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Abstract The condition of tree crowns is an important
indicator of tree and forest health. Crown conditions
have been evaluated during inventories of the US
Forest Service Forest Inventory and Analysis (FIA)
program since 1999. In this study, remeasured data from
55,013 trees on 2616 FIA plots in the eastern USAwere
used to assess the probability of survival among various
tree species using the suite of FIA crown condition
variables. Logistic regression procedures were
employed to develop models for predicting tree surviv-
al. Results of the regression analyses indicated that
crown dieback was the most important crown condition
variable for predicting tree survival for all species com-
bined and for many of the 15 individual species in the
study. The logistic models were generally successful in
representing recent tree mortality responses to multiyear
infestations of beech bark disease and hemlock woolly
adelgid. Although our models are only applicable to
trees growing in a forest setting, the utility of models
that predict impending tree mortality goes beyond forest

inventory or traditional forestry growth and yield
models and includes any application where managers
need to assess tree health or predict tree mortality in-
cluding urban forest, recreation, wildlife, and pest
management.

Keywords Tree crown health . Tree mortality . Forest
inventory . Adelges tsugae . Beech bark disease . Forest
health

Introduction

An important indicator of the health of a tree is the
condition of its crown. The US Forest Service Forest
Inventory and Analysis (FIA) program uses visual as-
sessments of tree crown condition to monitor trends in
forest health. Trees with vigorous, healthy crowns tend
to have higher growth rates. By contrast, trees with
damaged or degraded crowns have a reduced capacity
for photosynthesis and slower growth rates. Many
stressors have been correlated with crown degradation
including insects, disease, weather events, senescence,
competition (Kenk 1993), and atmospheric deposition
(Duarte et al. 2013). Additionally, trees with unhealthy
crowns are more susceptible to mortality (Kulman 1971;
Lawrence et al. 2002).

Assessments of tree crown conditions have been
conducted by the US Forest Service Forest Health
Monitoring (FHM) program since 1990 and as a part
of FIA since 1999 (Riitters and Tkacz 2004).

Environ Monit Assess  (2015) 187:87 
DOI 10.1007/s10661-015-4332-x

R. S. Morin (*)
USDA Forest Service, Northern Research Station, 11 Campus
Blvd., Suite 200, Newtown Square, PA 19073, USA
e-mail: rsmorin@fs.fed.us

K. C. Randolph
USDA Forest Service, Southern Research Station, 4700 Old
Kingston Pike, Knoxville, TN 37919, USA

J. Steinman
USDA Forest Service, Northeastern Area State and Private
Forestry, 11 Campus Blvd., Suite 200, Newtown Square, PA
19073, USA



Preliminary analyses of crown condition data through
the FHM program demonstrated the data’s utility in
classifying tree health and likelihood of survivorship,
with crown dieback as the best indicator of crown con-
dition (Steinman 2000), but this study was limited in
geographic scope and volume of remeasurement data.
Since 2001, the following crown health indicators have
been consistently assessed for live overstory trees (DBH
≥12.7 cm) within the US network of FIA plots:
uncompacted live crown ratio (UNCR), crown light
exposure (CL), crown density (CDEN), crown dieback
(CDBK), and foliage transparency (TRANS)
(Schomaker et al. 2007). Results from crown condition
data have been presented as frequency statistics for
individual crown indicators (e.g., Randolph et al.
2010), quantification of crown health based on compos-
ite crown indicators (Zarnoch et al. 2004), summaries of
tree health by species in FIA 5-year reports (e.g.,
Widmann et al. 2012), and more specific analyses in-
vestigating changes in forest health (e.g., Morin et al.
2004; Will-Wolf and Jovan 2009).

A model that predicts impending tree mortality
would have utility beyond forest inventory or traditional
forestry growth and yield models. Other uses could
include early detection of pest presence, prediction of
pest impacts, assessment of the impacts of atmospheric
deposition or climate change, urban tree management,
recreation management, and wildlife management. Such
a model could be used anywhere managers need to
assess tree health or predict tree mortality. The objective
of this study is to develop probability models of tree
survival for common tree species in the eastern USA
using crown health measurements. Application of the
models is demonstrated by comparing the observed and
model-predicted mortality rates for American beech
(Fagus grandifolia) and eastern hemlock (Tsuga
canadensis) in areas affected by beech bark disease
(BBD) and the hemlock woolly adelgid (HWA)
(Adelges tsugae Annand), respectively.

BBD is an insect-fungus complex involving the non-
native beech scale insect,Cryptococcus fagisuga, which
feeds on bark fluids from stems of American beech,
providing an opportunity for the native canker fungi
Neonectria faginata and Neonectria ditissima
(Castlebury et al. 2006) to invade the inner living bark
and cambium leading to dieback and mortality (Mize
and Lea 1979; Houston 1994). The beech scale insect
was accidentally introduced with live plants imported to
Halifax, Nova Scotia from Europe, in the 1890s

(Houston 1994). The scale insect has since slowly
spread (~15 km/year) into the New England states,
NewYork, Pennsylvania, andWest Virginia, and several
discontinuous Bjumps^ have transported it into North
Carolina, Tennessee, and Michigan (Fig. 1a) (Morin
et al. 2007; Wieferich et al. 2013). Three phases of
BBD are generally recognized: (1) the Badvancing
front,^ which corresponds to areas recently invaded by
scale populations, (2) the Bkilling front,^ which repre-
sents areas where fungal invasion has occurred (typical-
ly 3–5 years after the scale insects appear, but some-
times as long as 20 years) and tree mortality begins, and
(3) the Baftermath forest,^ which are areas where the
disease is endemic (Shigo 1972; Houston 1994).

HWA, native to East Asia, may have been introduced
to the eastern USA as early as 1911; however, the first
report of its presence was in Richmond, VA, in 1951
(Havill and Montgomery 2008). Since then, it has slow-
ly expanded its range at 8–30 km/year (Fig. 1b) (Evans
and Gregoire 2007; Morin et al. 2009). In areas where
the species has established, populations often reach high
densities, causing widespread defoliation and some-
times mortality of hemlock (McClure et al. 2001;
Orwig et al. 2002).

Models could have been adjusted for specific geo-
graphic areas (e.g., the different duration classes for
BBD and HWA), but that is beyond the scope of this
paper. Our intention was to develop a general model for
the entire eastern USA as well as provide a technique
that could be employed for specific species, geographic
areas, or other applications.

Methods

FIA data

FIA inventory plots are permanently located across the
USA and consist of a cluster of four 7.2-m fixed radius
subplots with subplot centers located 36.6 m apart. Plots
on which tree crown conditions are assessed are spatial-
ly distributed so that the sampling intensity is one plot
per approximately 38,850 ha (Bechtold and Patterson
2005). Crown conditions are assessed on all live trees
≥12.7 cm DBH on each subplot. The five crown condi-
tion variables included in this summary are (1)
UNCR—the length of a tree that supports live foliage
relative to the actual tree length; (2) CL—the amount of
direct sunlight that a tree receives when the sun is
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directly overhead; (3) CDEN—the amount of crown
branches, foliage, and reproductive structures that
blocks light visibility through the projected crown out-
line; (4) CDBK—the recent mortality of branches with
fine twigs, which begins at the terminal portion of a
branch and proceeds inward toward the trunk; and (5)

TRANS—the amount of skylight visible through the
live, normally foliated portion of the crown, excluding
dieback, dead branches, and large gaps in the crown
(Schomaker et al. 2007).

All five variables were visually assessed during the
full leaf-on season (typically June through August).
UNCR, CDEN, CDBK, and TRANS were measured
in 5 % increments and recorded as a two-digit code: 00,
05, 10 … 99, where the code represents the upper limit
of the class; e.g., 1 to 5 % is code 05 and 96 to 100 % is
code 99. When assessing CL, field crews visually di-
vided the crown into five sections—four equal vertical
quarters, i.e., faces or Bsides,^ and the top—and rated
the crown with a value ranging from zero to five de-
pending on the number of sections exposed to direct
sunlight. Within a species, higher crown density values,
lower foliage transparency values, and lower crown
dieback values typically are associated with better tree
health. More detailed descriptions of the crown condi-
tion indicator data collection protocol and data analysis
procedures are available in Schomaker et al. (2007).

Tree species and crown conditions for all live trees
(DBH ≥12.7 cm) measured between 2001 and 2005
(time t1), along with matching crown condition and tree
status (live or dead) data from 2006 to 2010 (time t2),
were obtained from the FIA database (Woudenberg et al.
2010). All plots were remeasured at a 5-year interval.
Inventory data from all states east of, and including,
North Dakota, South Dakota, Nebraska, Kansas,
Oklahoma, and Texas were included in the study.
Trees that were cut and removed between times t1 and
t2 were not included. The data were divided into two
sets, 75% for model building and 25% for model cross-
validation. The cross-validation dataset was selected
randomly from the complete dataset. The final model
was built using the full dataset.

BBD and HWA infestation data

To assess the usefulness of the models for detecting or
predicting mortality induced by invasive pest activity,
historical county-level records of the year of initial
beech scale insect (C. fagisuga) and HWA establishment
were obtained for all counties with these infestations
(Fig. 1). Infestation records were made by the US
Forest Service, Northeastern Area State and Private
Forestry work unit in Morgantown, WV, and are avail-
able online (BBD, http://na.fs.fed.us/fhp/bbd/
infestations/infestations.shtm; HWA, http://na.fs.fed.us/

A

B

Fig. 1 a Map of the historical spread of the beech scale insect in
the eastern USA. bMap of the historical spread of hemlockwoolly
adelgid in the eastern USA
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fhp/hwa/infestations/infestations.shtm). These data
were not based upon systematic surveys, and therefore,
slight inconsistencies may exist among years and states
in how HWA and beech scale populations were
detected. Although these records are based on
establishment of the beech scale insect that transmits
the canker fungi that cause BBD, we generally refer to
BBD throughout the remainder of the paper. Based on
county location, all American beech and eastern
hemlock trees from the FIA database were assigned a
duration of infestation based on the number of years
between the initial BBD or HWA infestation and the
year 2000.

Data analysis

Logistic regression

Tree status from times t1 and t2 was used to classify each
tree as either a survivor or mortality tree, and the prob-
ability of survival was modeled using the logistic equa-
tion:

P survivalð Þ

¼ exp b0þ b1X1þ b2X2þ b3X3þ b4X4þ b5X5ð Þ
1þ exp b0þ b1X1þ b2X2þ b3X3þ b4X4þ b5X5ð Þ

where X1 through X5 are distinct independent variables
and b0 through b5 are the regression coefficients. The
crown variables—UNCR, CDEN, CDBK, CL, and
TRANS—were the only independent variables included
in the model. Regular linear regression including toler-
ance and variance inflation diagnostics were used to test
for multicollinearity. None was observed because toler-
ance was above 0.4 in all cases (Allison 1999). Several
other tree-level and stand-level attributes (DBH, relative
density, stand age, and stand basal area) were included
initially, but none was found to be statistically signifi-
cant predictors (α=0.05), so theywere dropped from the
models. A standard logistic regression procedure would
not account for correlation among trees of the same
species within a plot. Therefore, the PROC
SURVEYLOGISTIC procedure (SAS Institute 2009)
was used to address this lack of independence among
trees sampled on the same plot.

Model goodness-of-fit was evaluated with the area
under the receiver operating characteristic (ROC) curve,
max-rescaled R2, and percent accuracy of survivor clas-
sification. The usual application of logistic regression

probabilities for classification is to assign each tree as
live or dead based on the one with the higher predicted
probability (i.e., the one with a probability above 0.5).
However, this method did not work well for these data,
where it was found that mortality was underpredicted
based on the 0.5 probability threshold. This is likely to
be due to the rarity of mortali ty occurring.
Consequently, decision thresholds (another term for the-
se are probability cut points) were applied to perform the
classification based on the predicted values from the
logistic regression models. Several methods for
selecting cut points have been proposed when using
logistic regression as a dichotomous classifier (Greiner
et al. 1995; Swets et al. 1979; Yarnold et al. 1994), but
the most appealing method depends on criteria specific
to a given study (e.g., the tolerance for misclassified
observations). For this analysis, cut points were needed
to differentiate between the two categories. Cut points
were selected based on the probabilities associated with
the observed proportion of trees that died between times
t1 and t2. These cut points were then used to determine
which trees died when the models were applied to the t2
surviving trees to predict mortality at t3. The difference
between the observed past mortality (t1 to t2) and pre-
dicted future mortality (t2 to t3) is referred to as the
change in mortality (Δm). Although it cannot be tested,
our assumption is that mortality rates between t3 and t2
will be similar to those observed between t2 and t1 based
on the crown measurements. The purpose of examining
Δm is to look for differences in the trajectory of crown
health between species and between pest infestation
categories for beech and hemlock.

Example applications (BBD and HWA)

The American beech and eastern hemlock trees were
stratified into groups based on duration of infestation by
BBD and HWA, respectively. For BBD, these groups
were 0, 1 to 15, 16 to 39, and ≥40 years and, for HWA,
0, 1 to 15, 16 to 25, and >25 years. The BBD classes
were selected to correspond to the recognized phases of
BBD invasion: (1) the advancing front, (2) the killing
front, and (3) the aftermath forest (Shigo 1972; Houston
1994). We chose similar classes for HWA to determine
if mortality progression would be comparable to BBD,
but the largest class is of a shorter duration due to
HWA’s more recent invasion. Our expectation was that
mortality over the next 5 years would be greater in
groups with longer infestations. Thus, the logistic
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models with cut points were applied to the crown mea-
surements to see if this was indeed the case. In addition
to the BBD and HWA application, the logistic models
with cut points also were applied to crown measure-
ments of the t2 surviving trees.

Results

A total of 55,013 trees were measured on 2616 FIA
plots between 2001 and 2005 and remeasured between
2006 and 2010. The number of plots in each state ranged
from 2 in Rhode Island to 202 in Minnesota. Parameter
estimates based on the validation dataset were within
10% of the estimates based on the model-fitting dataset,
and the confidence intervals associated with the param-
eters overlapped in all cases. Therefore, the validation
and model-building datasets were pooled, and the final
model was built with the full dataset. Additionally,
accuracy statistics were nearly identical for the full and
validation datasets, but in both cases, the poor accuracy
in predicting mortality highlights the need for using the
cut point method (Table 1). Fifteen species had more
than 1000 observations before the 25% cross-validation
dataset was removed (Table 2).

Logistic regression

For all species combined, we found all crown variables
to be significant (P<0.05) for predicting survival; for
each species individually, we found CDBK to be signif-
icant (P<0.05) for all species except loblolly pine, yel-
low poplar, and eastern white pine (Table 3). TRANS
was significant for only two species, American beech
and northern red oak. CDEN was the only variable
significant for the yellow poplar model. The area under
the ROC curve is provided for the classification models

as an indicator of classification accuracy (Table 3). An
ROC value of 0.5 occurs when the classification is no
better than random prediction; a value of 1.0 indicates
perfect classification accuracy. A rough guide to inter-
pretation is given by Fischer et al. (2003): ROC area
greater than 0.9≈high accuracy, 0.7–0.9≈moderate ac-
curacy, and 0.5–0.7≈low accuracy. To judge the relative
importance of the variables, chi-square values are given
in Table 3. ROC values for all but two species indicated
Bmoderate classification accuracy^ (Table 3).

Parameter estimates conform to expectations in near-
ly all cases. The coefficient of CDBK is negative in all
cases (Table 2), indicating decreasing survival with in-
creasing CDBK. Similarly, the coefficient of TRANS is
negative in all significant cases, indicating decreasing
survival with increasing TRANS. Except for CL in the
models for balsam fir and eastern hemlock, the coeffi-
cients of the other significant variables are all positive,
which indicates increasing survival with increases in
that crown variable (Table 2).

The chi-square statistics in Table 3 reveal that the
most important variable for all species combined and
about half the species individually is CDBK. The sec-
ond most important variable for all species combined is
CDEN, and it is also the most important for sugar maple,
sweetgum, and yellow poplar. Beyond CDBK, there is
no consistency in the variable rankings in terms of
importance among the species.

The models underpredicted mortality for all species,
but there were some differences in the magnitude of the
underprediction (Table 4). The differences do not appear
to be related to observed proportions of mortality or
silvical characteristics of the species. For example, the
models with the highest accuracy based on the propor-
tion of trees that died were northern red oak, balsam fir,
red maple, and quaking aspen. Two of these, balsam fir
and quaking aspen, had the highest percentage of trees
that died in the observed data. However, the other two,
northern red oak and red maple, had low mortality
proportions in the observed data relative to the other
species.

Cut points

To apply a mortality proportion that matched the ob-
served data, probability cut points were implemented to
perform the classification (Table 5). The underrepresen-
tation of mortality prediction (t1 to t2) in our models
required us to reduce probability cut points from the

Table 1 Accuracy statistics (% correct) for full and validation
datasets

Dataset Observed
status (t2)

Predicted
dead

Predicted
alive

Accuracy Overall
accuracy

Full Dead 330 3982 7.7 92.5

Alive 138 50,563 99.7

Validation Dead 85 984 8.0 92.6

Alive 42 12,837 99.7
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usual application of logistic regression probabilities
where dichotomous classification is selected as the one
with a probability above 50 %. Probability cut points
ranged from 0.0655 for white oak to 0.2676 for balsam
fir (Table 4). The difference (Δm) between predicted
mortality proportions of surviving trees (t2 to t3) from
the applied logistic models with selected cut points was
within 4 % of the observed mortality proportions (t1 to
t2) in all cases (Table 5). Balsam fir and loblolly pine had
the largest Δm; conversely, quaking aspen had the
smallest Δm.

BBD and HWA

Although the predicted level of mortality (t2 to t3) across
the range of American beech and eastern hemlock was
similar to the observed proportion (t1 to t2), there was
variation between the groups of trees in duration of
BBD and HWA categories (Table 5). Interestingly, Δm
was 4 % in areas that have not been uninfested with
BBD for less than 15 years and −2 % where BBD has

been present for more than 15 years (Table 5). By
contrast, Δm for eastern hemlock was approximately
−1 % in areas that were uninfested with HWA or
infested for less than 15 years and slightly higher than
observed in areas where HWA has been present for more
than 15 years. The predicted mortality rate generally
increased with the increasing duration of infestation by
BBD and HWA.

Discussion

The results of this study highlight the usefulness of FIA
crown measurements to predict survival with logistic
regression. Parameter estimates conform to expectations
in nearly all cases. The coefficient of CDBK is negative
in all cases (Table 2), indicating decreasing survival with
increasing CDBK. CDBK was the most important
crown condition variable for predicting tree survival
for all species combined and for many of the 15 indi-
vidual species in the study. CDBK is defined as recent

Table 3 Performance of the logistic regression model of tree survival by species based on receiver operating characteristic (ROC) curve
area, max-rescale R2 value, and chi-square values for the parameter estimates in Table 2

Species ROC curve
area

Max-rescaled Chi-square statistic

R2 Variable

Intercept CDBK UNCR CDEN CL TRANS

All species 0.702 0.1276 28 253 88 188 36 15

Red maple 0.772 0.2180 50 19 40 20

Loblolly pine 0.661 0.0609 7 10

Sugar maple 0.804 0.2073 17 11 30 9

White oak 0.739 0.1858 10 24

Northern white-cedar 0.724 0.1207 4 15 4

Balsam fir 0.758 0.2090 23 38 9 9

Quaking aspen 0.708 0.1706 19 5 14

Sweetgum 0.688 0.1224 9 7 17

Northern red oak 0.780 0.2652 17 5 19

Paper birch 0.715 0.1380 6 5 11

Yellow poplar 0.743 0.1433 30

Black cherry 0.705 0.1380 26 10

Eastern white pine 0.769 0.1618 7

American beech 0.753 0.1627 6 9 4

Eastern hemlock 0.825 0.1914 15 5

CDBK crown dieback, UNCR uncompacted live crown ratio, CDEN crown density, CL crown light exposure, TRANS foliage transparency
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mortality of branches, and it generally increases with
severe stresses including damage to roots, stem damage
that interferes with moisture and nutrient transport, di-
rect crown injury, severe defoliation, or leaf scorch
(Schomaker et al. 2007). A previous study by
Steinman (2000) also identified crown dieback as the
best predictor of tree mortality. However, the measure-
ment period in that study was 1 year, and the geographic
scope was limited to 15 states. Crown dieback has
previously been positively correlated with tree stressors
including wood borers (Fan et al. 2008), insect defolia-
tors (Morin et al. 2004), water stress (Randolph et al.
2012), drought (Hogg et al. 2008), and atmospheric
deposition (Duarte et al. 2013).

Similarly, the coefficient of TRANS is negative in the
most significant cases, indicating decreasing survival
with increasing TRANS. However, TRANS was only
significant in three models (Table 2). This lack of pre-
dictive capability of mortality is not surprising given
that the TRANS variable has most often been correlated
with insect defoliation (Korb et al. 1992; Kulman 1971).
Additionally, Allen et al. (1992) reported that following
a single year of pear thrips (Taeniothrips inconsequens
Uzel) defoliation, TRANS of sugar maple in Vermont

and Massachusetts actually decreased by 75 % or more
in the following year. Thus, a flush of foliage following
a severe defoliation event may show up as improved
crown condition when measured by the TRANS
assessment.

By contrast, the coefficients of the other significant
variables are all positive, which indicates increasing
survival with increases in the crown variable, except
for CL in the models for balsam fir and eastern hemlock
(Table 2). Because balsam fir and eastern hemlock are
the only two conifers included in the study that are
classified as very shade tolerant (Burns and Honkala
1990), the negative relationship between survival and
CL is not surprising. The decrease in survivability could
be a function of increased competition from other less
tolerant species (Klooster et al. 2007; Kobe et al. 1995;
Luo and Chen 2011).

Balsam fir and loblolly pine were the only two spe-
cies with Δm of 3 %t or greater. The predicted increase in
balsam fir mortality could reflect declining crown health
related to balsam woolly adelgid (Adelges piceae
Ratzeburg) impacts in Maine and New Hampshire in
the mid-2000s as well as intraspecific competition or
competition from shade-tolerant hardwoods (Burns and

Table 4 Proportion of mortality, classification accuracy, and cut point probabilities for all species combined and individually for species
with at least 1000 observations

Species N live
trees (t1)

% Mortality
observed
(t1 to t2)

% Mortality
predicted without
cut points (t1 to t2)

% Classification
accuracy
(without cut points)

Cut point
probability

% Mortality
predicted with
cut points (t1 to t2)

All species 55,013 7.87 0.84 10.71 0.1360 7.74

Red maple 5324 5.90 1.01 17.09 0.1416 4.53

Loblolly pine 4554 5.67 0.09 1.52 0.1121 8.69

Sugar maple 3205 3.48 0.46 13.16 0.1192 3.03

White oak 2119 3.04 0.47 15.38 0.0655 3.13

Northern white-cedar 1962 3.52 0.31 8.70 0.0789 3.46

Balsam fir 1603 17.72 3.56 20.07 0.2676 21.55

Quaking aspen 1536 17.45 3.06 17.54 0.2331 14.41

Sweetgum 1329 6.40 0.51 8.05 0.1176 7.19

Northern red oak 1284 5.04 1.47 29.23 0.1016 3.37

Paper birch 1290 16.20 2.33 14.35 0.2263 14.76

Yellow poplar 1147 6.83 0.58 8.54 0.1507 8.31

Black cherry 1116 8.07 1.24 15.38 0.1293 8.98

Eastern white pine 1089 6.89 0.64 9.33 0.1485 6.33

American beech 1041 7.92 1.13 14.29 0.1518 7.22

Eastern hemlock 1032 2.42 0.39 16.00 0.0767 3.62

t1 includes years 2001 to 2005. t2 includes years 2006 to 2010
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Honkala 1990). Loblolly pine decline, which typically
causes declining crowns (Eckhardt et al. 2007) and has
been reported in plantations throughout the southeastern
USA (Eckhardt et al. 2010), may be associated with the
predicted increase in loblolly pine mortality. The varia-
tion in Δm among the American beech infestation cate-
gories corresponds with the recognized phases of BBD.
In our study, the 1–15-year infested category may reflect
the killing front where mortality is still increasing.
Conversely, the 16–39- and ≥40-year categories repre-
sent the aftermath forest where mortality has actually
begun to decrease after the advancing and killing front
phases.

The accuracy of the models may have been affected
by the frequency with which the tree crowns were
assessed. All of the crown condition variables were
developed by the FHM program that, before 1999,
conducted surveys on an annual basis. Since 1999,
however, the FIA program has conducted the surveys
on a cycle of 5 years across most of the eastern USA

(Riitters and Tkacz 2004). The 5-year remeasurement
interval should be adequate for detecting forest health
problems that cause slow crown deterioration, but it may
be too long for detecting rapid declines. Thus, the poor
predictive power of the models before implementing the
cut points may be due, in part, to trees that at t1 had
healthy crowns but rapidly declined and succumbed to
mortality before t2.

Conclusion

The utility of models that predict impending tree mor-
tality goes beyond forest inventory or traditional forestry
growth and yield models. Invasive insects and diseases,
atmospheric deposition, drought, and other biotic and
abiotic disturbances have important implications for
forest management and policy due to the often severe
impacts that they have on growth and mortality of host
trees. Understanding the relationship between the health

Table 5 Proportion of mortality
for predictions from logistic
models applied to surviving trees
using the selected cut points

American beech and eastern
hemlock data are also presented in
beech bark disease (BBD) and
hemlock woolly adelgid (HWA)
duration of infestation categories.
t2 includes years 2006 to 2010. t3
includes years 2011 to 2015.Δm is
the difference between the pre-
dicted future mortality and the
observed past mortality

Species N live
trees (t2)

% Mortality
predicted (t2 to t3)

% Mortality
observed (t1 to t2)

Δm (t2 to t3)-
(t1 to t2)

All species 50,593 7.74 7.87 −0.1
Red maple 4996 4.53 5.90 −1.4
Loblolly pine 4293 8.69 5.67 3.0

Sugar maple 3086 3.03 3.48 −0.5
White oak 2047 3.13 3.04 0.1

Northern white cedar 1893 3.46 3.52 −0.1
Balsam fir 1319 21.55 17.72 3.8

Quaking aspen 1268 14.41 17.45 −3.0
Sweetgum 1244 7.19 6.40 0.8

Northern red oak 1216 3.37 5.04 −1.7
Paper birch 1081 14.76 16.20 −1.4
Yellow poplar 1069 8.31 6.83 1.5

Black cherry 1016 8.98 8.07 0.9

Eastern white pine 1014 6.33 6.89 −0.6
American beech 956 7.22 7.92 −0.7

BBD—uninfested 204 3.21 3.03 0.2

BBD—1–15 years 124 6.45 2.36 4.1

BBD—16–39 years 252 9.13 11.23 −2.1
BBD—≥40 years 376 8.51 10.05 −1.5

Eastern hemlock 1010 3.62 2.42 1.2

HWA—uninfested 750 1.47 2.34 −0.9
HWA—1–15 years 225 1.33 2.17 −0.8
HWA—>15 years 35 5.71 5.41 0.3
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of host tree crowns and biological invasions may allow
for early detection of pest presence and activity or
prediction of future mortality levels. Although our
models are only applicable to trees growing in a forest
setting, mortality models that are based upon crown
health indicators could be used anywhere managers
need to assess tree health or predict tree mortality. For
example, to project urban tree population effects, mor-
tality rates must be known (Nowak et al. 2004) in order
to prepare for future removals and replacements.
Likewise, recreationmanagement depends onmanaging
trees in parks, campgrounds, and along trails where
identifying hazard trees and maintaining aesthetic qual-
ity are important. Finally, wildlife managers may be
interested in identifying potential snag trees that provide
more cavities than live trees (Fan et al. 2003). The BBD
and HWA examples reported here demonstrate this po-
tential. In both cases, the correspondence between pro-
portion of mortality increases (Δm) and duration of in-
festation categories is similar to increases in mortality
associated with BBD and HWA estimated from regional
forest inventory data (Morin and Liebhold 2015). Once
the third cycle of remeasurement has been completed in
2017, further analysis can be performed to quantify the
differences between mortality rates over two remeasure-
ment cycles.
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