
Structure-level fuel load assessment in the wildland–urban
interface: a fusion of airborne laser scanning and spectral
remote-sensing methodologies

Nicholas S. SkowronskiA, Scott HaagB, Jim TrimbleC, Kenneth L. ClarkD,
Michael R. GallagherD and Richard G. LathropC,E

AUSDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown,

WV 26505, USA.
BThe Patrick Center for Environmental Research, Academy of Natural Sciences of Drexel

University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.
CCenter for Remote Sensing and Spatial Analysis, Rutgers University, 14 College Farm Road,

New Brunswick, NJ 08901, USA.
DUSDA Forest Service, Northern Research Station, 501 Four Mile Road, New Lisbon,

NJ 08064, USA.
ECorresponding author. Email: lathrop@crssa.rutgers.edu

Abstract. Large-scale fuel assessments are useful for developing policy aimed at mitigating wildfires in the wildland–
urban interface (WUI), while finer-scale characterisation is necessary for maximising the effectiveness of fuel reduction

treatments and directing suppression activities. We developed and tested an objective, consistent approach for
characterising hazardous fuels in the WUI at the scale of individual structures by integrating aerial photography, airborne
laser scanning and cadastral datasets into a hazard assessment framework. This methodology is appropriate for informing
zoning policy questions, targeting presuppression planning and fuel reduction treatments, and assisting in prioritising

structure defence during suppression operations. Our results show increased variability in fuel loads with decreasing
analysis unit area, indicating that fine-scale differences exist that may be omitted owing to spatial averaging when using a
coarser, grid-based approach. Analyses using a local parcel database indicate that approximately 75% of the structures in

this study have ownership of less than 50% of the 30m buffer around their building, illustrating the complexity of multiple
ownerships when attempting to manage fuels in the WUI. Our results suggest that our remote-sensing approach could
augment, and potentially improve, ground-based survey approaches in the WUI.
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Introduction

The prevention and suppression of wildland fires within the

wildland–urban interface (WUI) and intermix communities are
of international interest. The amplified risk to life and property
in these areas, increased complexity and costs of suppression

(Liang et al. 2008) and mitigation activities (Berry and Hesseln
2004), the difficulty of evacuation, and the attitude and lack of
social acceptance of residents (McCaffrey et al. 2012) are the
primary drivers of this interest. Consequences of wildfires

within the WUI have been dramatic, with notable examples
occurring in Florida, USA (1998), California, USA (2003 and
2007), Greece (2007), Victoria, Australia (2009), and Texas,

USA (2011). Five of the 10 most costly wildfire events in US
history were within the WUI and each of these fires resulted in
damages greater than $1 billion (USD, adjusted to 2010 dollars,

NFPA 2010). In response, approximately USD 5.6 billion has
been spent on hazardous fuel reduction to treat an average of

,1 million ha year�1 over the last 10 years in the US alone
(Gorte 2011; http://www.nifc.gov/fireInfo/fireInfo_documents/

SuppCosts.pdf, accessed 22 July 2015).
Characterisation of fuel beds in the WUI is challenging

because of the high spatial heterogeneity in fuel loads and fuel

models (vegetative and structural fuels), human factors (percep-
tions, private ownership and social acceptance of mitigation
activities), and increased property values at risk (Mell et al.
2010). As our effectiveness at mitigating fire risk in the WUI is

explicitly tied to the prevention of structure ignition, analysis of
fuels in this system should be focussed at the scale of the
individual structure’s home ignition zone (HIZ), defined as

the area within 30 m of a structure (Cohen 2008). In the United
States, the National Fire Protection Association (NFPA) has
developed the Firewise Community Program to inform and

guide public activities for mitigating wildfire risk of individual
structures (http://www.firewise.org, accessed 22 July 2015).
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Currently, the assessment of wildfire risk around individual
structures in the United States is carried out through a ground-
based visual assessment using guidance from NFPA standard

1144 (NFPA 2012). These surveys are time-consuming, poten-
tially prone to subjective errors and limited in extent. An
objective and consistent methodology for deriving critical

parameters at larger scales yet incorporating the resolution of
individual structures would greatly increase our capacity to
perform meaningful analyses and make informed management

decisions.
Numerous studies have characterised and then classified

vegetation into fuel models (e.g. Scott and Burgan 2005) using
spectral reflectance data (e.g. Arroyo et al. 2008; Alonso-Benito

et al. 2013) at varying spatial resolutions. Koetz et al. (2008)
used a fusion approach to link spectral reflectance data and
airborne laser scanning (ALS) to classify a highly variable

landscape that included WUI areas, and they reported an
improvement in the classification of strata relative to the use
of spectral reflectance data alone. More recently, and specific to

the WUI, Platt (2014) presented an object-oriented analysis
based on the HIZ of individual structures that estimates and then
ranks relevant wildland fire exposure characteristics. Although

these classification studies have illustrated a high degree of
accuracy with regard to identifying the type of fuel, quantifying
the amount of fuel remains challenging. Several studies have
demonstrated the utility of light detection and ranging (LiDAR),

specifically ALS, data for estimating canopy bulk density
(CBD; Andersen et al. 2005) and vertical arrangement of fuels
at landscape scales (Skowronski et al. 2007, 2011). A fusion of

ALS and spectral reflectance data has also been shown to
provide additional accuracy for vegetation classification and
loadings estimation (e.g. Mutlu et al. 2008 ; Erdody andMoskal

2010; Jakubowksi et al. 2013).
Here, we present a systematic methodology for estimating

fuel characteristics and loading within the HIZ of individual
structures. The objective of this study was to develop a method-

ology for using emerging remote-sensing products and analysis
techniques to characterise fuel loads and wildfire hazard in the
WUI. This resulting methodology is objective, repeatable and

appropriate for informing zoning policy, targeting presuppres-
sion planning and fuel reduction treatments, and assisting in
prioritising structure defence during suppression operations.

Specifically, we used a combination of high-resolution multi-
spectral imagery and ALS data along with an object-oriented
fuel classification routine to quantify three-dimensional fuel

loads within 30 and 91 m and for each land parcel of 5500
individual structures over a 40-km2 area. We integrated the
results of this analysis into a conceptual hazard model that
allowed a simplistic and operationally useful assessment of

structures at risk. Finally, we assessed the proportion of struc-
tures that require the co-management of fuels on adjacent
parcels by calculating the percentage of the ignitability zone

around homeowners’ properties.

Methods

Study area

The study focussed on several high-risk subdivisions located in

and adjacent to the New Jersey Pinelands National Reserve

(PNR), a predominantly forested area of ,445 000 ha in
southern New Jersey, USA (Fig. 1). Development within the
PNR has been limited by the Pinelands Protection Act of 1979

(Pinelands Commission 1980), but large areas of urban interface
and intermix exist immediately adjacent to the PNR (La Puma
et al. 2013). The study area includes several planned commu-

nities (Ocean Acres, Brighton at Barnegat, Pinewoods Estates)
and several individual homes in Stafford and Little Egg Harbor
townships in Ocean County, NJ, that occur within this adjacent

area.
Forest communities in the study area are characterised by a

mixture of pine-dominated (Pinus rigida Mill. and P. echinata

Mill.) and oak-dominated (Quercus alba L., Q. coccinia

Muench. and Q. prinus L.) overstories (McCormick and Jones
1973). The understorey is composed of shrubs, primarily
Vaccinium spp., Gaylussacia spp. and Kalmia spp. Forests in

the PNR are typically characterised using the SH8 fuel model
from the Scott and Burgan models (Scott and Burgan 2005) or
Fuel Model ‘B’ from the Anderson (Anderson 1982) fuel

models. Soils are derived from the Cohansey and Kirkwood
formations and are coarse, sandy, nutrient-poor andwell drained
(Tedrow 1986).

Forests in the PNR are fire-adapted and crowning fire
behaviour can occur during wind-driven wildfire events. Wild-
fire occurrence peaks in the spring, before green-up. New Jersey
has a 10-year mean fire frequency (2003–13) of 1260� 831

(mean � standard deviation throughout) wildfires year�1 with
an average area burned of 2014� 2974 ha year�1, with a vast
majority occurring within the PNR (http://www.nifc.gov/fire-

Info/fireInfo_statistics.html, accessed 22 July 2015). Over the
same period, 124� 37 prescribed fires year�1 were conducted
on an average of 4896� 2216 ha year�1 (http://www.nifc.gov/

fireInfo/fireInfo_stats_prescribed.html, accessed 22 July 2015).
Over the last 100 years, fire size has decreased from an average
of 45� 8.2 ha, before 1940, to 6.4� 1.3 ha, mostly owing to
decreased response times and advances in suppression technol-

ogy (Forman and Boerner 1981). However, recent events have
illustrated the continued risk of fire in this system and include
high burned area totals and structure losses, including the 2007

Warren Grove (6273 ha) and the 2002 Jake’s Branch (517 ha)
wildfires. The rapid spread of these fires reduced the effective-
ness of structure protection operations and further demonstrated

the need for effective presuppression fuels management in the
communities in and around the PNR. Several of the communi-
ties used in our analysis experienced structure loss and damage

during the Warren Grove wildfire (4 structures destroyed and
37 damaged).

Approach

Our general approach was to treat each structure as an analysis
unit and examine the fuel conditions around each at distances of

30 and 91 m (corresponding with NFPA guidance and our val-
idation data; Fig. 2), and at the level of the land parcel associated
with each structure. Fuel types were classified using an auto-
mated image-segmentation technique, fuel loads were estimated

using ALS data and previously developed canopy fuel models,
fuel classification was assessed by the percentage of pine can-
opy within each buffer, and the homeowner’s ability to directly

impact fuels was evaluated by estimating the percentage of each
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structure’s buffer that was within the associated ownership
parcel. We evaluated these remotely sensed estimates using
field-collected hazard assessment data. Finally, we developed a

simple model to evaluate fire hazard for each structure based on
these metrics.

Datasets

High-spatial-resolution colour infrared digital orthophoto-
graphy (CIR; 0.3� 0.3-m ground resolution) was acquired in

March 2007 (from the State of New JerseyOffice of Information
Technology, Office of Geographic Information Systems,
Trenton, NJ) and used to classify and map fuels. To estimate

three-dimensional fuel structure, ALS data were acquired in
October 2008 during leaf-on conditions with a Leica ALS 60

(Leica Geosystems AG, Heerbrugg, Switzerland) flown on a
fixed-wing aircraft at ,1100 m above ground level. The
resulting pulse footprint size of the ALS data was,0.25m, with

an average density of 3.6� 1.7 pulses m�2, and a return density
of 4.6� 2.2 returns m�2. Up to four returns per pulse were
digitised. A total of 5569 individual structures were hand-
digitised from colour orthophotos that were acquired during the

ALS acquisition. To be consistent with field-collected hazard
assessments (described below), we created 30- and 91-m radial
buffers (B30 and B91 respectively) around each structure in a

geographic information system (GIS). The mean areas were
0.4� 0.1 and 2.6� 0.3 ha for B30 and B91 respectively. The
radial buffers varied in area because they were constructed

from the edges of the each structure. As a comparison with the
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Fig. 1. Map of New Jersey Pinelands study site. The inset shows the location of the New Jersey Pinelands, and

the larger map shows the details of the study site.
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fixed-radius method, we linked a land ownership parcel geo-
database that was acquired from the Ocean County, New Jersey,
Department of Planning (http://www.planning.co.ocean.nj.us/

GIS.htm) to each structure. The parcels (P) had a mean area of
0.2� 0.8 ha. B30, B91 and P were used to extract variables from
the ALS dataset and the forest cover map. Structure footprints

within B30, B91 and P were excluded from all analyses.

Fuel classification

The colour infrared digital orthophotography was used for

mapping fuel classes. We used a multiresolution image-
segmentation approach in the eCognition image analysis soft-
ware (Trimble Geospatial Imaging, Westminster, CO; standard

version 5.0). The software uses a bottom–up region-merging
technique to generate homogeneous objects through a local
optimisation procedure. Four multispectral imagery bands and

a 1� 1-m-resolution canopy height model, derived from the
ALS data (described below), were included in the segmentation
process (described below). Objects were classified as tree
(including shrub), lawn or impervious surface (roads, drive-

ways, sidewalks or buildings) with a Random Forest classifi-
cation and regression tree (CART) method, implemented
using the ‘TreeBagger’ routine of theMatlab software package

(Mathworks, Natick, MA; www.mathworks.com/help/stats/
treebagger-class.html). Random Forest is an ensemble learning
method that constructs a multitude of decision trees as part of

the training process and provides outputs of modal class for
nominal data, or mean prediction regression for numeric data of

the individual trees (Breiman 2001). As conifer- or evergreen-
dominated vegetation in close proximity to structures is of
concern owing to its greater flammability relative to deciduous

forest types, pixels classified as ‘tree’ were further stratified into
deciduous or coniferous classes using the TreeBagger routine.
A random sample of 300 points was classified into the appro-

priate land-cover category by visual interpretation of the CIR
aerial photography, and then used to train the Random Forest
Model. We employed ‘leaf-off’ imagery (acquiredMarch 2007)

to be able to easily discriminate between evergreen conifer and
leaf-off deciduous canopy cover. We used this as a simple
analogue of fuel flammability, with pine (evergreen) beingmore
flammable than oak (deciduous).

Fuel loading

The ALS data were used to estimate fuel loadings within B30,

B91 andP. TheALS datawere processed to classify ‘ground’ and
‘canopy’ returns using the filtering routine in the ‘Toolbox for
LiDAR Data Filtering and Forest Studies’ (TiFFS; Chen 2007).
We then built a continuous, 1� 1-m horizontal-resolution dig-

ital elevation model (DEM) from the ALS dataset for the study
area. Similarly, we estimated a corresponding 1� 1-m canopy
height model (CHM) using the TiFFS software package for use

in the image segmentation and classification process described
above. Using theDEMas a ground reference, the z-coordinate of
each ALS return was recoded from height above mean sea level

to height above ground. A height distribution of first returns
was then calculated for each B30, B91 and P in 1-m vertical

0 0.025 0.05 0.1 km Building footprints
N

S
W E Buffer Parcels

Fig. 2. An example of the analysis window used around each structure to characterise fuel classifica-

tion and loading in the home ignition zone (HIZ). Parcels are shown for each building within the figure.

Both 30-m (B30; inner circle) and 91-m (B91; outer circle) buffers are shown for an individual structure

(in blue).
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increments (e.g. Fig. 3). We selected this sampling scheme to
eliminate the effects of placing a regular grid over an irregular

pattern where individual structures would not be registered on
the centroid of a cell. The distribution was calculated above 1 m
to minimise the inclusion of returns misclassified as ‘ground’

because of shrubs, downed trees and other factors that would
lead to these errors of commission by the ground-finding algo-
rithm. Because canopy components may be obstructed by veg-

etation from above, they can be underestimated in the ALS
dataset. To account for any potential occlusion, the height
distributions were transformed using methods presented in
MacArthur and Horn (1969) and applied to ALS data (Skow-

ronski et al. 2007, 2011).
Canopy fuel distribution and loadings were estimated from

the ALS estimated height distributions for each buffer using

canopy fuel models developed in Skowronski et al. (2011) and
Clark et al. (2013). They calculated estimates from both allo-
metric models and destructive sampling of CBD profiles

(CBDbin) for field plots that were spatially and temporally
coincident with an ALS acquisition, where discrete values are
estimated for each 1-m vertical height bin. They then developed
models to estimate CBD profiles using the ALS distribution

variables as ancillary data. Here, we used these models to
estimate CBD profiles for each B30, B91 and P. To simplify
the expression of these profiles, we estimated three variables

(Table 1): CBDmax (maximumCBD; kgm�3), CFL (canopy fuel
load, sum of all CBDbin; kg m�2), and CBDLadder (sum of
CBDbin between 1 and 3-m height; kg m�3).

We initially compared the ALS-estimated fuel loadings with
estimates made of aerial photo-interpreted forest cover. First, a
random sample of 90 structures was selected. Four of these

structures showed a change in fuel loading between the acquisi-
tion of theMarch 2007 aerial photography and the October 2008

ALS acquisition due to the Warren Grove wildfire (three of the
structures) and because of new construction (one structure);
these were omitted from consideration. Owing to a software

limitation that did not allow data extraction across all ALS tiles,
B91 was not extracted for 19 of the selected buildings, resulting
in a sample size of 67 (rather than the sample size of 86 for B30).

Using the 2007 leaf-off colour infrared photography, we inter-
preted and digitised forest cover for the selected structures.
Percentage forest cover was calculated and compared with the

ALS-estimated CFL for each structure subsample.
The second evaluation method employed visually estimated

vegetation density from structure assessments performed by
New Jersey Forest Fire Service (NJFFS) personnel as a part of

the NJFFS Wildland Risk & Hazard Assessment survey. These
data were collected for individual structures using a form
adapted from NFPA 1144: Standard for Reducing Structure

Ignition Hazards fromWildland Fire (NFPA 2012). The assess-
ments recorded several risk factors including: means of access,
available fire protection, vegetation, topography, fire history,

building construction materials and utility placement. A field
observer visually assessed each structure in the study area and
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Table 1. Variables estimated for individual 30-m radius

(B30) and 91-m radius (B91) buffers

Estimated variable

Percentage conifer forest (%conifer; %)

Maximum canopy bulk density (CBDmax; kg m�3)

Total canopy fuel load (CFL; kg m�2)

Ladder fuels (CBDLadder; kg m�3)

Percentage of buffer within ownership parcel (%ownership; %)

Distance to contiguous forest (ContigDist; m)
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ranked the fuel loads as: 0 – Light, 5 – Moderate, 15 – High and
25 – Extreme. Assessments were performed by NJFFS person-
nel during the summers of 2009 and 2010, and provided over

3800 individual-structure records. Results from this field survey
were entered into a geodatabase so they could be spatially
merged with remotely sensed data products and then directly

compared with the results from the ALS-assisted fuel load
estimation in B30, B91 and P.

Spatial characteristics

We used the output generated from the fuels classification and
fuel loading estimation to estimate several variables for B30, B91

and P (Table 1). The proportion of coniferous cover and fuel
loading variables (as estimated above) were computed for each

structure. We also estimated an individual structure’s distance
from spatially adjacent or contiguous forests. First, we delin-
eated large (.5 ha), spatially connected patches of forest within

the study area.We then calculated each building’s distance from
the edge of these contiguous patches of forest and recorded it for
each structure (ContigDist). Structures that were closer to the

edge of the study area than to contiguous forest were excluded.
To assess an owner’s ability to manage fuels within the HIZ of
their structure without assistance from adjacent property own-

ers, we calculated the proportion of the B30 and B91 buffers that
fell within the parcel of each structure.

Risk analysis

Several of the remotely sensed variables were combined to

create a ‘relative’ risk model (i.e. relative to the information
presented here rather than any ‘universal’ risk standards). We
used expert judgment to develop a composite model that

weighted and combined several of the estimated variables for
theB30 andB91 buffers. Thus, themodel integrated several of the
key variables that define an individual structure’s risk, and it

provided a synthetic output that could be used to allocate both
presuppression and suppression resources. Several of the vari-
ables estimated for each buffer were extracted and binned into

three equal size classes, which were labelled as low, medium
and high. Themodel used these ranked classifications to define a
relative degree of risk for each structure as:

Risk ¼ ð0:5CBDLadderÞ þ ð0:5CFLÞ þ ð% coniferousÞ þ ð2ContigDistÞ
ð1Þ

The composite risk model was then binned into five categories
from lowest to highest risk. The composite riskmodel was run at

a grid-cell resolution of 15� 15 m.

Results

Fuel classification

Buffer size did not have a large effect on the percentage of
coniferous cover adjacent to individual structures, with both

sizes exhibiting similar distributions (Table 2). The majority of
structures had 0–10% coniferous cover in B30 (73.4%) and B91

(87.9%; Table 2). When data were analysed by parcel, the

majority of structures (24.8%) had 10–20% coniferous cover
(Table 2). Although 32% of the parcels had .30% coniferous

cover, only 2.8 and 1.5% ofB30 andB91 respectively were above

this threshold (Table 2). When collapsed into three classes, the
spatial patterning was generally homogeneous at the local scale
between structures, but variable across the entire study area

(Fig. 4a).
The distance of structure centroids to contiguous forest areas

was bimodal, with the largest peak of structures (19.7%) within

30–91 m of contiguous forests, and an additional peak (19.6%)
occurring in the 305–610-m class (Table 3). Over one-third of
the buildings were within 91 m of the contiguous forest matrix

(Table 3; Fig. 4b). This distribution can be illustrated when the
data are presented spatially, and it is apparent that the relative
size of housing clusters is the driving factor (Fig. 4b). The
relative maximum of the distribution at 305–610 m is a result of

the homes in the large development in the south-eastern portion
of the study area, whereas the absolutemaximum at 30–91m is a
result of an integration of several smaller housing clusters

throughout the study area and the presence of structures that
are in that range within the large housing cluster (Fig. 4b).

Fuel loading

Results of the ALS-estimated fuel loading for P, B30 and B91 are
shown in Table 4. For CFL, CBDmax and CBDLadder, the areal
sampling methods are in agreement with the fuel range where
the maximum proportion of structures occurred: 0.1–0.2,

0.01–0.02 and 0.02–0.03 kg m�3 respectively. The ranges of
these distributions became more condensed as the area that the
ALS returns were integrated over became larger (P being the

smallest and B91 the largest areal units, on average (Table 4)).
The spatial pattern ofCBDand ladder fuel varies across the study
area, with notable ‘hotspots’ of higher canopy fuel loading and

ladder fuels occurring in isolated geographic areas (Fig. 4c, d).
Although CBD and percentage forest cover are not the same

characteristic of forest structure, they are highly correlated.

When ALS-derived CBD measurements were compared with
the photo-interpreted forest cover within the B30 buffer for the
random sample of structures, a strong linear relationship
resulted (R2¼ 0.66; Fig. 5). However, grouping CFL for B30,

B91 and P by field-estimated fuel class illustrates no differences
of mean CFLs between the ‘moderate’ and ‘high’ classes or
areal unit (Fig. 6). In these classes, the standard deviations again

vary based on the size of the aerial unit, withP having the largest
amount of variability and B91 having the lowest (Fig. 6). For the
‘extreme’ class, the mean values are different between each of

the areal units, withP having the lowest averageCFL andB91 the
highest (Fig. 6).

Table 2. Percentage of parcels, B30 and B91 by class of percentage

coniferous forest (%conifer)

% conifer Parcel B30 B91

0–10 23.2 73.4 87.9

11–20 24.8 17.4 6.9

21–30 19.6 6.4 3.7

31–40 16.1 2.0 1.0

41–50 8.4 0.8 0.5

51–60 4.0 0.0 0.0

.61 3.9 0.0 0.0
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Home ignition zone and risk analysis

For the HIZ, we assessed the percentage of area within the B30

buffer that was included in the ownership parcel. Over 75% of

the structure centroids can be considered to have limited flexi-
bility for owner-initiated fuels management because less than
50% of the B30 buffer is within the associated ownership parcel

(Fig. 7). We should note that some of the structure centroids do
not always represent the primary residence but may represent

outbuildings that may be at the edge of parcels; thus, these
outbuildings may show up as having a lower percentage of B30

within the ownership parcel. This analysis is also somewhat
confounded because of the presence of several large single-
ownership parcels with rental spaces for individual residences

(Fig. 8b), which had 100% of B30 within the large parcel,
potentially misrepresenting the ability of individual home-
owners to manipulate fuels in this area.

Fire risk

Low
N

0

0

(d)(c)

(b)(a)

Canopy fuel load Ladder fuel

% Conifer Distance to configuous forest

0.5 1

1 2 4 km

2 mi
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High

Fig. 4. Categorised maps of (a) percentage conifer cover; (b) distance to contiguous forest; (c) canopy

fuel load (CFL); and (d) ladder fuel for B30.
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Based on our ‘relative’ risk assessment, over 25% of the

structure centroids had a rating of ‘high’, which is the highest
risk rating (Table 5). The spatial presentation of these results
clearly demonstrates the impact that targeted management

activities could have on the structural groupings that have
received the higher risk ratings (Fig. 8a).

Discussion

Themotivation for the present work was to develop an objective

methodology for integrating ALS and spectral reflectance
datasets into structure-level wildland fire risk assessments for
WUI areas. Broadly, our results suggest that our remote-sensing
approach can augment, and improve on, field-based approaches

by providing more quantitative and accurate estimates of the
variables relevant to the assessment of risk for individual
structures to wildland fire. We have found that integration area

has a large influence on the expression of fuel loading and cover
characteristics. For our study area, there was a trend towards
homogenisation of fuel loadings and forest cover characteristics

as the size of the assessment area increased. Our results
also indicate that ALS datasets are useful for quantifying fuel
loading within the HIZ and allow the ranking of risk in a way
that is complementary to many field-based fuel-assessment

Table 3. Percentage of building centroids by

distance to contiguous forests (DISTcontig)

ContigDist (m) % of centroids

0–30 15.1

31–91 19.7

92–153 11.7

154–229 10.1

230–305 6.3

306–610 19.6

611–915 12.6

.916 4.9

Table 4. Percentage of parcels, B30 and B91 buffers by amounts of

crown fuel weight (CFL), canopy bulk density (CBDmax) and ladder

fuels (CBDLadder)

Variable Range Parcel B30 B91

CFL (kg m�2)

0.00–0.10 22.6 9.1 2.4

0.11–0.20 37.2 53.6 48.4

0.21–0.30 24.7 32.8 45.4

0.31–0.40 10.0 4.2 3.8

0.41–0.50 3.8 0.2 0.0

0.51–0.60 1.0 0.1 0.0

.0.61 0.7 0.0 0.0

CBDmax (kg m�3)

0.000–0.010 5.7 9.2 7.0

0.011–0.020 44.6 67.1 79.3

0.021–0.030 28.7 19.9 10.7

0.031–0.040 11.4 3.2 3.0

.0.041 9.6 0.6 0.0

CBDLadder (kg m�3)

0.000–0.010 1.6 0.0 0.0

0.011–0.020 22.4 31.4 19.7

0.021–0.030 40.3 58.5 78.4

0.031–0.040 20.2 9.4 1.9

.0.041 15.5 0.7 0.0
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Fig. 5. Scatter-plot of percentage forest cover vs ALS-estimated CFL

for B30.

Field-estimated vegetation category

A
LS

-e
st

im
at

ed
 C

F
L 

(k
g 

m
�

2 )

0

0.1

0.2

0.3

0.4

0.5
Parcel
B30

B91

Moderate High Extreme

Fig. 6. Boxplot of field-estimated fuel class to ALS-estimated CFL for

Parcels, B30 and B91 (n¼ 1901, 310 and 121 for ‘moderate’, ‘high’ and

‘extreme’ respectively.)

0
5

10
15
20
25
30
35
40
45

% of B30 within ownership parcel

%
 o

f b
ui

ld
in

g 
ce

nt
ro

id
s

1–
10

11
–2

0

21
–3

0

31
–4

0

41
–5

0

51
–6

0

61
–7

0

71
–8

0

81
–9

0

91
–1

00

Fig. 7. Percentage of B30 within the related ownership parcel.

554 Int. J. Wildland Fire N. S. Skowronski et al.



methodologies. An additional important findingwas that owners
of a majority of the parcels (individual homeowners) in our
study area were unable to control the vegetation within their

respective HIZ without the cooperation of adjacent property
owners. The findings of this study are important because the
methodology provides the framework for a standardised sup-
plement, or alternative, to ground-based structural fire assess-

ments that can be implemented over broad spatial scales.
The area of consideration for fire risk surrounding individual

structures has been well defined in the literature. For example, a

recent study by Gibbons et al. (2012) used the 2009 wildfires in
southern Australia as a test case to evaluate which variables are

factors in structure loss. Using an empirical methodology, they
developed relationships between several explanatory variables
and found the most significant variable predicting structure
ignition was vegetative cover within 40 m of structures. These

results reinforce the concept of the HIZ presented by Cohen
(2000), developed as a result of modelling and experimentation
at the International Crown Fire Modelling Experiment (Stocks

et al. 2004). As such, we originally chose to analyse the
data using the B30 and B91 buffers around each structure. In
the high-density WUI areas within our study area, integrating

over these areas often led to the inclusion of impervious surfaces
(e.g. Figs 2 and 3), which led to lower estimates of fuel loading
and pine cover around these structures. The parcel-level analysis
resulted in distributions with higher mean estimates and larger

standard deviations for each of the fuel loading components
compared with the B30 and B91 estimates. It is conceivable that
because the average parcel size in our study area was less than

the mean area of B30 or B91, this finding may not be applicable
in landscapes with larger parcel sizes and grouping by
parcel would lead to greater homogeneity of fuel estimates.

Lowest

Composite fire risk Percentage parcel

N 0

0

1 2

0.5 1 2 mi

4 km

1–10%

11–20%

21–30%

31–40%

41–50%

51–60%

61–70%

71–80%

81–90%

91–100%

(a) (b)

Low

Medium

High

Highest

Fig. 8. Maps of composite fire risk (a); and percentage of B30 within the ownership parcel (b).

Table 5. Percentage of structure centroids by

relative risk category

Risk class % of centroids

Lowest 4.2

Low 25.4

Medium 42.4

High 22.9

Highest 5.0

WUI hazard assessment with ALS Int. J. Wildland Fire 555



This finding suggests that the scale of analyses is an important
consideration when systematically ranking risk in communities,
because a fixed analysis window may be confounded in areas

where there are varying road densities and parcel sizes.
The vertical fuel structure that can be derived from ALS

datasets make it a well-suited tool for estimating fuel classes

(e.g. Koetz et al. 2008; Mutlu et al. 2008; Jakubowksi et al.
2013) and loading in forested areas (e.g.Andersen et al. 2005;
Hermosilla et al. 2013). However, fewer studies incorporated

these datasets into fuel estimates in the HIZ. In one example,
Platt (2014) used a fusion approach with ALS, spectral reflec-
tance and building footprint data for the classification of fuels
and other parameters within the HIZ. He also included a variable

that characterised ladder fuels as a percentage of first returns
between 1 and 3 m. To our knowledge, our study represents the
first effort that has used ALS data to estimate canopy fuel

parameters (e.g. CBDmax, CDBLadder and CLF) within the HIZ.
There are few studies, therefore, to compare our estimated
loadings with. However, estimates are available for wildland

fuels on this landscape. Skowronski et al. (2011) reported mean
CFLs in several stands of contiguous forest of similar species
composition approximately 5 km north of our study area that

were an order of magnitude greater than those presented here.
Thus, it merits further study to determine whether these ranges
of fuel loadings area are a result of models that do not accurately
represent the loadings found in the WUI area, or if the low fuel

loadings here are a reflection of the heterogeneity of impervious
surfaces, houses and lawns.

Although the present study has focussed on the estimation of

fuels within the HIZ as specified by the NFPA (NFPA 2012), the
methods presented here can be easily adapted to other systems
that use an area or parcel-based sampling approach to assess risk

around individual structures. For example, the Canadian ‘Fire-
Smart’ program presents a ‘Wildfire Hazard Assessment Sys-
tem’ that specifies several radial distances from homes
(,10, 10–30 and 30–100 m) and several variables similar to

those examined here (forest composition, ladder fuels, surface
vegetation; www.firesmartcanada.ca/). In addition, in Australia,
the New South Wales Rural Fire Service has recently imple-

mented a ‘Bush Fire Household Assessment Tool’ that uses
several variables similar to those presented here and also
includes a calculator that estimates the impacts that adjacent

parcels may have on a structure’s HIZ similarly to the data
presented here (O’Halloran 2014). In the context of these types
of hazard assessment systems, the method presented here allows

the targeted assessment of individual structures for the develop-
ment of a broad assessment similar to that of the flood assess-
ment program administered by the US Federal Emergency
Management Agency (FEMA). The FEMA flood-hazard map-

ping program (FEMA 2013) maps and assesses flood hazard
for individual structures through the United States with an
approach that makes use of cadastral data coupled with an

integrated flood-modelling approach. The data products that
result from these assessments provide a decision-support system
that can inform many scales of policy and decision-making

while also providing a consistent reference for the insurance
(National Flood Insurance Program; FEMA 2013) and home-
construction industries, and for individuals exploring property
transactions.

There are several limitations associated with the methodol-
ogy presented here. First, the expense of ALS data, although
decreasing over time, currently limits its utility in this type of

application. However, prioritising problem areas using coarse-
grained information like that from the Rapid Assessment of
Values at Risk program (RAVAR; www.fs.fed.us/rm/

wfdss_ravar/), could be used to guide decisions about where
it is necessary characterise fuels at a finer scale. Even in the
cases where data were available, changes to the landscape

would require periodic updates to the dataset. Specific compu-
tational tools and technical expertise are required to perform the
required processing operations, to delineate building footprints
and to synthesise data products. Models would also need to be

developed to link species-specific fuel characteristics to ALS
attributes (e.g. Skowronski et al. 2011; Clark et al. 2013),
although it is likely that a non-dimensional ‘relative loading’

would be appropriate for the ranking of risk in some situations.
Although we present a generalised ‘risk’ model here to serve as
a simple integrator of the data products that we have developed,

a full assessment of structure risk would also include other
variables including response time, probability of spread
between homes, building materials and fire-brand spotting

(Haas et al. 2013). These factors could have been added as
components to the model, but we chose the factors that are both
relevant and essential to understand the fuel environment
around individual structures.

Conclusions

The goal of this study was to develop and apply emerging
remote-sensing products and analysis techniques to improve our
ability to map hazard and characterise risk in the WUI. More

specifically, our objective was to develop and evaluate a
methodology that allows the assessment of wildland fuels on an
individual structure basis. The strength of this methodology is
that it provides spatial estimates of fire risk for fire-management

operations and broader policy-level analysis while also pro-
viding actionable information for individual building owners.
The remotely sensed methodology appears to display greater

sensitivity in characterising fuel loading as compared with the
field-based fuel survey. Additionally, the results of our study
indicate that the size of the areal sampling unit can have an effect

on the expression of the variables around individual structures as
housing density and impervious surfaces impact these analyses.
In our study area, we also found that there are a large proportion

of homes that are unable to manage hazardous fuels within the
HIZ without the cooperation of adjacent property owners. We
suggest that this or a similar methodology can be easily scaled to
provide regional assessments. The knowledge gained in this

study can help guide risk-mitigation practices and zoning policy
and serve as a pilot to future large-scale studies.
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