrient-poor soils (Lawson 1990). It currently

occupies a large portion of the southeastern United

States (Fig. 3a, b), but is modeled to increase in habitat

throughout the century (Fig. 3c). Sugar maple is also a

commercially important, shade tolerant species with

most of its high abundance restricted to regions with

cool, moist climates (Fig. 4a, b). Although sugar

maple does best on well drained loams, it does not

grow well in dry, shallow, or swampy soils (Godman

et al. 1990). Because of its preference to cooler

regions, its habitat is predicted to decrease in the

eastern US throughout the century (Fig. 4c), espe-

cially under the high emissions scenario.

Shortleaf pine can be classified as an ‘increaser’

species in that northward advances of suitable habitat

are likely for both climate scenarios, but especially

under the harsh, Hadley RCP 8.5 scenario (Fig. 3d).

The large increase in the suitable habitats predicted by

DISTRIB II for shortleaf pine is due to the spread of IV

to the northeastern and north central regions; the CLs

calculated by SHIFT (at *50 km/century) however,

decline rapidly with distance from the range boundary

(Fig. 3e). The SHIFT output (Fig. 3e, f) shows that

western parts of the range contain the highest likeli-

hoods of colonization (HQHigh) because of high values

of source abundance near the current range boundary

(Fig. 3d). However, in the eastern part of its range, the

likelihood of colonization is lower, because of low

source abundance near the current range boundary.

When the reclassified DISTRIB II habitat quality map

(Fig. 3d) is combined with the reclassified CL map

(Fig. 3e), the nine resulting classes show combina-

tions of three HQ classes with three CL classes

Fig. 2 The reclassification scheme used to reduce the number

of classes in DISTRIB II and SHIFT to three categories—low,

medium and high. The combination of habitat quality (HQ) and

colonization likelihood (CL) classes results in nine HQ–CL

classes that have been further reclassified into three HQ–CL

classes for mapping purposes
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(Figs. 2, 3g). Map flow for shortleaf pine under the

mild scenario is in Supplemental Fig. S1.

For sugar maple, which is a ‘decreaser’ species, the

northward advances are not shown because HQ

mapping was not conducted into Canada. Much of

its habitat also disappears within its current range due

to the loss of cooler regions under future climates in

the Appalachian region, yet some availability of

suitable habitats is noticeable in the west and north-

west for the harsh scenario (Fig. 4c). CLs (at

*50 km/century) is higher in the southeast because

movement is not restricted in SHIFT (Fig. 4e, f);

however, when combined with the suitable habitats

predicted by DISTRIB II (Fig. 4d), there are few

modeled locations of colonization, in the west and

northeast portions of the region (Fig. 4g). These

various combinations of HQ and CL (HQ–CL) provide

clues regarding potential for migration (natural and

assisted) since they represent areas where the species

is more or less likely to migrate and thrive into the

Fig. 3 The map products of DISTRIB II and SHIFT for

shortleaf pine for the harsh, Hadley RCP 8.5 scenario. a The

importance value (IV) distribution (relative abundance) accord-

ing to Forest Inventory Analysis—they range from 0 to 100.

b Current IVs as modeled by DISTRIB II using current climate,

soil and elevation variables as predictors. c Future (*2100) IVs

predicted by DISTRIB II using future climate and current soil

and elevation variables as predictors. d Future IVs reclassified as

low, medium and high for the source (within the species range—

Abundlow, Abundmed and Abundhigh) and sink (outside the

species range—HQlow, HQmed, HQhigh) regions. e Colonization

likelihoods calculated by SHIFT in a 100 years for a historical

migration rate of 50 km/century. f Colonization likelihoods

reclassified as low, medium and high (CLlow, CLmed and

CLhigh). g Combination of 3-class habitat quality and 3-class

colonization likelihood (d, f) to yield a 9-Class combined HQ–

CL outputs. The classes that show favorable combinations of

habitat quality and colonization likelihoods are the ones most

likely to be colonized in the future (see Fig. 2 for the

reclassification scheme). The corresponding figures for the

CCSM4 RCP 4.5 mild scenario are in Supplemental Figs. S1 and

S2
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future. Map flow for sugar maple under the mild

scenario is in Supplemental Fig. S2.

The nine HQ–CL classes for the two species can be

further reclassified to three (Fig. 2) for easier inter-

pretation and comparison between species and

between the mild (CCSM4 RCP 4.5) and the harsh

(Hadley RCP 8.5) scenario (Fig. 5). One notable fea-

ture is that for shortleaf pine, the total area is higher for

the harsh scenario compared to the mild scenario

because the modeled habitat of the species is largest

under the harsh scenario, increasing the suitable habi-

tats available for colonization. This trend is reversed

for sugar maple because its habitat decreases less for

the mild scenario and therefore shows the potential for

migration to be higher in locations outside the current

boundary, as compared to the harsh scenario (Fig. 5).

The visual interpretation provided by the maps can

be augmented by combining the information of

DISTRIB II, SHIFT and MODFACs into a single

table that provides quantitative summary of the areas

Fig. 4 The map products of DISTRIB II and SHIFT for sugar

maple for the harsh, Hadley RCP 8.5 scenario. a The importance

value (IV) distribution (relative abundance) according to Forest

Inventory Analysis—they range from 0 to 100. b Current IVs as

modeled by DISTRIB II using current climate, soil and

elevation variables as predictors. c Future (*2100) IVs

predicted by DISTRIB II using future climate and current soil

and elevation variables as predictors. d Future IVs reclassified as

low, medium and high for the source (within the species range—

Abundlow, Abundmed and Abundhigh) and sink (outside the

species range—HQlow, HQmed, HQhigh) regions. e Colonization

likelihoods calculated by SHIFT in a hundred years for a

historical migration rate of 50 km/century. f Colonization

likelihoods reclassified as low, medium and high (CLlow,

CLmed and CLhigh). g Combination of 3-class habitat quality

and 3-class colonization likelihood (d, f) to yield a 9-class

combined HQ–CL outputs. The classes that show favorable

combinations of habitat quality and colonization likelihoods are

the ones most likely to be colonized in the future (see Fig. 2 for

the reclassification scheme). The corresponding figures for the

CCSM4 RCP 4.5 mild scenario are in Supplemental Figs. S1 and

S2
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represented by each of the maps (Figs. 3, 4), along

with derived calculations and a brief synopsis of

interpretation (Table 2). These statistics provide a

means to compare among species and enable a

quantitative path to report trends and relationships.

Table 2A reports areas of suitable habitats for

shortleaf pine and sugar maple according to the

DISTRIB II model for (a) actual FIA, (b) modeled

current, (c) mild future scenario (CCSM4 4.5) and

(d) harsh future scenario (Hadley 8.5) for both the

source and the sink regions. We have classified the

abundance to three IV classes (AbunHigh ? HQHigh,

AbunMed ? HQMed and AbunLow ? HQLow) for the

source and sink region (Fig. 2) and also report the total

area of presence and absence for each. For example,

we know from the table that for the harsh scenario,

shortleaf pine’s combined source and sink habitat,

according to the modeled estimates for *2000,

increases from 652 to 2220 thousand km2 while sugar

maple’s shrinks from 1443 to 965. These modeled

Fig. 5 The combined habitat quality (HQ) and colonization

likelihood (CL) map reclassified to three classes (see Fig. 2) for

the harsh, Hadley-RCP8.5 and the mild, CCSM4-RCP4.5

scenarios for shortleaf pine and sugar maple. Notice that the

HQ–CLhigh, which depicts the area most likely to be colonized

due to the favorable combination of good habitats with high

likelihood of colonization, is confined to regions close to the

range boundary
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Table 2 Results from DISTRIB II, SHIFT, MODFACs for shortleaf pine and sugar maple are summarized. The layout of the table is

explained below the table

Shortleaf pine | Sugar maple

AbunHigh ? HQHigh AbunMed ? HQMed AbunLow ? HQLow Total Absent Figure

(1000 km2)

A. Suitable habitat (DISTRIB II)

FIA, *2000

Within boundary (source) 106 | 345 126 | 234 237 | 282 469 | 861 566 | 913 4 | 5a

Beyond boundary (sink) 0.4 | 0.3 0.3 | 0.2 2 | 0.2 2.2 | 0.7 3163 | 2454 4 | 5a

Total 106 | 345 126 | 234 239 | 282 471 | 861 3729 | 3367 4 | 5a

Modeled, *2000

Within boundary (source) 64 | 318 141 | 406 420 | 631 625 | 1355 368 | 349 4 | 5b, d

Beyond boundary (sink) 0.2 | 0.5 0.9 | 4.1 26 | 83 27 | 88 3139 | 2367 4 | 5b

Total 64 | 319 142 | 410 446 | 715 652 | 1443 3507 | 2716 4 | 5b

CCSM4 4.5, *2100

Within boundary (source) 200 | 112 461 | 626 241 | 527 903 | 1265 90 | 439

Beyond boundary (sink) 26 | 1 104 | 38 275 | 230 404 | 269 2762 | 2187

Total 226 | 113 565 | 665 516 | 757 1307 | 1535 2852 | 2625

Hadley 8.5, *2100

Within boundary (source) 488 | 79 318 | 214 137 | 555 942 | 848 50 | 912 4 | 5c

Beyond boundary (sink) 236 | 0 359 | 28 682 | 88 1277 | 117 1889 | 2283 4 | 5c, d

Total 724 | 79 677 | 242 819 | 644 2220 | 965 1939 | 3194 4 | 5c

B. Habitat ratios, 2100:2000

CCSM4 4.5 3.53 | 0.35 3.97 | 1.62 1.16 | 1.06 2.01 | 1.06

Hadley 8.5 11.3 | 0.25 4.76 | 0.59 1.84 | 0.9 3.41 | 0.67

CLHigh CLMed CLLow Total Figure

C. Colonization likelihood, 100 years (SHIFT)

SHIFT–sink region 163 | 83 230 | 166 755 | 530 1147 | 779 4f | 5f

(HQ–CL)High (HQ–CL)Med (HQ–CL)Low Total Figure

(1000 km2)

DISTRIB II ? SHIFT

CCSM4 4.5 17.9 | 2.2 110.0 | 15.8 186.6 | 89.9 314.5 | 107.9 6

Hadley 8.5 24.1 | 0.7 132.3 | 6.3 394.0 | 32.9 550.4 | 40.0 6

Total

D. Ratios of SHIFT:DISTRIB II (proportion of suitable habitat colonized)

CCSM4 4.5 0.78 | 0.40

Hadley 8.5 0.43 | 0.31

E. Modifying factors (MODFACs)

Key negative factors Shade intolerant; drought sensitive; insect pests|none

Key positive factors Habitat generalist|shade tolerant

Disturbance score 0 | 0.86

Biological score -0.97 | 1.34

Adaptability score 3.6 | 5.8
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changes are substantially less for the mild scenario

(Table 2A). Table 2 also provides links to the fig-

ures (Figs. 3, 4), from which the table values emanate.

Table 2B compares ratios of suitable habitat (com-

bined source and sink) in 2100 under the mild and

harsh scenario to that modeled in 2000, thus summa-

rizing whether the species showed increase ([1) or

decrease (\1) or roughly remained the same (*1).

Table 2C compares the CL by about 2100 for

SHIFT under the high, medium, and low CL classes

and also after combining the DISTRIB II and SHIFT

for the harsh and mild scenarios according to Fig. 3.

For example, the DISTRIB II ? SHIFT tables are

useful for gauging how much suitable habitat was

colonizable for the best scenario of (HQ–CL)High.

Note the small proportion of (HQ–CL)High relative to

total area of modeled suitable habitat for shortleaf pine

and especially sugar maple, reflecting in numbers what

we saw in the maps of Fig. 5.

Table 2D shows the proportion of suitable habitat

colonized under the two scenarios in the sink region

(Fig. 5). This ratio is much higher (0.78) for the harsh

scenario compared to the mild (0.43) for shortleaf

pine. This reflects the fact that for this warm-seeking

‘increaser’ species, more suitable habitat becomes

available in the eastern US under the warmer harsh

scenario compared to the mild. This trend is reversed

for sugar maple, which prefers cooler conditions (has

to migrate north of the border) and hence becomes a

‘decreaser’ in the eastern US under future warmer

conditions. The difference between the mild (0.40)

and the harsh (0.31) scenario is low for this species

because the habitat available for either scenario is not

significantly different inside the eastern US.

Table 2E summarizes the knowledge-based scoring

achieved by MODFACs by listing the key negative

and positive factors of the species as well the

disturbance, biological and adaptability scores.

Because sugar maple is shade tolerant, has high

biological score (1.34), and the impact of disturbance

is minimal, it scores quite high in the adaptability

index (5.8 within a range of 1.7–8.5). Therefore it can

Table 2 continued

Total

F. Interpretation

DISTRIB II Shortleaf pine: large increase in suitable habitat (2 9 with mild, 3.4 9 with harsh scenario)

Sugar maple: decrease in suitable habitat (1X with mild, -1.5 9 with harsh scenario)

DISTRIB II: SHIFT,

CCSM4

Shortleaf pine: 315 K of 404 K km2 (78 %) of new suitable habitat has some chance of colonization, though only

18 K of 404 K km2 (\1 %) has high likelihood of colonization in high quality habitats

Sugar maple: 108 K of 269 K km2 (40 %) of new suitable habitat has some chance of colonization, though only

2.2 K of 269 K km2 (\1 %) has high likelihood of colonization in high quality habitats

DISTRIB II: SHIFT,

Hadley

Shortleaf pine: 550 K of 1277 K km2 (43 %) of new suitable habitat has some chance of colonization, though

only 24 K of 1277 K km2 (\1 %) has high likelihood of colonization in high quality habitats

Sugar maple: 40 K of 117 K km2 (34 %) of new suitable habitat has some chance of colonization, though only

0.7 K of 117 km2 (\1 %) has high likelihood of colonization in high quality habitats

MODFACs Shortleaf pine: medium adaptability, models roughly acceptable as is

Sugar maple: high adaptability, models roughly acceptable as is

Overall Shortleaf pine will likely have increased habitat northward, and a reasonable portion of that could be colonized in

100 years. The HQ–CL regions especially in HQ–CLHigh, would also be first candidate places for assisted

migration, should that be desired. Best planting places would be in gaps where plenty of light is available and

where soil/site is not too droughty

Sugar maple decreases in habitat especially in the southern portion of its range. Only negligible portion of the

future available habitat is colonized because most of the future habitats are beyond the US border. Best planting

spaces will be in cool moist areas with partial shade

The table is divided into six sections (A–E) which progressively depict the results of DISTRIB II, SHIFT, DISTRIB II ? SHIFT and

MODFACs. Section A show areas statistics of source, sink and combined regions for the low, medium and high abundance classes.

Section B summarizes the increase/decrease ratios of habitats for the combined source and sinks between 2000 and 2100. Section C

reports SHIFT colonization likelihood areas under low, medium and high colonization likelihood classes. It also reports the areas of

the colonization likelihood of merged DISTRIB II ? SHIFT habitat classes (HQ–CL). Section D reports the proportion of

suitable habitat colonized. Section E summarizes MODFACs results. Section F gives a quick overview for managers. Refer to the

Fig. 2 for understanding how the various classes are assembled
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be expected to do better than modeled in DISTRIB II,

and do well in areas of high to medium suitable habi-

tats, as well as survive in lesser suitable habitats. On

the other hand, shortleaf pine has an adaptability score

of 3.6 indicating an average condition and no partic-

ular reasons for adjusting the DISTRIB II model

interpretations up or down. These adaptability inter-

pretations may provide users of the information a

quick way to assess if the model results are aligned

with MODFACs. If there are concerns, the manager

can use more information relevant to local conditions

to evaluate if further investigations are warranted.

We also include an interpretation (Table 2F) to help

managers obtain a quick assessment summary. More

broadly the species captured here are representative of

general patterns of our models for the eastern US—for

‘increasers’, the species will have sizable increased

habitat northward by 2100, and natural migration

could move the species, albeit slowly, northward. For

‘decreasers’, the possibilities are to shift north-west to

west, especially for species that extend beyond the US

border. Although SHIFT allows for the possibility of

southward migration, it is unlikely that the DISTRIB

II ? SHIFT combination will find favorable spots in

the trailing edge of the range. The mapped locations of

(HQ–CL)High are places with highest probability of

successful colonization within 100 years (Table 2C),

and could also be considered locations where assisted

migration of populations (close to current populations)

might be most successful, both ecologically and

socially. For example, it may be possible to identify

and link spatially disparate regions with promising

patches and corridors. We illustrate this possibility for

shortleaf pine (Fig. 6), where suitable combinations of

HQ and CL can be identified and used to locate the

most promising places to assist the migration of the

species, should society and management find it

desirable (Pedlar et al. 2012, Schwartz et al. 2012).

For decreasers like sugar maple, we can still track

areas outside the current range where possibility exists

for assisted migration. However, the focal areas to

consider climate change impacts for decreasers will

mainly be within their current range where habitat

contractions can take two forms, reduction in the

extent and suitability of habitat conditions. We have

used the optimistic historical migration scenario of

Table 3 Area colonized by SHIFT and DISTRIB II ? SHIFT under different migration constants under current and future climate

scenarios

Migration constant Area (km2) Approximate migration

rate (km/century)
SHIFT–sink region CCSM4 4.5 Hadley 8.5

Shortleaf pine

0.5 958.8 279.3 461.0 \25

1 1147.3 314.5 550.4 *50

1.5 1256.2 331.7 600.3

2 1331.3 342.9 635.0

2.5 1390.6 351.3 662.8

3 1437.4 357.3 684.7

3.5 1477.7 362.0 704.1

4 1512.3 365.8 720.2 [100

Sugar maple

0.5 623.1 85.3 31.6 \25

1 780.4 107.9 40.0

1.5 885.3 120.0 44.6

2 968.5 127.5 47.5

2.5 1037.5 132.5 49.4 *50

3 1099.2 136.6 51.2

3.5 1153.7 139.4 52.4

4 1200.5 142.0 53.8 [100

The corresponding maps are in Supplemental Figs. S3 and S4
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50 km/century for illustrative purposes; however,

SHIFT allows for a quick assessment of colonized

areas using migration rates below and above that

scenario by varying the migration/calibration constant

(Table 3; Supplemental Figs. S3, S4).

Limitations

Although our multi-staged approach minimizes some

of the limitations of general SDMs, it still carries

several assumptions. For example, DISTRIB II model

carries with it assumptions common to many SDMs -

but we have addressed some of the limitations

constraining colonization of suitable habitats via

SHIFT, and by using a data-driven multifaceted

approach (Iverson et al. 2011). We acknowledge that

combining models also may result in error propaga-

tion, but we minimize multiplicative errors by mod-

elling DISTRIB II and SHIFT separately (e.g., not

using output of DISTRIB II as input to SHIFT) and

only later combining the results.

By not explicitly incorporating spatial autocorrela-

tion (SAC), future climate predictions by DISTRIB II

may show larger range shifts compared to one that

incorporates SAC (Crase et al. 2014, Miller et al.

2007). Comparison of geographic spatial trends

among different species showed that the effect varies

with species; species having a northern boundary that

varies in a definite latitudinal manner shows more

SAC effects as compared to species that are dispersed

widely.

We also do not account for intraspecific variation in

this approach—which becomes important for species

which span large north–south areas. A more compre-

hensive approach that accounts for this within-species

variation along climatic gradients is under consider-

ation, which will address this increasingly important

aspect of the species distribution (Prasad 2015).

Discussion

A synthetic approach that progressively utilizes

different types of models as well as a knowledge-

based system is a useful way to address current as well

as future threats to forested ecosystems. There are

Fig. 6 The habitat-quality

and colonization-likelihood

combination can depict

locations where there is a

higher likelihood of

colonization. For shortleaf

pine, areas suitable for

managed relocation can be

gauged by looking at the

combinations of favorable

habitat quality with a higher

likelihood of colonization as

shown in the zoomed area.

The areas depicted as

favorable can be analyzed

further for suitability based

on local conditions
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inherent limitations and bottlenecks in all types of

models—each relevant in a subset of complex situa-

tions. Therefore, instead of vainly trying to achieve a

one-type-fits-all model, we prefer to leverage the

strengths of various approaches at different scales to

address the pressing issues that confront forest man-

agers today. There is increasing acknowledgement for

the need of a synthetic approach that blends observa-

tions, experiments, and narratives, along with statis-

tical, simulation, and conceptual models (Bowman

et al. 2015).

In this paper, we focused our description to two

species to highlight components and linkages of the

approach for species whose ranges are within (short-

leaf pine) and extend outside (sugar maple) the eastern

United States. Work to extend this approach to the rest

of the tree species (134 in the eastern United States), is

underway. The difficulty of using SHIFT for species

whose range is further north is mainly due to the lack

of consistency in inventory data across the US-Canada

border, although certain areas beyond the current

range within the US can be assessed for most species.

By distinguishing the source region to be within the

current range boundary and sink region beyond the

species boundary, we were more clearly able to

demonstrate the importance of a complementary

modeling framework. Key to this approach is the

definition of the range boundary. Little (1971) has

published the most widely used boundaries for North

American species, but these data are now quite old and

inventories have since become more comprehensive

though still spotty where percent forest is low (such as

highly agricultural regions of the Midwestern U.S.). In

our case, we expand and shrink the range boundary to

conform more closely to the FIA plot data and identify

a core region beyond which the species could colonize

via a generalized species boundary approach (Peters

et al. 2013b).

In spite of the optimistic assumption of 50 km/cen-

tury migration rate and the fact that after colonization,

establishment rates can still be low due to competitive

exclusion (Thuiller et al. 2008), the rate of decline

with distance is still steep and casts doubt whether the

dispersal ability of species can compensate under

current fragmented landscapes. Migration rates may

vary between wind and animal dispersed seeds,

although based on the paleoecological literature

(Portnoy and Willson 1993; Higgins et al. 2003),

SHIFT assumes no such differences. However, SHIFT

allows us to account for historical dispersal rates from

\25 to [100 km/century using minimal computing

time (using convolution based Fast Fourier Trans-

forms—see Prasad et al. 2013) which enables us to

explore a range of historical migration rates and pick

the most suitable one of the species based on dispersal

mode or other information (Table 3; Supplemental

Figs. S2, S3).

One of the advantages of our approach is the ability

to target areas where the species have the highest

probability of colonization based on the combined

information provided by DISTRIB II’s suitable habi-

tats and SHIFT’s colonization likelihoods. This com-

bined information can be used to assess favorable

areas for managed relocation if the situation is of

merit.

Another use of our approach is to assess a more

realistic mapping of future forest types by taking into

account that increases in potential suitable habitats do

not translate to colonization of these habitats. Even

though exploring the establishment likelihood of the

colonizable habitats is beyond the scope of our current

macroscale approach, some of the dynamics involved

in the modeling of forest types can be modified by the

MODFACs scoring system. For example, shortleaf

pine is an important component of the loblolly-

shortleaf pine and oak-pine forest types. Of these

two, the oak-pine forest type shows large increases in

suitable habitat in the north if the DISTRIB II model is

used in isolation (see: http://www.nrs.fs.fed.us/atlas/

tree/ft_summary.html). However, with SHIFT, the

CLs of the habitats beyond the first 10–20 km or so are

rather low, dampening the possibility of large increa-

ses in oak-pine forest type under future climates.

When we combine this knowledge with MODFACs,

we know that at a regional scale, disease, insect and

biotic interactions can still modify outcomes that

could give competitive advantage to some species

(Nowacki and Abrams 2008). A similar approach can

be taken to evaluate the role of sugar maple in the

maple-beech forest type.

Outputs of our approach can also be assembled to

develop risk matrices that can help managers quickly

identify species at risk and prioritize management

strategies (Iverson et al. 2012). It would be fruitful to

examine the results of our approach with other types of

models utilizing different techniques. For example,

simulation of migration can be achieved via cost-

distance based models using constrained random-walks
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to limit the migration of the species. Comparison with

different modeling techniques allows assessment of

where they agree and disagree and the reasons why. A

companion study is underway which compares outputs

from this approach to outputs from LINKAGES and

LANDIS Pro for several regions of the eastern US, as

part of vulnerability analyses for the Central Hard-

woods (Brandt et al. 2014), Central Appalachians

(Butler et al. 2015), Mid-Atlantic (Butler, in prep),

and New England (Janowiak, in prep). Early results

show that the DISTRIB outputs are similar to

LINKAGES at year 2100 and LANDIS Pro at year

2300 (allowing for succession and some migration to

occur) (Iverson, personal communication).

In summary, our multistage approach can leverage

the strength of different models and narratives, in

order to build a decision support system that is

hopefully useful to forest managers dealing with

multiple issues of climate, land-use and other biotic

stressors.
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Thuiller W, Albert C, Araújo M, Berry PM, Cabeza M, Guisan

A, Hickler T, Midgley GF, Paterson J, SchurrFM, Sykes

MT, Zimmermann NE (2008) Predicting global change

impacts on plant species’ distributions: future challenges.

Perspect Plant Ecol Evol Syst 9:137–152

Warren D (2012) In defense of ‘‘niche modeling’’. Trends Ecol

Evol 27:497–500

Wiens JA, Stralberg D, Jongsomjit D (2009) Niches, models,

and climate change: assessing the assumptions and uncer-

tainties. Proc Natl Acad Sci USA 106:19729–19736

Woudenberg SW, Conkling BL, O’Connell BM, LaPoint EB,

Turner JA, Waddell KL (2010) The Forest Inventory and

Analysis Database: database description and user’s manual

version 4.0 for Phase 2. Gen. Tech. Rep. RMRSGTR-245,

p. 336. U.S. Department of Agriculture, Forest Service,

Rocky Mountain Research Station, Fort Collins

Yansa C (2006) The timing and nature of Late Quaternary

vegetation changes in the northern Great Plains, USA and

Canada: a re-assessment of the spruce phase. Quat Sci Rev

25:263–281

2204 Landscape Ecol (2016) 31:2187–2204

123

http://prism.oregonstate.edu
http://prism.oregonstate.edu

	A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system
	Abstract
	Context
	Objective
	Methods
	Results
	Conclusion

	Introduction
	Methods
	The multi-stage combination approach
	DISTRIB II model
	SHIFT model
	MODFACs---knowledge-based scoring system

	Results
	Limitations

	Discussion
	Acknowledgments
	References




