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Tree biomass is typically estimated using statistical models. This review highlights five limitations of most tree
biomass models, which include the following: (1) biomass data are costly to collect and alternative sampling
methods are used; (2) belowground data and models are generally lacking; (3) models are often developed from
small and geographically limited data sets; (4) simplistic model forms and predictor variables are used; and (5)
variation is commonly averaged or grouped rather than accounted for. The consequences of these limitations
are highlighted and discussed. Several recommendations for future efforts are presented including the following:
(1) collection of field measurements of tree biomass using consistent protocols; (2) compilation of existing data;
(3) continued evaluation and improvement of existing models; (4) exploration of new models; and (5) adoption
of state-of-the-art analytical and statistical techniques. Given the increasing importance of accurately estimating
forest biomass, there is a critical need to understand, evaluate, and improve current tree biomass prediction
methods.
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M easuring the status of and change
in forest biomass (total dry organic
matter) is critical to the establish-

ment of sound national policies regarding the
management and care of forest resources across
large spatial scales (McKinley et al. 2011). The
status of and change in forest resources are af-
fected by a suite of human activities and
ecological conditions. Forest growth, natural
disturbances, and management actions are

among the factors that influence the amounts
of forest biomass and carbon on landscapes
and their changes over time (Powell et al.
2014). Relevant human activities include
land-use conversion, greenhouse-gas-related
climate change, and the introduction of non-
native and invasive species (Thompson et al.
2009). Key natural disturbance agents include
fire, insects, pathogens, and wind (Environ-
mental Protection Agency 2013).

Over time, the effects of both human
activities and natural agents may change.
For example, Dale et al. (2001) suggested
that the intensity, timing, and duration of
forest disturbances are being affected by a
changing climate. In addition, recent policy
and market shifts have influenced the
amount and type of forest material harvested
as well as how that material is used (Guo et
al. 2011, Sikkema et al. 2011). Conse-
quently, accurate monitoring of forest bio-
mass is an important part of programs tasked
with ensuring long-term viability and sus-
tainability of forest resources on regional to
national and international scales, particu-
larly when it comes to carbon and green-
house gas accounting (Miner et al. 2014).
Monitoring can also aid in understanding
the implications of policy actions, changes
in demands on raw materials, and how cli-
mate change may affect sustainability (Bird-
sey et al. 2006). For example, recent con-
flicting reports on forests as significant
carbon sources versus sinks (McKinley et al.
2011) are probably influenced by the qual-
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ity, scale, and scope of the data used (e.g.,
Hayes et al. 2012). Similarly, recent findings
about the rate of carbon accumulation in
large trees were based almost entirely on pre-
dictions from biomass models developed
with data from comparatively small trees
(Stephenson et al. 2014).

Lu (2006) identified three inventory
data types for forest biomass estimation:
ground-based inventory (e.g., Pan et al.
2011); inventory via remote sensing (e.g.,
Tollefson 2009); or a combination of both
methods (e.g., Ducey et al. 2009). Tradi-
tional field-based measurement methods,
i.e., forest inventories, are considered to be
more accurate than remote-sensing based es-
timates, as long as sample sizes are suffi-
ciently large. Remote sensing can be more
cost-effective, especially over large areas in-
cluding rugged or inaccessible terrain. Re-
gardless of the data collection method, accu-
rate tree- or stand-level models are necessary
to translate field measurements or remotely
sensed data into estimates of forest biomass.
The most commonly used models rely on
traditional forest inventory measurements,
such as tree dbh and total height, as predic-
tors in equations that estimate tree biomass.
Tree-based estimates are then summed on
inventory plots and applied to larger land
areas using probability and area-based ex-
pansion factors. Tree carbon is commonly
assumed to equal one-half of tree dry mass
(Lamlom and Savidge 2003). This simple
assumption can result in systematic biases of
approximately 1.6–5.8% with variation at-
tributable to a range of sources (Thomas and
Martin 2012).

Ver Planck and MacFarlane (2014) de-
fine three major methods for estimating tree
biomass: direct estimation of tree biomass
from predictor variables; estimation of bio-
mass from tree volume; or simultaneous es-
timation of both biomass and volume. Di-
rect prediction of biomass is probably the
most accurate, but involves the costly pro-
cess of felling and weighing of trees of differ-
ent sizes and species to generate the data.
Further, as in any model-based estimation
scheme, it assumes the relevant properties
(size, density, and form) of the trees selected
in developing prediction equations are rep-
resentative of the larger populations for
which predictions will be made. Translating
stem volume inventory data to biomass is
accomplished through some form of bio-
mass expansion factor, assuming a constant
or variable density within trees and between
species (Domke et al. 2012). The latter

method is cost-efficient but may be subject
to errors if the density conversion factors are
inaccurate. The simultaneous method seeks
to avoid such errors by accounting for the
variation in both volume and wood den-
sity in tree models (Ver Planck and Mac-
Farlane 2014). Regardless of the method,
empirical data are needed to calibrate and
test models.

Because tree biomass models are ap-
plied at different spatial scales including lo-
cal (e.g., Nelson et al. 2014), regional (e.g.,
Jenkins et al. 2004), national (e.g., Jenkins et
al. 2003), and international (e.g., Pilli et al.
2006) scales, application of these models to
populations other than the ones for which
they were developed can result in significant
errors, some reportedly as high as 240%
(Wang et al. 2002, Nelson et al. 2014). Such
errors are further compounded when com-
bined with the measurement and sampling
errors inherent in any field-based or remote
sensing-derived inventory data. In some
cases, sampling and measurement errors
may even exceed the size of errors caused by
extrapolation (e.g., Ståhl et al. 2014).

This article reviews important limita-
tions for accurately estimating tree biomass
from forest inventory data and proposes
strategies for improving methodologies. We
hope to communicate the importance and
relevance of these estimates to a broad audi-
ence ranging from forest managers to poli-
cymakers, planners, and investors, along
with various other stakeholders, across both
private and public sectors. Recently, the For-
est Inventory and Analysis (FIA) program of
the US Department of Agriculture (USDA)
Forest Service, which is responsible for esti-

mating the amount of carbon stored in US
forests, changed the methodology used to
estimate forest biomass. This change consid-
erably reduced the national estimate of for-
est carbon stocks (Domke et al. 2012),
which has significant financial implications
(Box 1). Large changes in estimates result-
ing from changes in methodology are not
uncommon and should not be surprising
because the various sources of uncertainty
associated with estimating tree- and for-
est-level biomass and carbon are rarely
fully accounted for.

In particular, this article is focused on
the application of tree-level biomass equa-
tions to large, national-scale inventories like
the FIA in the United States. National-scale
estimates of forest biomass require accuracy
in two key components. One is the extensive
network of field-based inventory plots
linked with remote sensing data for scaling
to landscape levels. The other is the method
for translating inventory measurements into
estimates of tree volume, biomass, and car-
bon contents. Considerable attention has
been given to inventory design, for example,
the US FIA program characterized toler-
ances and allowable errors in measurements
and inventory estimates in great detail (Gil-
lespie 1999, McRoberts 2005, Pollard et al.
2006). However, much less attention has
been given to reviewing the characteristics of
data and models that transform inventory
data into quality estimates of forest biomass
(Sileshi 2014) and carbon (Thomas and
Martin 2012). Although quantifying the
carbon contents of standing trees is impor-
tant and deserving of attention, this review
focuses primarily on biomass estimation be-

Management and Policy Implications

Forest biomass and carbon are becoming central themes for both management and policy decisions, given
the increasing interest in biofuels, greenhouse gas neutrality, and carbon sequestration. For example in
the United States, the Environmental Protection Agency is mandated to report an annual national
greenhouse gas inventory to the United Nations, which includes estimates of forest carbon stock changes
over time, both for those that release CO2 and for those that sequester it. Biomass inventories are also
used by industrial manufacturers of forest products and bioenergy for assessments of resource availability
and location of production facilities. Typically these estimates are generated by using models to convert
forest inventory data into tree biomass and carbon, but the limitations of these models are rarely
acknowledged or fully understood. This review highlights some of the key limitations of the estimation
process and provides suggestions for future efforts concentrated on improving estimation of tree biomass.
In general, better quantifying tree biomass will help improve forest management and policy decisions.
Providing better information and educating model users should prevent some incorrect applications in
scenarios where they may not be well suited. Better information should lead to more credible applications
of tree biomass models to real-world problems.
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cause of its essential role in carbon assess-
ments and because reviews of carbon con-
tent in wood and other tree tissues have been
presented elsewhere (e.g., Lamlom and
Savidge 2003, Thomas and Martin 2012).
Temesgen et al. (2015) present a detailed
review and assessment of tree-level biomass
models.

Major Limitations
Notable limitations in common esti-

mation techniques for tree biomass can be
expressed in terms of four tree mass deriv-
atives: (1) volume, (2) density, (3) bio-
mass, and (4) carbon (Table 1). For dis-
cussion, these limitations can be generally
categorized as the following: (1) tree bio-
mass data are costly to collect and employ
a variety of sampling methods for estimat-
ing total biomass and its components,
which may not be compatible; (2) below-
ground data and models are generally lack-
ing, and certain relationships must be as-
sumed; (3) models are developed from
small and geographically limited data
sets; (4) simplistic model forms and pre-
dictor variables are used; and (5) variation
across forest subpopulations is averaged or
grouped rather than explicitly accounted
for. These limitations are discussed below
and have important implications for esti-
mating forest biomass and carbon.

Data Limitations
Collection of tree biomass data is diffi-

cult, expensive, and time-consuming, be-
cause it requires the felling of trees for de-
tailed measurement (Figure 1). Sample trees

must be sectioned into their components in-
cluding foliage, branches, wood, bark, and
belowground tissues. Finally, sample tissues
must be collected, weighed, and analyzed to
determine properties such as moisture con-
tent and density that are needed to quantify
the total biomass contents. As a result of the
effort required to collect sample data, along
with structural differences in different types
of trees, felled-tree studies often vary in how
they actually sample for biomass. Even in
felled-tree studies, data collection schemes
often differ in terms of the measurements
made, types and amounts of tissues col-
lected, and analyses used. These differences
lead to contrasting levels of accuracy in the
biomass data collected (e.g., Schlecht and
Affleck 2014), particularly for foliage (Te-

mesgen et al. 2011) and belowground tis-
sues, which can both be prohibitively expen-
sive to collect and analyze. Because of the
varying moisture content in different tissue
types (Shottafer and Brackley 1982) and the
dynamic nature of moisture content over
time, tree weights are commonly recorded in
terms of dry biomass rather than green
weight, with the former sometimes referred
to as “oven-dry” or “bone-dry” weight and
the latter sometimes called “fresh” weight.
To obtain both green and dry weights along
with the often-needed conversion factors be-
tween the two, sample specimens must be
weighed immediately after felling and again
after oven-drying.

For some tree components, especially
bolewood, standardized methods exist for

Table 1. Summary of key limitations associated with tree biomass and carbon modeling in comparison to bole volume and wood
density modeling efforts.

Limitation Tree biomass Tree carbon Tree bole volume Wood density

Sampling methods Highly varied and not all
components are consistently
measured

Infrequent and only select
components are measured
(e.g., foliage)

Standardized methods with volume
generally derived from multiple
stem diameter and height
measurements

Standardized methods that differ
in resolution (whole-tree
versus disc versus ring) and
basis (green or dry)

Data scope Generally small and geographically
limited data sets

Very limited Generally large and geographically
extensive data sets available, with
limitations in some regions

Smaller than tree volume, but
more extensive than tree
biomass and carbon

Belowground Rarely available; multiplier approach
(belowground weight � 0.3 �
aboveground weight)

Rarely included in measurements Stump weight information seldom
collected

Rarely considered

Modeling considerations Relatively simple model forms that
are primarily a function of tree
dbh and height

Conversion factor approach
(carbon weight � 0.5 � dry
weight)

Varied, sometimes complex
equations that use both dbh and
height along with some other
variables (e.g., form factor)

Average values by species with
detailed equations relatively
rare

Grouping variation Common groupings include
multiple sites or species to
increase sample size and simplify
application

Routinely assume fixed value
(0.5) for all species and
components

Often species- and region-specific;
some grouping of species to
simplify application

Species specific with some
geographic differentiation

Box 1. Economic Significance of Accurate Forest Carbon Stock Estimation.
In 2012, forested lands in the United States sequestered 866.5 Tg of CO2e (Envi-

ronmental Protection Agency 2014). Given an average value of $7.8 per ton of CO2e for
forest carbon offsets in 2012 (Peters-Stanley et al. 2013), this has an approximate financial
value of $6.7 trillion. In this context, an apparent 16% decrease in US forest carbon
stocks, associated with moving from one estimation method to another (as observed by
Domke et al. 2012), might represent a $1 trillion change in value. In contrast, the total
annual budget for the USDA Forest Service FIA program charged with reporting this
carbon pool in 2012 was about $69.1 million, with only a small fraction devoted to the
national greenhouse gas inventory (USDA Forest Service 2013). It is important to note
that the magnitude of this disparity depends on the value of carbon, and the assumed $7.8
per ton of CO2e is likely on the low end. For example, a mean price of $13.55 per ton of
CO2e with a range between $11.34 and $50.00 per ton of CO2e was recently observed at
a California Air Resources Board quarterly auction in May 20141 and future projections
show additional increases in value. In contrast, the USDA Forest Service FIA budget in
2013 actually decreased by 5% from the previous year with a concomitant limitation on
staffing for improving estimation of forest carbon and greenhouse gases.
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collecting volume, weight, and density data
(Table 1), making reliable determination of
inside-bark green weight, biomass, density,
and moisture content relatively straightfor-
ward. Although there are multiple ways to
determine the density of wood specimens,
they are not all equal in terms of their accu-
racy or even the basis for how “density” is
defined (Williamson and Wiemann 2010).
A commonly used alternative is to adopt
published values of wood and bark densities
and other wood properties from standard
reference materials (Miles and Smith 2009,
Forest Products Laboratory 2010) to obtain
biomass information from volumetric mea-

surements. This can result in significant bi-
ases (e.g., Mavouroulou et al. 2014) because
wood properties can vary widely both within
and among trees of the same species (e.g.,
Jordan et al. 2008), in some cases related to
site, genetic, or silvicultural effects (e.g., Ta-
sissa and Burkhart 1998). Systematic varia-
tion in wood properties has also been noted
across geographic gradients in some species
(Chave et al. 2009).

Volumes for components such as branches
can be particularly difficult to estimate and
can have densities that are distinctly differ-
ent from that of the stem (Swenson and En-
quist 2008). A similar statement can also be

made for roots (see below). In summary,
sampling for tree biomass is an expensive,
difficult, and tedious process with a variety
of approaches used. This introduces un-
known uncertainty into estimates of tree
biomass and effectively limits sample sizes.

Lack of Belowground Measurements
and Models

Prediction of belowground biomass
still remains problematic and difficult. Only
8% of the 607 models reviewed in Zianis et
al. (2005) provided predictions of total root
biomass. Given the expense and level of er-
ror in collecting this information, the rela-
tive lack of models for the majority of spe-
cies, and the overall importance of this
biomass pool, an alternative approach is of-
ten needed. For example, a linear relation-
ship between stand total aboveground and
belowground biomass (e.g., Ranger and
Gelhaye 2001) or aboveground net primary
productivity and total belowground carbon
flux (e.g., Litton et al. 2007) has generally
been found useful. Similar linear and posi-
tive relationships for fine root and foliage
biomass may also exist (e.g., Vanninen and
Mäkelä 1999). These relationships would
probably hold at the tree level and could be
constrained to ensure compatibility (e.g.,
Chojnacky et al. 2013). At the tree level,
Enquist and Niklas (2002) indicated that
the relationship between aboveground and be-
lowground biomass scale universally irrespec-
tive of species, ecological factors, and plant
height. However, these relationships need to
be further evaluated, which will be rather dif-
ficult and costly to accomplish.

Beyond the difficulty of sampling be-
lowground biomass, its relationship to
aboveground biomass may be governed by
factors that are not commonly included in
the estimation process. For example, Rus-
sell et al. (2015) recently found a system-
atic bias in estimating belowground bio-
mass using a static equation and suggested
that climatic information be used to ad-
just estimates. This type of approach will
probably become more important as cli-
mate change has the potential to alter as-
sumed tree form relationships (Box 2).
Consequently, estimates of belowground
biomass will continue to be an important
source of uncertainty in forest-level esti-
mates of total biomass or carbon.

Limitations in Data Scope
The significant cost and effort re-

quired to obtain field measurements of

Figure 1. USDA Forest Service measurement specialists weighing stem sections at a Check-
Cruiser workshop on the Tahoe National Forest in California, October 2014. Photo by Ruth
Rieper.
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Box 2. Tree Volume Estimation in the Context of Contemporary and Projected Future Climates.
Given that climate is one factor that affects tree form and function, changes in climate could broadly influence tree form and, hence,

tree biomass and carbon. Currently, each individual tree sampled by the FIA program is assigned to a volume model based on its region
(Woodall et al. 2011), which is then translated into total tree biomass and carbon. At present, there are more than 20 unique volume
modeling regions in the United States that generally follow political (e.g., southern states) and geophysical (e.g., eastern versus western
Cascades) boundaries, with regions spanning 1–10 Köppen climatic zones (Rubel and Kottek 2010) (Figure B1). Projecting Köppen
climatic zones in the years 2076–2100 (A1F1 climatic scenario) (Intergovernmental Panel on Climate Change 2013) suggests that a
majority of volume modeling regions will contain novel climates (Figure B1). Volume modeling regions across the Rocky Mountains may
have up to four novel climates within their boundaries, whereas the eastern Cascades and central/northeastern states are projected to have
no novel climates. Changes in the frequency and types of tree injury (e.g., top damage, breakage) as well as shifts in tree allometry can be
anticipated in response to these and other projected climate changes across the United States (Melillo et al. 2014). As such, tree height,
vigor, and form should be measured to reduce the uncertainty associated with tree volume, biomass, and carbon in a changing climate.

Figure B1. FIA volume model regions with the number of contemporary (1976–2000) (top) and projected novel (2076–2100, A1F1
scenario) (bottom) Köppen climatic zones occurring within each volume model region.
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tree component weights dictate that data
sets are often limited in size and scope. For
example, Zianis et al. (2005) found that
more than 75% of biomass studies in Eu-

rope had sample sizes of fewer than 50
individual trees. This affects the suitability
of the data for developing models to be
applied over large spatial domains. In the

United States, the mean sample size for
2,642 biomass equations summarized by
Jenkins et al. (2004) was 41 individual
trees. Nearly half of the studies had sample
sizes of 20 trees or less, mainly because
they were intended for local use in specific
stands or under a narrow range of condi-
tions. As a result, many biomass studies
focused on small geographic areas (Figure
2) with samples spanning a narrow range
of tree sizes, species, or growing conditions
(Figure 3). Subsequent needs for regional and
national scale estimators motivated the appli-
cation of local-scale equations or data to geo-
graphically broader scopes (Jenkins et al. 2004,
Chojnacky et al. 2013). As a result, studies are
often limited to specific geographic areas (Fig-
ure 2) and do not cover a full range of observed
tree diameters (Figure 3).

Because the costs of felling, measuring,
and collecting specimens on trees grows rap-
idly with tree size, relatively few studies have
looked at trees larger than approximately 50
cm dbh, despite the potentially important
roles of large trees in estimating forest-level
biomass stocks. Any large trees measured
probably exert undue influence in tree bio-
mass equations, especially at the upper end

Figure 2. Map showing the species range of red maple (Acer rubrum L.), current estimated
red maple biomass based on 2007–2011 USDA FIA plots, and the location of compiled
felled tree biomass legacy data sets by sample size.

Figure 3. Relative distributions of observed dbh (cm) based on the 2007–2011 USDA FIA national inventory (black line) and a compiled
felled tree biomass legacy database (gray line) for four common species groups. Note that the gray line rarely fully overlaps the black line
and does not extend to the largest dbh classes.
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of the range in tree sizes where any predic-
tions are made. Further, trees that appear to
be healthy, sound, and of good form are
much more frequently selected in model-de-
velopment samples than trees that are un-
healthy, have signs of decay, or exhibit poor
form. Interestingly, Westfall (2008) found
that a field estimate of percent cull in a stem
was the most important factor influencing
observed differences between measured and
predicted stem volume. A similar conclusion
would probably extend to tree biomass esti-
mates derived from tree volume without ac-
counting for missing or decaying volume.
Taken together, these factors suggest that
many biomass equations will perform poorly
when applied to populations that are
broader than the sample tree collections
from which they were developed, which will
generally be the case.

Modeling Considerations
Major limitations in tree biomass

model development are the cost and feasibil-

ity of tree measurements as described above
and limitations on model form, with the lat-
ter in part being constrained by the former.
Sileshi (2014) recently provided a detailed
critical review of these modeling consider-
ations; only the most relevant issues are dis-
cussed here.

Because of the strong nonlinear rela-
tionship between biomass and tree dbh and
the ubiquity, low cost, and accuracy of mea-
suring dbh, the majority of biomass models
are formulated as a simple power function,
biomass � aDBHb, with a and b being co-
efficients or a linearized version employing
logarithmic data transformations of mass
and dbh with the latter introducing transfor-
mation bias. Zianis et al. (2005) found that
more than two-thirds of the European bio-
mass models they examined were solely a
function of dbh. Although dbh is well cor-
related with tree height and volume, the use
of dbh alone assumes that the underlying
allometric relationships are static, which is

often not the case, especially when spatial
scale is increased and managed stands are
included. Ducey (2012) recently found evi-
dence against the notion of a universal scal-
ing exponent governing the relationship be-
tween tree dbh and height for 86 species in
the northeastern United States where
there was considerable variation in diam-
eter-height relationships between species
and geographic locations. Nonetheless,
the added expense and uncertainties asso-
ciated with tree height measurements as
biomass model predictors may negate any
gains in predictive accuracy, especially
when models for use over a narrow range
of conditions are developed (Temesgen et
al. 2015).

Including additional variables in bio-
mass prediction equations can improve
model precision, but it also increases the cost
of both model development and subsequent
forest inventory. Because the predictors in a
volume or biomass equation (the variables
measured and to be entered on the right-
hand side of the equation) have a direct im-
pact on the cost of the inventory effort, a
tradeoff between accuracy and affordability
exists. When planning inventories, this
tradeoff must be considered in the selection
of an appropriate equation (Packard and
Radtke 2007). Lambert et al. (2005) found
that including tree height measurements in
forest inventories allowing for tree volume
in addition to dbh typically reduces the root
mean squared error of total tree biomass pre-
dictions by approximately 8 and 25% for
hardwood and softwood species groups, re-
spectively. Goodman et al. (2014) found
that using crown radius in addition to dbh
and height further reduced a bias by 11–
14% for total aboveground biomass. These
or other additional predictors could be even
more important in the estimation of the var-
ious components of biomass, given the gen-
erally poor relationship between dbh and
biomass component fractions (Figure 4).
More recently suggested predictors of tree
biomass components, such as the diameter
of the largest branch in a tree, put forward by
MacFarlane (2011) as a promising predictor
of branch volume and mass, need to be fur-
ther evaluated. More accurate prediction of
tree biomass components should not only
improve tree biomass estimation but also
improve understanding of the proper utili-
zation of tree biomass (Ver Planck and Mac-
Farlane 2014).

Figure 4. Comparison of observed proportion of total biomass by component including
foliage (a), branch (b), and bole (c) for loblolly pine (Pinus taeda L.) and red maple (Acer
rubrum L.) with a lowess regression fit by species. Observations were obtained from a
compiled database of existing tree biomass data collected in the United States.
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Grouping Variation
Variation in tree biomass and its alloca-

tion to components is commonly found in
comparisons among individuals, stands,
geographic regions, and species. However,
despite many of the issues identified above,
it is common to group disparate observa-
tions to increase sample size and reduce
complexity. For example, the total aboveg-
round biomass estimators intended for the
US national inventory classify all tree species
into 10 distinct groups, whereas the sub-
models for estimating the various biomass
components only distinguish between hard-
wood and softwood species (Jenkins et al.
2003). The latter were recently revised to
include 35 distinct groupings based on tax-
onomy and wood specific gravity (Cho-
jnacky et al. 2013), but yielded estimates
similar to the those for the initial Jenkins et
al. (2003) approach when applied to the
larger population.

Species groupings and other forms of
aggregation can be advantageous because in-
creased sample sizes generally allow for more

accurate characterization of the relationships
between standing tree dimensions and vol-
ume or biomass. However, as the amount of
grouping increases, the accuracy of predic-
tions for various subpopulations is likely to
decrease, particularly when the various com-
ponents of aboveground biomass are exam-
ined. For example, a model fitted to data
from all pine (Pinus) species may provide
adequate predictive accuracy across all pines
but may behave poorly for any particular
pine species. This example is illustrated in
Figure 5 where a model (red line) is fitted to
data combined from several softwood genera
(top, left), another model (black line) is fit-
ted to the single genus Pinus (middle, left),
and a third model (gray line) is fitted to the
single species loblolly pine (Pinus taeda L.)
(bottom, left). The three models all diverge
over some portion of the range of data
shown, a pattern also noted for models fitted
to several hardwood genera (top, right), the
genus Acer (middle, right), and the species
red maple (Acer rubrum L.) (bottom, right;
Figure 5). Assuming that the species models

(gray lines) are the most accurate for loblolly
pine and red maple, in the bottom left and
right panels (Figure 5), respectively, using
either of the softwood/hardwood or genera
models will result in biased predictions for
either of these species, which can be quite
significant when scaled to a landscape level.

With questions of precision and accuracy
aside, the primary driver for creating groups is
usually cost. It is rare that financial resources
exist to obtain sufficient samples by species
across large areas such that the numerous
sources of variation can be assessed. Often, em-
pirical relationships such as biomass are
grouped by species characteristics such as
shade tolerance, evergreeness, and wood den-
sity, but these factors usually explain a limited
amount of the variation at the individual level
(e.g., Ducey 2012). In contrast, comparable
results can be obtained from using species
groups compared with a species-specific ap-
proach if these models are applied at rather
broad geographic scales and there is a strong
underlying relationship (R2 � �0.95)
(McRoberts and Westfall 2014). However,
McRoberts and Westfall (2014) made this
conclusion based on examining the variation
in the prediction of stem volume and not tree
biomass, which could be much more variable
for all the reasons given above.

Implications for Prediction of Forest
Biomass and Carbon

Each of the limitations described above
has a significant influence on how and where
tree biomass and carbon prediction models
can be applied. For example, a common ap-
plication of tree biomass equations is to es-
timate aboveground net primary production
(ANPP) using forest inventory data. In this
application, ANPP is estimated by applying
biomass prediction equations to inventory
data collected at two points in time (e.g.,
Lavigne et al. 2005) and subtracting to ob-
tain an estimate of the biomass accumulated
per unit area, per year. Especially for shorter
intervals (�5 years), this approach can be
rather problematic because the prediction
errors at either measurement point are likely
to be greater than the actual biomass change.
Thus, estimated trends in ANPP might sim-
ply be due to the choice of model and the
scope of data used in its development.

Another major problem is that equa-
tions for some species or geographic regions
are simply not available where they are
needed. In such cases, practitioners are faced
with choosing the best available equation,

Figure 5. Influence of grouping by taxonomy, genus, and species on the relationship
between total aboveground dry biomass (kg) and dbh (cm) based on a compiled database
of existing tree biomass data from the United States.
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despite having limited information available
that could be used to choose between alter-
native models. Appreciable error can result
from this and other forms of model extrap-
olation. To address this limitation, model
averaging of disparate equations may be
used (e.g., Picard et al. 2012), but it does not
address the larger issues of sparse observed
values or assessments of prediction bias. A
related concern is that the predicted values
of forest biomass, whether for single trees or
for areas of interest as large as states or na-
tions, are generally reported without any
statement of their estimated uncertainty.
This is particularly problematic when the
predictions are based on model averages or
pseudodata (see the cover of Jenkins et al.
2004) because the uncertainty of such pre-
dictions would probably be larger than that
in applications for which statistical models
were available.

In summary, limitations in existing bio-
mass models, data sets, and estimation pro-
cedures hinder the ability to provide accu-
rate and consistent assessments of forest
biomass and its changes over time. Consid-
erable knowledge exists for leveraging future
research and development aimed at reducing
these challenges; however, given the com-
plexity and breadth of the problem, a plan of
action is warranted. Future advances should
address current limitations facing biomass
estimation at the regional and national scales
without succumbing to pitfalls that have af-
fected some past efforts. With these goals in
mind, the following recommendations are
presented for ongoing and future efforts that
aim to address knowledge gaps in the prac-
tice of estimating whole-tree biomass for re-
gional and national assessments.

Recommendations
Moving forward, it is critical to recognize

and understand the current limitations of in-
dividual tree biomass models as outlined above
and by Temesgen et al. (2015). An ideal solu-
tion to this issue will probably never emerge,
but recommendations for future efforts in-
clude the following (in order of importance):

1. New regional or national efforts to col-
lect biomass data in a consistent manner
are necessary worldwide. Although ex-
pensive and time-consuming, this type of
work would allow for the minimization
of methodological differences, more ef-
fective comparisons between nations, re-
gions, or ecological zones, and the mod-
ification of existing models or the

development of new ones. Recently, the
USDA Forest Service FIA program has
led a collaborative effort between aca-
demics, industry, and state and federal
agencies for collecting detailed tree-level
biomass data for the primary commercial
species across the United States (see
Westfall et al. 2014).

2. Compile existing and new collections of
volume, biomass, carbon, and wood den-
sity data into a documented, quality-
tested, transparent, harmonized, and
openly accessible electronic database. An
example of such an effort is represented
by the Food and Agriculture Organiza-
tion of the United Nations GlobAllome-
Tree project.2 The GlobAllomeTree
project facilitates the appropriate use and
dissemination of biomass equations,
much like the collections of volume and
biomass equations for North American
species compiled in the USDA Forest
Service National Volume and Biomass
Estimator Libraries.3 Collections like
these do not purport to compile and
share actual measurements of field or lab-
oratory sample specimens, nor do they
attempt to solve problems brought about
by model averaging or pseudodata-based
approaches that attempt to simulate the
information contained in existing mod-
els. A repository of original data sets
would obviate the need for duplicating
data collection efforts previously carried
out while ensuring that existing data
would remain available for reuse as new
modeling tools and techniques become
available. A recent effort led by the
USDA Forest Service FIA program has
compiled biomass and volume data for
more than 15,000 and 100,000 individ-
ual trees, respectively, from past studies
carried out across the United States.
These numbers will probably increase as
greater attention and resources are di-
rected to efforts like this.

3. Use one or more comprehensive collec-
tions of individual tree biomass data like
those described above to make greater use
of statistical validation tools to evaluate and
compare biomass models. This should help
promote the use of consistent and measur-
able accuracy standards that relate to the
expected accuracy of models when applied
to various forest populations. Adopt tools
that make use of both analytical (e.g., Af-
fleck and Turnquist 2012, Nelson et al.
2014) and empirical (e.g., Domke et al.
2012, Westfall 2012) solutions, striving to

provide generalized assessments of predic-
tion errors and uncertainties, while discov-
ering the underlying sources of errors and
their possible solutions.

4. Explore new model forms and incorporate
additional predictor variables, some of
which may be obtained using emerging
technologies like terrestrial light detection
and ranging (LiDAR) (e.g., Henning and
Radtke 2006, Kaasalainen et al. 2014). In
particular, it is important to evaluate po-
tential gains in precision and bias reduction
relative to the feasibility and costs of ob-
taining new predictors. This is illustrated in
the recent works of Chave et al. (2014) and
Goodman et al. (2014). In addition, com-
patibility between tree volume, biomass,
and density estimates should be ensured
(e.g., Jordan et al. 2008, Ver Planck and
MacFarlane 2014), which may allow for
further leveraging of existing information
or legacy data sources.

5. Employ emerging mathematical and statis-
tical methods for improving predictions
and characterizing uncertainty in the esti-
mates. This recommendation has multiple
dimensions including the following:

a. Recognize and quantify the uncertainty of
model predictions by incorporating varia-
tion from model parameter errors, overall
prediction errors, and other uncertainties,
e.g., how biomass attributes are affected by
geographic and/or genetic factors (e.g., Bre-
idenbach et al. 2014). Simulation based
methods show particular promise in pro-
viding more realistic assessments of uncer-
tainty. These approaches ensure that a
range of plausible values is presented and
evaluated rather than a single value. How-
ever, one source of uncertainty that may be
difficult to quantify is the measurement
and sampling error associated with alterna-
tive methods of determining felled tree bio-
mass given the general need for subsam-
pling. This is probably an important topic
for future research.

b. Explore the use of new statistical meth-
ods for improving prediction. For exam-
ple, fitting regional or national biomass
models using hierarchical or mixed mod-
els allows the sources of variation to be
better identified (e.g., Dietze et al. 2008)
and the potential for local calibration if
observations are available (e.g., de-
Miguel et al. 2014). In addition, assess-
ing and utilizing the spatial dependence
between observations can be useful for
improving predictions (e.g., Babcock et
al. 2012). Finally, nonparametric methods
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from fields such as data mining and artifi-
cial intelligence may be useful for address-
ing problems in model selection and form
or for extracting useful predictive informa-
tion from complex and increasingly large
data sets (Breiman 1996).

c. Develop techniques for maximizing utiliza-
tion of existing information (e.g., fitted
models and wood density data). For exam-
ple, an improvement in predictions has
been observed using approaches as simple
as a geometric mean of multiple predictions
(e.g., Li and Weiskittel 2010) or as sophis-
ticated as Bayesian model averaging (e.g.,
Picard et al. 2012, Zapata-Cuartas et al.
2012). The effectiveness of these ap-
proaches may be limited when actual data
or model fit statistics are unavailable, but it
is evident that the increasing importance of
forest biomass warrants the use of modeling
techniques that can leverage strength from
all existing forms of information.

Endnotes
1. Please visit www.arb.ca.gov/cc/capandtrade/

auction/may-2014/results.pdf for more infor-
mation.

2. For more information, see www.globallome-
tree.org/.

3. For more information, see www.fs.fed.us/
fmsc/measure/volume/nvel/index.php and
www.fs.fed.us/fmsc/measure/biomass/
index.shtml.
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