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Review of the emerald ash borer (Coleoptera:
Buprestidae), life history, mating behaviours, host
plant selection, and host resistance

Therese M. Poland,’ Yigen Chen, Jennifer Koch, Deepa Pureswaran

Abstract—As of summer 2014, the invasive emerald ash borer (EAB), Agrilus planipennis Fairmaire
(Coleoptera: Buprestidae), has become established in 24 states in the United States of America and has
killed tens of millions of ash trees since its introduction into Michigan in the 1990s. Considerable
research has been conducted on many aspects of EAB life history, natural history, ecology, and
management strategies in an attempt to contain this devastating pest. In this article, we review the life
history, mating behaviours, and host plant selection by EAB in North America as well as host

resistance to EAB attack.

Introduction

The emerald ash borer (EAB), Agrilus planipennis
Fairmaire (Coleoptera: Buprestidae) is an Asian (i.e.,
China, Japan, Korea, Mongolia, Eastern Russian)
flat-headed borer that is primarily a pest of ash,
Fraxinus Linnaeus (Oleaceae), species. It was
discovered near Detroit, Michigan, United States of
America and Windsor, Ontario, Canada in 2002
(Haack et al. 2002) and is infesting and killing
native North American ash at unprecedented levels.

Based on dendrochronological evidence, EAB
was likely introduced to North America in the
1990s (Siegert et al. 2014) and has been spreading
rapidly through natural dispersal and human-
assisted movement of infested logs, firewood,
and nursery material. As of summer 2014, it has
become established in 24 states in the United
States of America (http://www.emeraldashborer.
info). It has the potential to spread and kill ash
trees throughout North America. Ash mortality in
some infested forested areas could reach up to

99% within a number of years of EAB infestation
(Knight et al. 2013). Forest inventories report
almost 8 billion ash trees on United States of
America timberlands valued at US$282.25 billion
(United States Department of Agriculture, Forest
Service 2008). Ash is also one of the most pre-
valent trees in agricultural lands, shelterbelts, and
urban areas. The projected costs to communities
and landowners for treatment, removal, and
replacement of urban ash trees within a 25-state
area from 2009 to 2019 was estimated at US$10.7
billion (Kovacs et al. 2010). In response to the
threat posed by EAB, federal, state and provincial
agencies imposed quarantines to restrict movement
of ash from known infested areas, implemented
large-scale surveys to detect new infestations, and
have supported extensive research to understand
EAB natural history, behaviour, and host interac-
tions in order to develop effective management
strategies.

In this paper, we review the life history, mating
behaviours, and host plant selection by EAB.
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Other aspects of natural history, ecology, and
management strategies have been reviewed else-
where (Crook and Mastro 2010; Herms and
McCullough 2014).

Life history

Emerald ash borer generally has a one-year life
cycle, but may require two years to complete
development in cooler climates, when attack
densities are low, hosts are vigorous, or when
oviposition occurs in late summer (Cappaert et al.
2005; Wei et al. 2007; Tluczek et al. 2011). In
southern Michigan, EAB adults generally begin
emerging from “D”-shaped exit holes in mid-May
at about 250 growing degree days base 10 °C
(DDyg) (450 growing degree days base 50 °F
(DDsg) (Brown-Rytlewski and Wilson 2004) and
emergence continues throughout the summer.
Peak adult activity generally occurs in late June or
early July at 514-556 DD,y (925-1000 DDsg)
(McCullough et al. 2009a; Poland et al. 2011) and
drops off sharply by the end of July at about 833
DD, (1500 DDs) as the initial beetles to emerge
die off and new emergence declines (Brown-
Rytlewski and Wilson 2004; Poland et al. 2011).

Adults feed on the margins of ash leaves for
10-14 days before becoming sexually mature and
mating (Rodriguez-Saona et al. 2007). They
continue to feed and mate throughout their life-
time, which generally lasts three to six weeks
(Bauer et al. 2004; Lyons et al. 2004). They are
most active on sunny days with air temperatures
above 25 °C (Wang et al. 2010) and often rest on
leaves or in bark crevices on cool days and during
rainy weather (Rodriguez-Saona et al. 2007).
Emerald ash borer females deposit 60-80 eggs in
nature and up to 258 eggs in the laboratory during
their life span (Lyons et al. 2004). Eggs are
deposited individually or in clusters in bark cracks
or crevices (Bauer et al. 2004).

Eggs hatch within two weeks at 25 °C and the
larvae feed in the inner phloem, outer xylem, and
cambium creating serpentine-shaped galleries that
are packed with frass. Larvae have four develop-
mental instars (Cappaert et al. 2005) and most
larvae complete feeding in October or November
in Michigan. Pre-pupae overwinter in cells about
1.25 cm deep in the sapwood of thin-barked trees
or in the outer bark of thick-barked trees. In
southern Michigan, pupation begins in mid-April
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and continues into May, followed by adult emer-
gence approximately three weeks later (Bauer
et al. 2004). Some EAB overwinter as young
larvae in their galleries and then require a second
year of development before emerging as adults
(Cappaert et al. 2005; Tluczek et al. 2011).

Mating behaviours

Emerald ash borer adults become sexually
mature ~10-14 days after feeding on host plants
(Lelito et al. 2007; Rodriguez-Saona et al. 2007).
Mating behaviours are observed mostly between
10:00 and 17:00 hours during the day (Rodriguez-
Saona et al. 2007) and typically take place on the
host trees. Males hover around tree canopies and
may locate potential mates using visual cues as
they often drop out of the air and land directly
on top of females (Lelito et al. 2007). The visual
cues are not sex-specific, however, since EAB
males approach both sexes of pinned dead EAB
(Lelito et al. 2007; Rodriguez-Saona et al. 2007).
Olfactory cue(s) from EAB females start playing a
role after initial physical contact as evidenced by
arrestment and longer copulation attempts with
females (Lelito et al. 2007) or even at a distance of
up to 5cm from EAB females (Pureswaran and
Poland 2009a). Mating is prolonged, lasting
50 minutes on average (Pureswaran and Poland
2009a). After mating, EAB pairs separate and
there appears to be no mate guarding. In labora-
tory studies, EAB females mated repeatedly with
multiple males throughout their lifetime (Lyons
et al. 2004). Routledge and Keena (2012) found
that mating with multiple males is likely the best
strategy for EAB females to maximise fecundity.

Two contact pheromones, 3-methyltricosane
(Lelito et al. 2009) and 9-methyl-pentacosane
(Silk et al. 2009), have been isolated and identi-
fied from cuticles of EAB females. Application
of 3-methyltricosane solution to dead and
dichloromethane-washed EAB females increased
time male EAB spent in contact with females
as well as time spent attempting copulation.
However, EAB males spent less time on washed
females and females on which the compound was
reapplied compared with unwashed EAB females;
therefore, the effects of 3-methyltricosane might
be synergised by other compounds such as
9-methyl-pentacosane (9-Me-C,s), which is only
found in sexually mature females (Silk et al. 2009).
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Application of 9-Me-C,s to dead and n-hexane-
washed EAB females elicited copulation attempts
by males similar to those observed for dead and
unwashed EAB females. Furthermore, the number
of copulation attempts and the length of arrest-
ment by EAB males were similar on dead and
unwashed females and on dead washed females
with 9-Me-C,5 reapplied (Silk et al. 2009).

One volatile pheromone, (3Z)-dodecen-12-
olide [(3Z)-lactone], has been identified from
sexually mature EAB adults (Bartelt ez al. 2007;
Silk et al. 2011). (3Z)-Lactone was detected from
both sexes by Bartelt et al. (2007), but only in
EAB females by Silk et al. (2011). (3Z)-Lactone
elicits antennal responses in both sexes of EAB
adults (Bartelt er al. 2007; Silk et al. 2011).
Exposure to UV light converts (3Z)-lactone to
(3E)-lactone, which also elicits antennal response
in both sexes of EAB adults (Silk et al. 2011).
Green sticky prism traps baited with (3Z)-lactone
alone (released at ~22 pg/day at 25 °C) attracted
significantly more EAB males than unbaited
control traps at two sites in Ontario, Canada, but
not in Michigan, United States of America (Silk
et al. 2011). Green sticky prism traps baited with
the green leaf volatile (3Z)-hexenol (released at
~17 mg/day at 20 °C) in combination with either
of the isomers released at ca. 22 pg/day at 25 °C
also attracted more EAB males than traps baited
with the green leaf volatile alone. Ryall et al.
(2012) further confirmed that a combination of
(3Z)-hexenol and a low release of (3Z)-lactone
was most effective in attracting EAB males to
green sticky prism traps suspended high in the
canopy.

Host plant selection

Ash trees are the only larval hosts reported for
EAB in China (Yu 1992; Liu er al. 2003; Zhao
et al. 2005), although other tree genera, Juglans
Linnaeus (Juglandaceae), Pterocarya Kunth
(Juglandaceae), and Ulmus Linnaeus (Ulmaceae),
have been reported as larval hosts in Korea and
Japan for Agrilus marcopoli Obenberger, and
Agrilus marcopoli ulmi Kurosawa (Ko 1969;
Akiyama and Ohmomo 1997), with which EAB
was synonymised (Jendek and Grebennikov
2011). To date, all North American ash species
encountered by EAB are susceptible (Anulewicz
et al. 2008; European and Mediterranean Plant
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Protection Organization 2013). Ash mortality
within stands in North America can reach up to
99% regardless of ash basal area, its relative
dominance, relative density, overall stand density,
stand basal area, or any measure of species
diversity (Smith et al. 2005; Knight ez al. 2013).
This suggests that EAB is very efficient at locating
host trees even when they are rare within mixed
species stands.

Visual orientation

EAB preferentially attacks open grown ash
trees (McCullough et al. 2009a, 2009b) suggest-
ing that visual tree silhouette may play a role in
host location. Attack densities are also higher on
stressed trees (McCullough ef al. 2009a, 2009b).
Ash stressed by girdling can be differentiated
from non-girdled ash two months after the gird-
ling event based on hyperspectral and high-
resolution panchromatic imagery in conjunction
with ground-based spectral data (Bartels et al.
2007). Male and female EAB are sensitive to light
in the ultraviolet (UV), violet, and green (420430,
460, and 530-560 nm, respectively) ranges of the
visible spectrum, while mated females are also
sensitive to light in the red (640-670 nm) range
(Crook et al. 2009, 2012). The beetles are attracted
to traps coloured different shades of green or purple
hung in the open or in the canopy of ash trees
(Crook et al. 2009; Francese et al. 2010). Males,
that tend to hover near the canopy of ash trees
(Rodriguez-Saona et al. 2007), are captured in
higher proportions in green traps hung in the
canopy of ash trees and baited with green leaf
volatiles; whereas, females, that oviposit on the
trunks of ash trees are captured in higher propor-
tions in purple traps hung below the canopy and
baited with bark sesquiterpenes (Crook and Mastro
2010; Grant et al. 2011).

Chemical orientation

Adult beetles were attracted to ash stressed
by feeding damage or treatment with methyl
jasmonate (Rodriguez-Saona et al. 2006). At
least 16 volatile compounds from stressed ash
elicited antennal responses by EAB including
hexanal, (E)-2-hexenal,(2)-3-hexen-1-ol, 3-methyl-
butylaldoxime, 2-methyl-butylaldoxime, (Z)-3-
hexen-1-yl acetate, hexyl acetate, (E)--ocimene,
linalool, 4,8-dimethyl-1,3,7-nonatriene, and E.E-
o-farnesene. In field studies, traps baited with the
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leaf alcohol (Z)-3-hexen-1-ol alone or combined
with other green leaf volatiles (Rodriguez-Saona
et al. 2006; de Groot et al. 2008; Grant et al. 2010;
2011; Poland et al. 2011) were attractive to EAB.
Sesquiterpene levels were found to be elevated in
the bark of girdled ash trees and six sesquiterpenes
consistently elicited antennal responses by both
male and female A. planipennis (Crook et al.
2008). Five of the compounds identified to be
active by electro-antennographic detection (EAD)
were o-cubebene, a-copaene, 7-epi-sesquithujene,
trans-B-caryophyllene, and  «-caryophyllene
(humulene). The sixth EAD-active compound was
later identified as eremophilene (Cossé et al.
2008). The essential oils, Manuka oil containing
a-cubebene, a-copaene, trans-p-caryophyllene
and o-humulene, and Phoebe oil that contains
7-epi-sesquithujene in addition to the other four
compounds found in Manuka oil, were attractive
to A. planipennis (Crook et al. 2008). Ash leaf
volatiles and bark sesquiterpenes play an important
role in host location for both males and females.

Host plant resistance

In its native range, EAB is considered a
nuisance pest and generally only attacks dying or
stressed Asian ash species (Liu et al. 2007), often
growing under poor site conditions (Wei et al.
2004). Of the more than 20 species and subspecies
of Fraxinus native to Asia (Wei 1992; Wallander
2008; Hinsinger et al. 2013), EAB mainly infests
Manchurian ash (F. mandshurica Ruprecht),
Korean ash or Chinese ash (F. chinensis Roxburgh)
(Yu, 1992), generally attacking only stressed
trees. On the other hand, North American ash
trees, green ash (F. pennsylvanica Marshall),
white ash (F. americana Linnaeus), and velvet ash
(F. velutina Torrey), commonly planted in Asia
(Zhao et al. 2005) suffer high EAB infestations
and mortality (Wei ef al. 2004; Duan et al. 2012):
at one site in China 95% of green ash trees were
moderately infested while no infestation was
found in Korean ash trees of similar size planted
beside them (Liu et al. 2007).

In its introduced range in North America, EAB
attacks almost exclusively native, green ash, white
ash, and black ash (F. nigra Marshall). Although
blue ash (F. quadrangulata Michaux) is native to
North America, a study by Tanis and McCullough
(2012) indicates that in a natural stand it is not as
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quickly or severely impacted by EAB infestation
relative to white ash, even though it has been
shown that EAB can carry out its full life cycle in
both species (Anulewicz et al. 2008). This may be
explained, in part, by blue ash being less preferred
than white ash in an adult beetle choice feeding
study (Pureswaran and Poland 2009b). In contrast
to EAB attack on stressed trees in the native range,
EAB in the introduced range kills healthy trees
(Poland and McCullough 2006). Anulewicz et al.
(2008) compared adult landing and oviposition on
logs of several North American ash species and on
non-ash species including American elm (Ulmus
americana Linnaeus; Ulmaceae), hackberry
(Celtis occidentalis Linnaeus; Ulmaceae), black
walnut (Juglans nigra Linnaeus; Juglandaceae),
shagbark hickory (Carya ovata (Miller) Koch;
Juglandaceae), and Japanese tree lilac (Syringa
reticulata (Blume) Hara; Oleaceae). Adults
landed and oviposited more frequently on ash logs
compared with non-ash logs and no larvae were
able to survive, grow, or develop in non-ash logs.
Recently, Cipollini (2015) found EAB infesting
white fringe tree (Chionanthus virginicus Linnaeus
(Oleaceae)) in Ohio, United States of America,
which represents the first expansion of EAB onto
a non-ash host in North America. Although all
species of North American ash appear susceptible
to EAB, preference and susceptibility vary among
species. Canopy dieback and EAB attack density
are significantly higher in green ash than in
white ash trees at the same sites, and in white ash
compared with blue ash trees at the same sites
(Anulewicz et al. 2007; Tanis and McCullough
2012).

Emerald ash borer attack and tree mortality
were significantly higher in white and green ash
cultivars than in a Manchurian ash cultivar plan-
ted in a common garden trial near the initial
infestation in southeast Michigan (Rebek et al.
2008). It is hypothesised that the greater suscept-
ibility of North American ash species compared
with Asian ash species, at field sites in both China
and North America, may be due to resistance
mechanisms that developed in Asian ash species
through their evolutionary history with EAB that
is lacking with North American species.

Differences in susceptibility to EAB among ash
species may be related to differences in host
volatiles, nutrition, and defense compounds
(Eyles et al. 2007; Chen and Poland 2009, 2010;
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Pureswaran and Poland 2009b; Cipollini et al.
2011; Chen et al. 2011a, 2011b, 201 1c; Whitehill
et al. 2011, 2012). Pureswaran and Poland
(2009b) found that EAB adults preferred to feed
on green, white, and black compared with
European, blue, or Manchurian ash and the ash
species differed significantly in the relative
amounts of antennally active volatiles. Emerald
ash borer also prefers to feed on mature leaves
compared with newly flushed leaves, on leaves
grown in sun compared with those in shade, and
on leaves from trees that had been stressed by
girdling compared with leaves from healthy trees
(Chen and Poland 2009). The preference might be
driven by greater concentrations of total proteins
in foliage from sunny areas (Chen and Poland
2009). Insects are generally limited by nutrients
such as nitrogen (White 1993). Greater con-
centrations of total phenolics in ash leaves in the
sun (Chen and Poland 2009) do not appear to
impede EAB’s preference, probably due to EAB
adults’ ability to excrete or detoxify phenolics.
Concentrations of total phenolics in EAB frass
were significantly greater than the concentrations
in ash leaves that EAB adults fed upon, irrespec-
tive of ash tree species (Chen and Poland 2010).
Girdled ash trees attract more EAB than non-
girdled trees (McCullough et al. 2009b). How-
ever, the attraction might be attributable to vola-
tiles released by girdling rather than changes in
nutritional and defensive chemistry triggered by
girdling. Girdling in green ash seedlings
elevated concentrations of total non-structural
carbohydrate (TNC), which reduces the protein
to TNC ratio (Chen and Poland 2009). Protein to
TNC ratio is an indicator of nutrient balance (Lee
et al. 2002). Besides water content, protein or
amino acid contents might also contribute to
selection of downward feeding behaviour by
EAB larvae observed both in laboratory and field
studies (Chen et al. 2011a). Emerald ash borer
larvae fed upon artificial diets supplied with
casein (source of proteins) or yeast (source of
amino acids) generally had lower mortality and
higher biomass than those fed upon diets with
neither components.

Eyles et al. (2007) analysed phloem phenolics
of the Manchurian ash cultivar “Mancana”, the
green ash cultivar “Patmore”, and the white ash
cultivar “Autumn Purple” (Cipollini et al. 2011),
and found that hydroxycoumarins and two
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phenylthanoids (i.e., calceolariosides A and B)
were unique to “Mancana”. In addition to the
three ash species analysed by Eyles et al. (2007),
Whitehill ef al. (2012) further compared phloem
phenolics of a black ash cultivar “Fall Gold”, blue
ash seedlings, and European ash seedlings and
discovered that hydroxycoumarins and the two
phenylthanoids were also detected in black ash
and European ash, which are both susceptible to
EAB infestation, indicating they are not unique to
Manchurian ash and likely do not play a role in
EAB-resistance. Whitehill et al. (2012) found
differences in qualitative phenolic profiles among
ash species that coincided with their phylogenetic
relatedness. The phenolic profile of Manchurian
ash, was most different from the green ash variety
“Patmore”, green ash seedlings, and the white ash
variety “Autumn Purple” and most similar to the
more closely related black ash cultivar “Fall
Gold”, and European ash seedlings. Cipollini
et al. (2011) also found differences in phenolic
profiles among ash species, identifying nine
phenolics unique to the Manchurian ash cultivar
“Mancana”. Most of these compounds were also
subsequently identified in other species that are
susceptible to EAB by Whitehill et al. (2012),
leading the authors to conclude that much of the
phytochemical variation detected in these studies
was most likely due to evolutionary divergence
and not related to differences in EAB-resistance.
However, results reported by both Cipollini ef al.
(2011) and Whitehill er al. (2012) indicated that
lignans and lignan derivatives might contribute
to resistance to EAB. Chakraborty et al. (2014)
further examined the role of phenolics, including
lignans and their derivatives, by comparing
responses of the black ash cultivar “Fall Gold”
and the Manchurian ash cultivar “Mancana” to
EAB larval feeding: they failed to detect pinor-
esinol dihexoside, which was reported to be
unique to “Mancana” by both Cipollini er al.
(2011) and Whitehill et al. (2012), but identified
eight compounds that were significantly affected
by larval feeding, including two pinoresinol
derivatives. In both “Fall Gold” and “Mancana”,
seven of these compounds decreased or remained
the same and only pinoresinol A, increased
significantly in response to larval feeding. No
qualitative differences in the metabolic profiles of
“Mancana” and “Fall Gold” were reported, but
quantitative differences were detected between
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the two cultivars after being fed upon by EAB
larvae. Further study of inter-and intra-specific
variation of phenolics using a more genetically
diverse sampling strategy is necessary to better
understand their roles in resistance of ash to EAB.

Understanding the mechanisms that EAB larvae
use to cope with different kinds of phenolics can
also help elucidate the roles that phenolics play in
ash tree defense responses. EAB larvae of all instars
are able to eliminate phenolics from susceptible
black ash, green ash, and white ash through excre-
tion and enzymatic conversion (Chen et al. 2012).
Genes coding various detoxification enzymes such
as superoxide dismutase, catalase, and glutathione
peroxidase have been detected in EAB larvae,
prepupae, and adults (Rajarapu ez al. 2011).

In addition to constitutive defenses that are
present at all times, herbivory can induce pro-
duction of defensive compounds and responses
may differ among ash species. In black ash, EAB
larval feeding induced volatile emission of (E)-p-
ocimine and (Z,E)-a-farnesene, increased levels of
carbohydrates and phenolics, and decreased levels
of proteins and amino acids (Chen et al. 2011c).
In response to EAB adult feeding, green and white
ash had higher levels of induced volatile emission
than black ash, levels of total phenolics decreased
in white ash, and chymotrypsin inhibitors increased
in black ash (Chen et al. 2011b). Differences in
induced defensive responses among ash species
may partially explain differences in EAB preference
and host susceptibility.

Unlike mobile adult beetles, EAB larvae must
survive or die in the tree on which the eggs are
deposited. Therefore, host plant defense mechan-
isms that kill or negatively impact larval perfor-
mance are likely to play critical roles in ash
defense against EAB. Recent studies report host
defense responses are found in both Manchurian
and green ash and are responsible for at least
a portion of larval mortality in both species;
however, a higher proportion of host-killed larvae
were reported in the EAB-resistant Manchurian
ash (Duan et al. 2010, 2012, 2013). Egg bioassays
performed by affixing eggs directly to potted
grafts or seedlings in the greenhouse, demonstrated
that the Asian species F. chinensis, F. floribunda
Wallich, F. lanuginosa Koidzumi, F. mandshurica,
F. paxiana Lingelsheim, and F. spaethiana
Lingelsheim were all resistant to EAB compared
with green ash based on levels of larval development
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and mortality. In the resistant species, most if
not all larvae are killed by host defenses and the
small number of surviving larvae exhibit stunted
or slower development while in the susceptible
species only a small number of larvae are killed by
host defenses and the majority develop success-
fully (J.K., personal observation). Research on
ash plant resistance has been conducted at the
molecular level. Four proteins (PR-10 protein, an
aspartic protease, a phenylcoumaran benzylic
ether reductase, and a thylakoid-bound ascorbate
peroxidase) identified in a resistant Manchurian
ash cultivar, “Mancana” and have been proposed
to contribute to the resistance of this cultivar
based on the two-fold greater expression levels
relative to the susceptible black ash cultivar “Fall
Gold” (Whitehill ef al. 2011). However, a separate
transcriptomic analysis and subsequent RT-qPCR
validation across three separate genotypes of
Manchurian, black and green ash demonstrated
that expression of a major allergen like PR-10 was
lower in Manchurian ash than in black ash and
did not differ between Manchurian and green ash
(Rivera Vega 2011). This may be because the
two studies compared different members of the
same gene family, but it highlights the importance
of validation of genes and/or proteins across
genetically diverse samples. mRNA levels of
several genes involved in plant defense response
signalling, including two classes of transcription
factors (WRKYs, MYBs), calcium-dependent
protein kinases, ethylene response factor and
lipoxygenase 3, were higher in Manchurian ash
than in black and green ash (Bai er al. 2011).
Lipoxygenases have long been known to be
involved in plant resistance to biotic and abiotic
stressors (Shukle and Murdock 1983; Siedow
1991) and they are generally induced in resistant
plants at higher levels than susceptible ones (Chen
et al. 2009).

Knowledge of ash resistance to EAB has been
applied to ash breeding programmes using both
traditional and hybrid breeding approaches (Koch
et al. 2012). In traditional breeding, genetic mate-
rials from rare surviving ash trees in areas heavily
infested by EAB are preserved by grafting for use as
parents. In hybrid breeding, susceptible native ash
species were crossed with resistant Asian species
and backcrosses are performed if necessary. Grafts
from surviving ash trees and hybrid ashes are being
evaluated for susceptibility to EAB in feeding and
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oviposition preference studies and studies to eval-
uate development and survival of larvae from eggs
affixed to the trees (J.K. and T.M.P., personal
observation). Transgenic techniques are also being
used to develop resistant ash species/varieties (Pijut
et al. 2010). The identification of the genes encod-
ing defensive compounds confirmed to have a role
in EAB-resistance will greatly facilitate the devel-
opment of EAB-resistant ash through both breeding
and transgenic approaches.

Final comments

A greater understanding of EAB natural history
and host interactions will help contribute to
the development of survey and management
tools including traps and lures, landscape level
management programmes, and resistance breed-
ing programmes. Survey and management tools
developed by research are now being imple-
mented in an integrated strategy and tested in a
multi-agency pilot slow ash mortality (SLAM)
study. The approach incorporates (1) surveys of
EAB infestation and distribution using artificial
traps; (2) ash host survey to determine area at
risk and plan location of detection traps and
treatments; (3) population suppression through
insecticide treatment of landscape trees and trees
in a buffer zone around positive detections, gird-
ling trap trees that are subsequently felled and
debarked to detect and destroy beetles, removal of
infested trees and ash use, and release of natural
enemies for biological control; (4) regulatory
control to prevent artificial movement; and
(5) public outreach (Poland and McCullough
2010; McCullough and Mercader 2012). The
SLAM approach is most likely to be successful
when implemented in areas with new infestations
where the populations of EAB are relatively
low and isolated. Landscape-level management
strategies including SLAM and biological control,
insecticide treatments in urban areas, collection
and preservation of ash seed, and development of
more resistant ash, offer hope for the protection of
ash and persistence of the genus at some level in
urban and natural forests.
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