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5.1 Introduction

5.1.1 Effects of Nitrogen Deposition on Ecosystems

Human activity in the last century has led to a significant increase in nitrogen (N)
emissions and deposition (Galloway et al. 2004). Total N emissions in the United
States have increased significantly since the 1950s (Galloway 1998, Galloway et al.
2003). As S deposition has declined in response to regulation, the rate of N depo-
sition relative to S deposition has increased since the 1980s (Driscoll et al. 2001,
2003) followed by a general decrease in NO, emissions from electric utilities since
the early 2000s. More recently, the relative proportion of NH_(NHj+ NH,) to
NO, (NO+NO,) emissions has also increased for many areas of the United States
(Kelly et al. 2005; Lehmann et al. 2005).
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Because of past, and, in some regions, continuing increases in emissions (Lehm-
ann et al. 2005; Nilles and Conley 2001), N deposition has reached a level that has
caused or is likely to cause alterations in many United States ecosystems. In some
ecoregions, the impact of N deposition has been severe, altering N cycling and
biodiversity. Indicators of altered N cycling include increased N mineralization,
nitrification, and nitrate (NO; ) leaching rates, as well as elevated plant tissue N
concentration. The eventual outcome of increases in these processes can be N satu-
ration, the series of ecosystem changes that occur as available N exceeds plant and
microbial demand (Aber et al. 1989, 1998).

As N availability increases, there are progressive changes in biotic community
structure and composition, including changes in diatom, lichen, mycorrhizal fungal
and terrestrial plant communities. For example, in the Mediterranean California
ecoregion, native plant species in some ecosystems have been replaced by invasive
species that are more productive under elevated N deposition (Fenn et al. 2010;
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Fig. 5.1 Level I ecological regions in the United States. (Commission for Environmental Coop-
eration 1997)

Rao and Allen 2010; Rao et al. 2010; Weiss 1999; Yoshida and Allen 2004). Such
shifts in plant community composition and species richness can lead to overall loss-
es in biodiversity and further impair particular threatened or endangered species
(Stevens et al. 2004), as has occurred for the checkerspot butterfly (Weiss 1999).

5.1.2 Approach for Determining Empirical Critical Loads
of Nitrogen

Recently, Pardo et al. (2011a—d) synthesized research relating atmospheric N depo-
sition to effects on terrestrial and freshwater ecosystems in the United States and
quantified empirical critical loads of atmospheric N deposition, with one chapter
devoted to each of 12 major ecoregions. This chapter summarizes those findings
and includes a brief discussion of the approach used to set critical N loads.

For this synthesis, we reviewed studies of responses to N inputs for U.S. ecore-
gions as defined by the Commission for Environmental Cooperation (CEC) Level
I ecoregions map for North America (CEC 1997; Fig. 5.1). We estimated critical
loads based on data from>3200 sites (Fig. 5.2). We identified the receptor of con-
cern (organism or ecosystem compartment), the response of concern, the critical
threshold value for that response, and the criteria for setting the critical load and
extrapolating the critical load to other sites or regions. These methods are described
in detail in Pardo et al. (2011a, b, d).
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Fig. 5.2 Locations of > 3200 sites in the United States with modelled N deposition for which
ecological responses are reported

The receptors evaluated included freshwater diatoms, mycorrhizal fungi, lichen-
ized fungi (henceforth lichens), bryophytes, herbaceous plants, shrubs, and trees.
Ecosystem impacts included: (1) biogeochemical responses and (2) individual spe-
cies, population, and community responses. We considered N addition (fertiliza-
tion) experiments, N deposition gradient studies and long-term monitoring studies
in order to evaluate ecosystem response to N deposition inputs. Nitrogen deposition
at sites included in this analysis (Weathers and Lynch 2011) was either based on
the deposition reported in the publication or, when that was not available, we used
modelled deposition quantified by the Community Multiscale Air Quality (CMAQ)
model v.4.3 simulations of wet + dry deposition of oxidized (NO, ) and reduced
(NH,) N species (Fig. 5.2). Hereafter, this model is referred to as CMAQ 2001, as
ituses 2001 reported data (Byun and Schere 2006; Byun and Ching 1999). In some
areas of elevated N deposition, CMAQ at this grid scale (36 km) likely underes-
timates total N deposition. This is the case, for example, over much of California
(Fenn et al. 2010). For more detail on deposition, see Weathers and Lynch (2011).
We afforded greater weight to long-term fertilization studies (5—10 years) than to
short-term studies. Single-dose forest fertilization studies exceeding 50 kg N ha™!
were generally not considered, but lower dose short-term studies were considered
when other observations were limited.
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We rarely had data to distinguish biotic or ecosystem response to reduced forms
versus oxidized forms of N. There is some evidence that for some species, reduced
forms of N may have more substantial impacts than oxidized forms (Bobbink et al.
2003; Cape et al. 2009; Kleijn et al. 2008; Sutton et al. 2009). Differences in uptake
rates and preference for NHj versus NO3 across different plant taxa (Falkengren-
Grerup 1995; McKane et al. 2002; Miller and Bowman 2002; Nordin et al. 2006)
lead to differences in sensitivity to NH_ (Krupa 2003) and NOy. However, not all
species are more sensitive to NH_ than NOy (Jovan et al. 2012); these responses
vary by species and functional type. Some species are more sensitive to increases in
NOy, as was demonstrated for boreal forests (Nordin et al. 2000).

In general, we determined the critical load based on the observed response pat-
tern to N inputs. In some cases, there was a clear dose-response relationship where
the response changed above a certain threshold. In other cases, when response to
increasing N was more linear, we estimated the “pristine” state of N deposition and
the deposition that corresponded to a departure from that state. The criteria for set-
ting critical loads are discussed in detail in Pardo et al. (2011a, b, d).

5.1.3 Contents of this Chapter

In this chapter we synthesize empirical critical loads of N reported for all the
ecoregions of the United States, compare critical loads by life form or ecosystem
compartment across all ecoregions, discuss the abiotic and biotic factors that affect
the critical loads, present the significance of these findings and, finally, compare
critical loads in the United States to those for similar ecoregions/ecosystems in Eu-
rope. For each receptor, we present maps of critical loads by ecoregion.

The range of critical loads of nutrient N reported for the United States ecoregions,
inland surface waters, and freshwater wetlands is 1-39 kg N ha 'yr™! (Table 5.1).
This broad range spans the range of N deposition observed over most of the coun-
try (see Weathers and Lynch 2011). The number of locations for which ecosystem
response data were available (Fig. 5.2) for an ecoregion is variable, which impacts
the level of certainty of the empirical critical loads estimates.

5.2 Mycorrhizal Fungi

Mycorrhizal fungi reside at the interface between host plants and soils, exchanging
soil resources, especially nutrients, with host plants in exchange for photosynthates
(carbon compound). Due to this important and unique ecological niche, mycorrhi-
zal fungi are at particular risk due to changes in either the soil environment or host
carbon allocation.
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5.2.1 Effects of Nitrogen Deposition

Nitrogen deposition adversely affects mycorrhizal fungi (1) by causing decreased
belowground C allocation by hosts and increased N uptake and associated meta-
bolic costs (Wallander 1995) and (2) via soil chemical changes associated with eu-
trophication and acidification. There are two major groups of mycorrhizal fungi that
are evolutionarily and ecologically distinct: arbuscular mycorrhizal fungi (AMF)
and ectomycorrhizal fungi (EMF). Under sufficiently high N inputs, the progressive
effect of elevated N is an early decline of sporocarp (reproductive structure) produc-
tion for EMF and spore production for AMF, and subsequent decline in biological
diversity and loss of taxa adapted to N-poor environments or sensitive to acidifi-
cation (Lilleskov 2005). Sporocarp and spore production appears to be especially
sensitive to N deposition, often declining before the communities on root tips have
been substantially altered, presumably because sporocarps and spores are at the end
of the carbon flux pathway from hosts.

Of the two plant-fungal symbioses examined here, mycorrhizal fungi appear to
be less sensitive to N deposition than lichens, presumably because the soil environ-
ment buffers these soil fungi from some of the immediate impacts of N deposition to
which lichens are directly exposed. Lichens have an advantage as indicators when
compared with mycorrhizal fungi because they can be relatively easily inventoried.
However, the critical role of mycorrhizal fungi as (i) root symbionts, central to
plant nutrition and belowground production, (ii) repositories of a large part of the
cukaryote diversity in forests, (iii) major components of food webs, and (iv) non-
timber forest products of high economic value (edible sporocarps or mushrooms)
(Amaranthus 1998), provides sufficient impetus to improve our understanding of
their response to N deposition.

5.2.2 Critical Loads of Nitrogen

We reviewed empirical studies on mycorrhizal fungal response to N inputs to deter-
mine empirical critical loads for different ecoregions the United States (Table 5.1;
Fig. 5.3). Nitrogen deposition sufficient to elevate inorganic N, especially NOj,
availability in soils can have measurable effects on mycorrhizal fungi. The data for
EMF indicate that N deposition to N-limited conifer forests in the range of 5-10 kg
ha 'yr! can significantly alter community structure and composition and decrease
species richness (Dighton et al. 2004; Lilleskov 1999; Lilleskov et al. 2001, 2002,
2008). Similarly, the data for AMF suggest that N deposition levels of 7.8-12 kg
ha 'yr ! can lead to community changes, declines in spore abundance and root colo-
nization, and changes in community function. This range is based on re-analysis
of data from Egerton-Warburton et al. (2001) combined with N deposition data,
decreases in fungal abundance (Van Diepen et al. 2007, Van Diepen 2008), and
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Empirical CL of N (kg ha' yr")
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Fig. 5.3 Map of critical loads for mycorrhizal fungi by ecoregion in the United States (The hatch
marks indicate increasing level of uncertainty: no hatch marks for the most certain “reliable”
category, single hatching for the “fairly reliable” category, and double hatching for the “expert
judgment” category. The colour sequence moves from red toward blue and violet as the critical
load increases. As the range of the critical load gets broader, the saturation of the colour decreases)

declines in fungal activity?. The actual threshold for N effects on AMF could be
even lower, because high background deposition precludes consideration of sites
receiving deposition at or near pre-industrial levels. Therefore, the provisional ex-
pert judgment is that critical loads for mycorrhizal diversity for sensitive ecosys-
tem types are 5-10 kg ha™'yr!. The uncertainty of this estimate is high, because
few studies have been conducted at low N deposition to further refine the critical
load. Variation across ecoregions is associated with differences in EMF and AMF
responses. Critical load values are lower in Marine West Coast Forests, Northern
Forests, Taiga, and Northwestern Forested Mountains, with EMF as receptors. East-
ern Forests, which include both EMF and AMF as receptors, have the greatest range
in critical loads values. Mediterranean California and the Great Plains, with only
values for AMF reported, have the highest critical loads.

2 Egerton-Warburton, L.M. Unpublished data. Chicago Botanic Garden, 1000 Lake Cook Road,
Glencoe, IL, 60022.
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5.3 Lichens and Bryophytes

Lichens and bryophytes make substantial contributions to biodiversity. About 4100
lichens and 2300 bryophytes are known from North America north of Mexico—
approximately one fourth of the number of vascular plant species (about 26,600
species; USDA NRCS 2009).

5.3.1 Effects of Nitrogen Deposition

Lichens and bryophytes are among the most sensitive bioindicators of N in terrestrial
ecosystems (Blett et al. 2003; Bobbink et al. 2003; Fenn et al. 2003b, 2010; Glavich
and Geiser 2008). Unlike vascular plants, lichens and bryophytes lack specialized
tissues to mediate the entry or loss of water and gases (e.g., waxy epidermis, guard
cells, root steele). Thus, they rapidly hydrate and absorb gases, water, and dissolved
nutrients during high humidity or precipitation events. However, they dehydrate to a
metabolically inactive state quickly as well, making them slow growing and vulner-
able to contaminant accumulation. Consequently, the implementation of lichen or
bryophyte-derived critical loads may prevent undesired impacts, such as declines in
biological diversity, to much of the broader forest ecosystem (McCune et al. 2007).

Species of epiphytic lichens in wet and mesic forests that are most sensitive to N
(i.e., the large pendant and foliose species) play important ecological roles that are
not duplicated by the nitrophytic (i.e., N tolerant) species that may replace them.
Dominant regional oligotrophs (e.g. Alectoria, Bryoria, Lobaria, Ramalina, Usnea)
comprise the bulk of lichen biomass in old-growth forests, contribute to nutrient
cycling through N, fixation, and are used for nesting material, essential winter for-
age for rodents and ungulates, and invertebrate habitat (McCune and Geiser 2009).
Storage of water and atmospheric nutrients by these lichen genera and epiphytic
bryophytes moderates humidity and provides a slow release system of essential
plant nutrients to the soil (Boonpragob et al. 1989; Cornelissen et al. 2007; Knops
et al. 1991; Pypker 2004). In the tundra, lichens and bryophytes represent a signifi-
cant portion of the biomass, and reindeer lichens are a vital link in the short arctic
food chain (Kytoviita and Crittenden 2007). Mosses comprise the bulk of the bio-
mass of the extensive boreal peatlands. In the desert, together with other microbiota,
lichens and bryophytes form cryptogamic mats important to soil stabilization and
fertility.

5.3.2 Critical Loads of Nitrogen

The critical loads estimated (Pardo et al. 2011c) for lichens range from 1-9 kg N
ha 'yr ! (Fig. 5.4; Table 5.1). The certainty associated with these estimates for li-



5 Effects and Empirical Critical Loads of Nitrogen for Ecoregions ... 145

Empirical CL of N (kg ha' yr")
. 1-3 Tundra; Taiga
. 1.2-3.7 MNorthwest Forested Mountains, Alaska
[l 25-7.1 Northwest Forested Mountains, non- Alaska
27-9.2 Marine West Coast Forests
B 3 North American Deserts
B 31-6  Mediterranean California
4-6  MNorthern Forests
4-7  Temperate Sierras
4-8  Eastern Temperate Forests

Uncertainty

[ ] Reliable

[\J Fairly Reliable
@ Expert Judgment

Fig. 5.4 Map of critical loads for lichens by ecoregion in the United States (see Fig. 5.3 for legend
explanations)

chens varies considerably by ecoregion. This is partially because of differences in
sampling scheme and intensity. For example, in the Pacific Northwest lichen com-
munities were assessed intensively across wide environmental gradients spanning
low to high N deposition on a fine grid over time, yielding highly reliable critical
N load estimates (Geiser and Neitlich 2007; Jovan 2008), whereas assessments in
the eastern United States are more problematic due to historical and contemporary
S and N deposition. It is more difficult to determine the critical load where histori-
cal information necessary to identify a “pristine” or “clean” state is lacking, and the
resulting confidence associated with the critical load is low.

The intensive studies in the Pacific Northwest facilitated the development of
simple regressions to relate N deposition with shifts in community composition
(Geiser and Neitlich 2007; Geiser et al. 2010; Jovan 2008) and thus to set critical
loads. If such simple models could be tested and confirmed in other regions of the
country, the confidence in the critical loads in those regions would improve.

The variation in critical loads for lichens across ecoregions (Fig. 5.4) is among
others due to differences in ecosystem type, pre-existing lichen communities, and
background N deposition. Marine West Coast Forests, with its broad range in en-
vironmental gradients, has the greatest range in critical loads. The low end of the
critical load range in eastern ecoregions is higher than the low end of the critical
load range in western ecoregions, likely as a result of higher historical S and N
deposition in the eastern United States, which makes it difficult to establish critical
loads for sensitive species.
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5.4 Herbaceous Plants and Shrubs

Herbaceous species and shrubs are found in grasslands, shrublands, forests, deserts,
and wetlands and comprise the majority of the roughly 26,600 vascular plant spe-
cies found in North America north of Mexico (USDA NRCS 2009). Herbaceous
plants play an important role in those ecosystems in which they are the dominant
primary producers (e.g., grasslands, shrublands). In forests, however, the role of the
herbaceous community in ecosystem function also has a significance disproportion-
ate to its low relative biomass. For example, although they represent only ~0.2 % of
standing above-ground biomass, herbaceous understory species produce >15% of
forest litter biomass and comprise up to 90 % of forest plant biodiversity, including
endangered or threatened species (Gilliam 2007).

5.4.1 Effects of Nitrogen Deposition

Herbaceous plants and some shrubs appear intermediate between cryptogam and
tree species in their sensitivity to N deposition, due to specialized tissues that me-
diate the entry or loss of water and gases compared with cryptogams, and rapid
growth rates, shallow rooting systems, and often shorter lifespan compared with
trees. Thus, herbaceous species in a forest understory will likely respond more rap-
idly to changes in N deposition and to a greater degree than the trees with which
they coexist. Herbaceous plants in alpine or tundra environments will respond later
and to a lesser degree than the cryptogams with which they coexist.

5.4.2 Critical Loads of Nitrogen

The range of critical loads of N for herbaceous plants and shrubs across all ecore-
gions is 3-33 kg N ha 'yr ! (Fig. 5.5; Table 5.1). Although this range is broader than
those for lichens or mycorrhizal fungi, many of the critical loads for herbaceous
plants fall into the range of 5-15 kg N ha 'yr !. The uncertainty of these estimates
is moderate. The shorter lifespan of some herbaceous plants can result in a more
rapid response to N addition. This is especially relevant for annuals or perennials
with little N storage. In grasslands, for example, elevated N deposition often leads
to a rapid (1-10 years) increase in herbaceous production and a shift in biomass
allocation towards more above-ground tissue. This often decreases light levels at
ground surface and decreases the numbers of plant species, primarily of perennials,
legumes, and natives (Clark and Tilman 2008; Suding et al. 2004; Tilman 1993).
As a result of this relatively rapid response, experimental studies of moderate
to long duration (3—10 years) allow determination of the critical load with reason-
able certainty. Longer studies (>10 years) would decrease the uncertainty further.
In some cases, it can be difficult to determine whether the condition in reference
plots or at the low end of a deposition gradient represents a “pristine” condition or
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Fig. 5.5 Map of critical loads for herbaceous plants and shrubs by ecoregion in the United States
(see Fig. 5.3 for legend explanations)

whether a site has already been altered by N deposition prior to or at the time of
the study. For example, the Watershed Acidification Study at Fernow Experimental
Forest, West Virginia, added 35 kg N ha 'yr! via aerial application in addition to
ambient deposition of 15-20 kg N ha 'yr !, which has led to changes in understory
species composition (Adams et al. 2006). Recently, similar changes in understory
species composition have occurred on the adjacent reference watershed receiving
only ambient atmospheric deposition® (Gilliam et al. 1996) suggesting that the de-
position to the reference watershed currently exceeds the critical load. Where de-
position rates exceed the critical load, measurement of the rate of change of an
ecological metric (e.g. plant abundance, diversity, or community composition) over
arange of N inputs provides an estimate of the N level at which increased ecological
change occurs (Bowman et al. 20006), but it is difficult to determine the critical load.

The large variation across ecoregions for herbaceous critical loads (Fig. 5.5) is
caused, in part, by the differences in receptor species and ecosystems, the paucity
of data in some ecoregions and historic N status. Where few studies are available,
the range reported for the critical load is broad and is considered less reliable. Addi-
tional studies could narrow the range of the critical load and increase the reliability.
N-poor sites and sites with relatively low productivity (e.g., Tundra, North Ameri-
can Deserts) have lower critical loads for herbaceous species than sites with more
fertile soil and higher productivity (e.g., Great Plains). High levels of historical N
deposition and lack of low-level N fertilization experiments mean that the critical
loads for some ecoregions may be lower than currently reported.

3 Gilliam, F.S. Unpublished data. Professor, Department of Biological Sciences, Marshall Univer-
sity, Huntington, WV 25755-2510.
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5.5 Trees/Forest Ecosystems

In this section we discuss the responses of trees and the overall biogeochemical
responses of forest ecosystems to N inputs, excluding the specific responses of my-
corrhizal fungi, lichens, or understory herbaceous plants. Forest ecosystems repre-
sent about a third of landcover in the United States (USFS 2001) and are significant
in Northern, Eastern, Tropical Wet, and Marine West Coast Forests, Northwestern
Forest Mountains, and Mediterranean California ecoregions.

5.5.1 Effects of Nitrogen Deposition

In northeastern forests, gradient studies demonstrate that N deposition enhances
growth in some fast-growing tree species, including many hardwoods with AMF
associations, whereas it slows growth in some EMF species (red spruce, red pine),
and has no detectable effect on still other species (Thomas et al. 2010). Similarly,
N deposition enhances survivorship in a few species capable of forming AMF asso-
ciations (black cherry, red maple, paper birch) and decreases survivorship in others,
all ectomycorrhizal (Thomas et al. 2010). Survivorship under chronic N deposi-
tion, and possibly other co-occurring pollutants such as ozone, is often dependent
on interactions with other stressors such as pests, pathogens, climate change, or
drought (Grulke et al. 2009; McNulty and Boggs 2010). Over the long-term, these
differential effects of N deposition on tree growth and survivorship are likely to
shift species composition, possibly to more nitrophilic species, similar to patterns
seen for organisms with shorter lifespans.

We have few data that show a major structural or functional shift in forest eco-
systems, due to the long response times of trees and forest soils to changes in N
inputs and N availability. This is caused by the relatively large pools of organic
N in the forest floor, mineral soil, tree biomass, and detritus. Because of the long
lag-time in response to N treatments, it can be difficult to determine the actual criti-
cal load of N for forest ecosystems based on short-term fertilization studies. If a
response is observed over a relatively short period of time (i.e. years), it is nearly
certain that the critical load is below the total N input at the treatment site and it can
be difficult to further constrain the critical load. It is expected that the more com-
plex and interconnected processes in forests will result in a higher critical load than
other ecosystem types, in part because large N storage pools give forest ecosystems
a greater capacity to buffer N inputs.

5.5.2 Critical Loads of Nitrogen

The range of critical loads reported for forest ecosystems is 4-39 kg N ha 'yr!
(Fig. 5.6; Table 5.1). The threshold N deposition value which caused increased
NOj3 leaching from forest ecosystems into surface water was 817 kg N ha™'yr™';
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Fig. 5.6 Map of critical loads for forest ecosystems by ecoregion in the United States (This map
does not include the responses of mycorrhizal fungi, lichens, or understory herbaceous plants
already represented; see Fig. 5.3 for legend explanations)

the lower end of the range representing Northern and Eastern Forests, the upper end
representing Mediterranean California mixed conifers (Fig. 5.6). At 4 kg N ha 'yr™!
in the Colorado Rockies, increasing NOj3 concentration was reported in the organic
horizon, which suggests incipient N saturation (Rueth and Baron 2002). The high-
est critical loads were reported for Mediterranean California mixed conifer forests
for forest sustainability and for soil acidification caused by increased N deposition.
These sites experience some of the highest N deposition reported in the United
States, up to approximately 70 kg N ha 'yr! (Fenn et al. 2008).

Critical loads for forests vary across ecoregions due in part to reported receptors,
site and soil characteristics, and background N deposition status. Critical loads val-
ues were lower for ecoregions where sensitive forest receptors, such as mycorrhizal
fungi (Marine West Coast Forests) were used to set critical loads. Use of forest
health and species composition resulted in a large range in critical loads in Northern
Forests and Mediterranean California. In the Northwestern Forested Mountains, the
critical load based on NOj leaching ranged from a low value of 4 kg ha™'yr™! in
subalpine forests to 17 kg ha™'yr ! in mixed conifer forests.

5.6 Freshwater and Wetland Ecosystems

Freshwater lakes and streams, and wetlands (freshwater and estuarine intertidal)
are ecosystem types that occur in most ecoregions in North America. In freshwater
lakes and streams, phytoplankton, algae that live in the water column, are sensitive



150 L. H. Pardo et al.

to the chemical environment in which they reside, and many species can be used as
indicators of the levels of nutrients or acidity because of individual species’ prefer-
ence for specific chemical conditions. Diatoms are used in this discussion because
there has been more work published on these algae than others, but other types of
algae also respond to N deposition (Lafrancois et al. 2004; Michel et al. 2006). Of
the wetlands which occur in the conterminous United States, 95 % are freshwater
and 5 % are estuarine or marine (USDI FWS 2005). The species composition differs
between freshwater and intertidal wetlands, although together they support more
than 4200 native plant species. Despite the high biodiversity, the effects of N load-
ing are studied in just a few plant species.

5.6.1 Effects of Nitrogen Deposition

For the analysis of nutrient N effects to freshwater lakes and streams, we relied
on papers and studies that linked aquatic biological and ecological response to
atmospheric deposition, but the results are consistent with laboratory or in situ dose-
response studies and even land use change studies. The productivity of minimally
disturbed aquatic ecosystems is often limited by the availability of N, and slight
increases in available N trigger a rapid biological response that increases productivity
and rearranges algal species assemblages (Nydick et al. 2004; Saros et al. 2005). The
mechanism for change is alteration of N:P ratios, which can increase productivity of
some species at the expense of others (Elser et al. 2009). As with the terrestrial sys-
tems described above, the nutrient responses of lakes and streams are most evident
where land use change and acidic deposition have been limited, thus most evidence
of exceedance of critical loads comes from high elevations of the western United
States (Baron et al. 2011). As with terrestrial plants, some diatoms respond rapidly
to an increase in available N. An example that has been observed from a number of
different lakes of the Rocky Mountains is dominance of two diatoms (Asterionella
formosa and Fragilaria crotonensis) in lakes with higher N, in contrast to the flora
of lakes with lower N deposition where there is a more even distribution, thus high
biodiversity, of diatoms. Higher trophic levels (zooplankton, macroinvertebrates)
may be secondarily affected by N, but further increases in primary, or autotrophic,
production will be limited by other nutrients such as P or silica (Si).

Both freshwater and estuarine intertidal wetlands tend to be N-limited ecosys-
tems (LeBauer and Treseder 2008; U.S. EPA 1993). Known responses to N enrich-
ment are generally derived from nutrient-addition studies in the field and observa-
tions along gradients of N deposition. A variety of ecological endpoints are evalu-
ated, such as altered soil biogeochemistry, increased peat accumulation, elevated
primary production, changes in plant morphology, changes in plant population
dynamics, and altered plant species composition (U.S. EPA 2008). In general, the
sensitivity of wetland ecosystems to N is related to the fraction of rainfall (a proxy
for atmospheric N deposition) in the total water budget. Most freshwater wetlands,
such as bogs, fens, marshes and swamps, have relatively closed water and N cycles,
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thus are more sensitive to N deposition than estuarine intertidal wetlands, such as
salt marshes and eelgrass beds (Greaver et al. 2011).

5.6.2 Critical Loads of Nitrogen

In general, critical loads for freshwater lakes and streams tend to be low, because
the target organisms are unicellular algae that respond rapidly to changes in their
chemical environment. The range of critical loads for eutrophication and acidity
in freshwaters is 2-9 kg N ha™'yr!' (Baron et al. 2011); the range reported for ter-
restrial ecosystems is much broader (Table 5.1; Fig. 5.7). Critical loads for NO3
leaching from terrestrial ecosystems ranged from 4-17 kg N ha™'yr~!, but many sen-
sitive freshwaters at high altitudes are found above the tree-line where few water-
shed buffering mechanisms exist, due to sparse vegetation, poorly developed soils,
short hydraulic residence time, and steep topography. These factors influence how
rapidly a system exhibits elevated N leaching in response to increased N deposition,
and how this increased N availability subsequently influences biota. In general,
lakes have relatively rapid N turnover times compared to soil N pools and are at
least seasonally well-mixed. They would thus be expected to have lower critical
loads. Thus responses of terrestrial plants would not be expected to be as rapid as
those of freshwater organisms.

Generally, freshwater wetlands are more sensitive to N deposition than es-
tuarine intertidal wetlands, with critical loads for freshwater wetlands that range

Empirical CL of N (kg ha™' y)

4 - 17 Northwest Forested Mountains
. 8  Northern Forests; Eastern Temperate Forests
. 10 - 17 Mediterranean California

10-25 Great Plains e

Uncertainty

[ ] Reliable
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Fig. 5.7 Map of critical loads for freshwater and wetland ecosystems based on increased nitrate
leaching by ecoregion in the United States (see Fig. 5.3 for legend explanations)
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from 2.7-14 kg N ha'yr! (Table 5.1; Greaver et al. 2011). The bryophyte genus
Sphagnum and the carnivorous pitcher plant are the two taxa most commonly stud-
ied. The critical loads reported for freshwater wetlands (Greaver et al. 2011) fall
between those reported for inland surface waters (Baron et al. 2011) and those re-
ported for terrestrial ecosystems (Pardo et al. 2011c). This pattern may be related
to the rate of N released by soils/sediment to the ecosystem. The critical load tends
to be higher for estuarine intertidal wetlands than other types of ecosystems be-
cause they have open nutrient cycles which are often strongly affected by N loading
sources other than atmospheric deposition. Based on field observations of N loading
effects on plant growth and species composition on salt marsh and eel grass habi-
tat, the critical load for estuarine intertidal wetlands ranges between 50400 kg N
ha 'yr! (Table 5.1).

5.7 Discussion and Conclusions

5.7.1 Effects of Nitrogen Deposition

The most significant changes that we are currently observing in the United States in
response to elevated N deposition are changes in species composition: losses of N-
sensitive species, shifts in dominance, and losses of native species in favour of exot-
ic, invasive species. Shifts in diatom and lichen community composition away from
N-intolerant (oligotrophic) species are observed across the country. Alterations in
herbaceous species are broadly observed, but are not always clearly documentable
because of the long-term pollution inputs and other disturbances (including land-
use change) that caused changes prior to the initiation of careful observations.

Numerous examples illustrate the significance of these species- and community-
level effects. In serpentine grasslands in California, it was clearly demonstrated that
unless N inputs are decreased or N is removed in biomass, a larval host plant and
numerous nectar source plants utilized by a threatened and endangered butterfly
will decrease to levels unable to sustain the checkerspot butterfly population (Fenn
et al. 2010; Weiss 1999). In Joshua Tree National Park in southern California, N
deposition favours the production of sufficient invasive grass biomass to sustain
fires that threaten the survival of the namesake species (Fenn et al. 2010; Rao et al.
2010). Other sensitive ecosystems include alpine meadows, where relatively low
levels of N deposition have already changed species composition (Bowman et al.
2006). Changes in historical diatom community composition from N-limited to N-
tolerant species have been observed in lake sediment cores at many locations in the
western United States, providing early evidence of freshwater ecosystem eutrophi-
cation (Wolfe et al. 2001; 2003).

Changes in ecosystem structure are linked to changes in ecosystem function.
For example, extirpation of lichens can alter food webs by reducing the availabil-
ity of nesting material for birds, invertebrate habitat, and critical winter forage for
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mammals, and can also affect nutrient cycling (Cornelissen et al. 2007). In some
arid low-biomass California ecosystems, N-enhanced growth of invasive species
results in increased fire risk, even in areas where fire is normally infrequent (Allen
etal. 2009; Fenn et al. 2010; Rao et al. 2010).

There is also evidence of N deposition contributing to multiple stress complexes,
resulting in reduced forest sustainability (Grulke et al. 2009; McNulty and Boggs
2010). In North Carolina, elevated N deposition predisposed a pine ecosystem to
a pest outbreak following a drought (McNulty and Boggs 2010). These types of
complex interactions may be difficult to predict, but may intensify the impact of
elevated N deposition in concert with other stressors, including climate change
(Wu and Driscoll 2010). Further examples of changes in ecosystem structure and
function are observed in coastal areas, where increased N export has led to toxic
algal blooms (Rabalais 2002). As an example of N deposition effects on trace gas
chemistry and climate change, N loading to ecosystems results in increased emis-
sions of N trace gases, such as NO (nitric oxide, an ozone precursor), N,O (nitrous
oxide, a long-lived and powerful greenhouse gas); as well as declines in soil up-
take of CH, (methane, another long lived and powerful greenhouse gas) (e.g. Liu
and Greaver 2009).

5.7.2 Relative Sensitivities of Different Receptors, Ecosystem
Types, and Regions

This synthesis demonstrates that empirical critical loads of N differ among life
forms, tending to increase in the following sequence: diatoms < lichens and bryo-
phytes < mycorrhizal fungi < herbaceous plants and shrubs < trees. Nitrogen deposi-
tion more rapidly affects those species that experience the most direct exposure to
elevated N levels in the atmosphere (lichens and bryophytes) or receiving waters
(diatoms), especially for those organisms that lack protective structures. By con-
trast, the capacity of soil organic matter to accumulate large quantities of N may
delay adverse impacts on many herbs, shrubs, and trees. Altered N availability of-
ten appears to shift species composition most rapidly within those communities
dominated by species with short lifespans (diatoms) compared to those with long
lifespans (trees).

Critical loads vary more by receptor and response type than by region. For the
same response of a given receptor, the western U.S. has generally similar critical
load values to the eastern U.S., with the apparent exception that the critical load for
NOj leaching is approximately twice as high in Mediterranean California mixed
conifers compared to northeastern forests (Fig. 5.7). In contrast, the critical load for
NOj leaching in high elevation catchments in the Colorado Front Range are lowest
in the U. S., likely attributable to low biological N retention and storage capacity
in these steep, rocky catchments (Baron et al. 2000; Fenn et al. 2003a, b; Sickman
et al. 2002; Williams and Tonnessen 2000).
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5.7.3 Factors Affecting the Critical Load

Multiple abiotic and biotic factors affect the critical load (Table 5.2). Abiotic influ-
ences include a range of climatic, hydrologic, and soil factors that can affect the
timing and magnitude of N delivery to sensitive receptors. Climatic factors include
temperature, precipitation amount and distribution, and the extent and rate of cli-
mate change. Hydrologic factors include catchment size, topographic relief, and
flow path. Soil factors include soil type, age, depth, coverage, and parent material.
Disturbance—forest fires or cutting—and past agricultural use can also affect soil
N and thus the critical load.

Biological factors likely to contribute to lower critical loads of N include par-
ticularly sensitive species (diatoms, lichens, mycorrhizal fungi, certain plants),
single species versus community responses, low biomass and low productivity
ecosystems, short lifespan of receptor of concern, presence of invasive species,
and presence of ozone-sensitive species (Fenn et al. 2008; Grulke et al. 1998,
2009; Grulke and Balduman 1999). For example, low-biomass ecosystems (e.g.,
grasslands, coastal sage scrub, desert) are more sensitive to N-enhanced growth
of invasive species, if invasive pressure occurs. These low-biomass ecosystem
types sometimes occur because of warm and dry climatic conditions. Because
warmer temperatures often correspond to greater metabolic rates, longer periods
of biological activity, greater biomass, and more rapid N cycling, one might ex-
pect that the critical load would increase with increasing temperature as has been
suggested in Europe (Bobbink et al. 2003). We do not observe such a pattern
across U.S. ecoregions in the critical loads reported in this synthesis, but Europe
does not have warm and dry deserts with low critical loads as does the U.S. Note,
however, that the uncertainty of the critical load estimates varies and is often
fairly high, which may make it difficult to discern patterns in critical load values
across regions. Moreover, a temperature pattern may be confounded by gradients
in deposition form and quantity, moisture and elevation.

5.7.4 Comparison to Critical Loads in Europe

The range of critical loads of N deposition in U.S. ecoregions for terrestrial eco-
systems is 1-39 kg N ha 'yr'!, which is close to the range for the most recently
reported critical loads values for similar ecosystems in Europe (Bobbink and Hettel-
ingh 2011). However, the low end of the critical loads range is nearly always lower
in the U.S. than in Europe (Fig. 5.8; Table 5.3). There are several potential reasons
why critical loads for the U.S. remain lower than European critical loads. These
includes greater availability of pristine baselines in the U.S., more intensive land
use in Europe; greater dominance of N deposition by reduced forms of N in Europe,
and different threshold criteria.
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Fig. 5.8 Comparison of empirical critical loads of nutrient nitrogen for Europe. (based on Bob-
bink and Hettelingh 2011) and the United States

Availability of Pristine Baselines and Studies at Low Deposition: Because of high
historic deposition levels, many European systems lack pristine baseline ecosys-
tems as a reference to compare to those experiencing elevated N deposition. For
example, past European critical loads for lichens were much higher than those in the
U.S. (Bobbink et al. 2003). These loads were influenced by study sites in Scotland
experiencing a deposition gradient from 10-22 kg N ha 'yr™! from which critical
loads were set at 11-18 kg N ha 'yr ! (Mitchell et al. 2005). However, no oligotro-
phic species were observed, presumably because they were eliminated prior to the
initial studies. The more recently reported European critical loads (Bobbink and
Hettelingh 2011), used in our comparison, were set at 5-10 kg N ha 'yr!. In some
European ecosystems, such as dry grass lands, there is, however, still a need for
more low N addition and deposition experiments (Bobbink and Hettelingh 2011).
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Land Use: Alarger fraction of the forested landscape in Europe is heavily managed
(harvested and planted) relative to the U.S. High rates of harvest removals of N in
biomass, creating greater N demand and storage during re-establishment of the for-
est stand could contribute to higher critical loads in Europe than the U.S.

Forms and Mode of Measurement of N inputs: NHj inputs tend to be higher
and represent a greater proportion of total N inputs in Europe, particularly in past
decades; this is changing in the U.S. Some receptor species can be more sensitive
to reduced than to oxidized forms of N inputs, and nitrification of NH} inputs can
accelerate ecosystem acidification relative to inputs of NOJ .

Threshold Criteria: Another possible explanation for the higher critical loads is
that the response thresholds utilized in Europe are sometimes higher. For example,
choosing a threshold of a shift in lichen community composition will produce a
much lower critical load than a threshold of near extirpation of lichen species as
used in earlier European work (Bobbink et al. 2003). As a second example, choos-
ing a threshold of initial changes in N biogeochemistry in the Colorado Front
Range, interpreted as incipient responses of N saturation, led to a critical load <4 kg
N ha'yr! (Rueth et al. 2003). This is a subtle initial N enrichment response when
compared to the magnitude of change (a later stage of N saturation) for the critical
loads thresholds in Europe (10-15 kg ha™'yr!). Finally, much of the same research
was used to set critical loads for both European and U.S. tundra and taiga ecosys-
tems (Bobbink and Hettelingh 2011; Pardo et al. 2011c¢). The difference in the criti-
cal loads for these ecosystems is primarily due to different threshold criteria.
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