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Abstract. We have simulated the radiant emission spectra from wildland fires such as would be observed at a scale
encompassing the pre-frontal fuel bed, the flaming front and the zone of post-frontal combustion and cooling. For these
simulations, we developed a ‘mixed-pixel’ model where the fire infrared spectrum is estimated as the linear superposition

of spectra of many (n, 30) greybody emitters of randomly selected areal fraction, emissivity and temperature. Our model
neglects contributions from atomic andmolecular line emission from combustion gasses. The purpose of these simulations
was to allow unambiguous use of limited bandwidth detectors to estimate the total power emitted from a wildland fire.

From the simulations we observed a well-defined relationship between ground-leaving radiance (Wm�2 sr�1) and limited
bandpass sensor-reaching radiance for many different detector spectral responses. Error in the relationship is least when
the detector sampled in the mid-wave portion of the infrared spectrum (,3–5 mm) where flaming combustion emits most

strongly. We validate our approach to estimating total power using data from experimental burns. The ability to estimate
total power from limited bandpass measurements has great utility in the observation of wildland fires from ground-based
instruments and aircraft and satellite platforms.
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Introduction

In most areas of remote sensing, the emission, transmission and

reflection characteristics of the target are well known through
laboratory or field measurements or, ideally, a combination of
the two. Emission, transmission and reflection are often known

as a function of wavelength, which allows wavelength-specific
methods to be used to identify and quantify remotely sensed
targets. By contrast, in remote observation of wildland fires,
very fewmeasurements have beenmade of the emission spectra,

emissivity, angular distribution or any other physical parameters
of interest to remote sensing observers, despite the fact that
wildland fires have been observed from airborne and satellite

remote sensing platforms for decades (see review in Kremens
et al. 2010). Further confounding fire observations is the fact
that most observed fire ground sample areas, even at high res-

olution, are ‘mixed pixels’, a combination of flames and non-
flaming background of a range of temperatures.

A remote sensing detector is sensitive to radiation in a spectral
passband that is defined by the detector spectral response,

transmission of the various optical elements, and transmission
of the atmosphere that intervenes between the ground and the
atmosphere. The governing equation for detection is:

S ¼
Z

RðlÞTaðlÞToðlÞMðlÞGdl ð1Þ

where S is the signal generated by a detector, R(l) is the spectral
responsivity of the detector,Ta(l) is the atmospheric transmission
from the source to the detector, To(l) is the transmission of the
optics in the system, M(l) is the spectral radiance of the source,
G is a factor relating lens area and other geometric factors to the
received signal, and the integral is over all wavelengths. When a
well-characterised detector of limited bandwidth is used to
observe a ‘mixed fire pixel’ as defined above without any other

information, it is impossible to know the total surface-leaving
power density of the target from the received signal alone because
of the dependence on the spectral characteristics of the source and

the effects of the intervening atmosphere. If the goal of remote
sensing observations of wildland fire is to know not only the
position of the fire but the emissive power and energy density,

then we require additional information about the spectra, areal
fractions of the mixed components and other radiative properties
(emissivity, reflectivity and transmission). This additional infor-
mation may be obtained by using more than one spectral band

(e.g. Riggan et al. 2004; Daniels 2007; Kremens et al. 2010).
An example of the preceding problem is shown in Fig. 1. In

this example, two blackbodies emit radiation according to the

Boltzmann radiation law. One source (e.g. a flame) has a
temperature of 1300 K and an emissivity of 0.09. The other
source has a temperature of 500 K and an emissivity of 0.8.
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These examples represent a fire of small flame length and the
warm background after the passage of the fire. The power

received by a detector with a bandwidth of 8–14 mm for both
spectra is the same, even though the hot source has more than
five times asmuch total power output as the cooler source. Using
a detector with limited bandwidth and no other information

about the spectral signature of the source, we cannot uniquely
determine the total power emitted by the source.

The radiation from a fire originates from several sources:

blackbody emission from incandescent soot within the flame
envelope; fuels undergoing pyrolysis and glowing combustion;
hot ground in and behind the flame front; large woody fuels

burning behind the flame front; and potentially strong band
emission from hot water vapour (Frankman et al. 2008),
unburned hydrocarbons (CO, H2O, CO2) and other gaseous

components produced during the combustion process. The
emissions from CO2 and water vapour are strongly absorbed
by the intervening atmosphere, leaving the blackbody radiation
from the fire in the long-wave infrared (LWIR) and other high-

transmission regions as the primary observable radiation for a
distant observer (Schott 1997: p. 84). Atmospheric transmission
is well understood (Schott 1997: pp. 74–85), at least where

smoke is not dense, and for the purposes of this paper we assume
that atmospheric effects on the spectral characteristics of the
radiation that reaches the detector can be quantified using

atmospheric transmission models such as MODTRAN. Our
primary goal for this work, therefore, is to simulate a wildland
fire ground sample area as would be seen by a remote sensing

detector, and to derive spectral properties for this area that will
allow unique determination of the emitted flux density using a
detector of limited spectral bandwidth.

Methods

Simulating total and limited bandpass radiation
from mixed-temperature fire pixels

We formulated a computer simulation model using the Python

language and various adjunct Python libraries (SciPy, mat-
Plotlib, Numpy and csv). The model developed for these simu-
lations uses the following assumptions:

1. A fire ground sample area consists of multiple emitting
surfaces or volumes, each with an independently assigned

temperature, emissivity and fractional area (Fig. 2).We report
results from 30 fractional areas because from our studies, the
relationships between number of fractional areas and average

temperature, emissivity, power and other factors asymptote at
that number of sub-areas. The maximum temperature of a
wildland fire flame is ,1300 K (Butler et al. 2004), though
somewhat different values are obtained depending on the

measurement method and its spatial and temporal scale
(e.g. Martin et al. 1969; Sullivan et al. 2003). The minimum
temperature we consider for these simulations is 300 K,

representative of unburned background. Each of the areas
in the simulation is independent and has a random tempera-
ture assigned to it (using a uniform probability distribution

over the range of 300–1300 K sub-area temperature).
2. The emissivity of a flame can vary from 0.05 (thin flames

in the direction of observation) to values approaching 1 (for

$4-m flame depth, e.g. Johnston et al. 2014). The emissivity
of fuels undergoing pyrolysis and the warm soil background
can vary between 0.6 and 0.85 (Kremens et al. 2003). We
know of no measurements of the emissivity of spreading

flames from a nadir perspective and limit emissivity to 0.85,
which would be representative of a thick flame and its hot
background. Each of the 30 areas in the simulation has an

independent emissivity assigned to it, the lower temperature
areas (,600 K) having emissivity biased towards higher
values (0.6–0.85) as these low temperatures represent warm

background.
3. The spectral flux density and spectral power density from a

‘mixed’ ground sample area may be obtained by superposi-
tion of the spectral emissions from the multiple emitting

surfaces.
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Fig. 1. Radiation as observed in a limited spectral bandwidth from two

sources of different temperatures (T ) and emissivity (e). The total radiance
emitted from the high0temperature source (dashed line, 1300 K) is ,five

times larger than the radiance from the low-temperature source (500 K),

even though the radiance observed in a typical ‘long-wave infrared’

(8–14 mm) detector is the same.

Sub-area 1
Af(1),ε(1),T(1)

Sub-area 3
Af(3),ε(3),T(3)

Sub-area 2
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Sub-area 4
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Fig. 2. Schematic representation of the simulation process showing in this

case n¼ 4 different emitting components in the ground sample area. For

our simulations, we used between 2 and 30 different sub-components of

the ground sample area to simulate fire scenes of varying complexity, and

to determine if there were any effects of sub-area complexity on the fit

temperature or quality of fit using a single-temperature distribution.
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4. The radiation from the ground sample area or volume is

distributed uniformly in space (‘Lambertian radiator’
assumption, that is, the radiant intensity varies as I0cosf,
where I0 is the intensity normal to the emitting surface or

volume and f is the angle from the normal to the surface to
the direction of interest).

Our simulation method is similar to one conducted earlier by
Wooster et al. (2003) but here we extend the utility of the model
to include any detector spectral response and all possible sets of
fire–background conditions. In each simulation of a fire pixel

(Fig. 3), we generated a spectrum by summation of 30 blackbody
spectra, each with a randomly selected emissivity (subject to
the constraints in number 2, above, see Àgueda et al. 2010),

randomly selected temperature (subject to the constraints in 1,
above) and randomly selected areal fractions (where the areal
fractions sum to 1, the total area in the field of view of the

detector). We repeated this process 10 000 times to represent an
ensemble of possible areal fractions, temperatures and emissi-
vity from the ground sample area. From previous manual

calculations, we believed that the summation obtained by the
above process would be very nearly identical in spectral form to
a Boltzmann spectral distribution from a single-temperature

source. Because of the highly nonlinear monotonic functional
dependence (T4) of the total blackbody emissive power on the
temperature, we hypothesised that the overall spectral shape

from such a summation should be dominated by the highest
temperature (flaming) components. To test this hypothesis, we
fit a Boltzmann distribution with a single temperature to the

summed spectra using a nonlinear curve fit method. We exam-
ined the goodness of fit of this single-temperature distribution
using conventional metrics and also compared the power and
energy densities from numerical integration of both the fit and

data from the multi-object simulation. The fit parameters are
the temperature (which controls the width and peak location of
the distribution) and the emissivity-fractional area product

(which controls the ‘height’ of the distribution, see Kremens
et al. 2010).

In addition to calculating these simulated spectra, we com-

puted the received detector power for eight different limited
bandwidth detector systems as defined in Table 1. These
systems have responses that are typical of commercially avail-

able single- and multiple-detector arrays that would be used for
observation of wildland fire. Note that the ‘WASP’ detector in
Table 1 corresponds to the airborne sensor system designed and
built at the Rochester Institute of Technology for observation of

wildland fires. This system has been deployed ,30 times to
create time-sequenced observations of wild and prescribed fires
(Ononye et al. 2005; Dickinson et al. 2014). Tower-deployed

sensors used in Kremens et al. (2012) and Dickinson et al.

(2014) are also simulated. With results of the simulations, we
parameterise a statistical model by relating total radiant exci-

tance to sensor-reaching radiance. Standard laboratory calibra-
tion procedures are then used to relate sensor-reaching power
density to raw response of a limited passband detector (digital
number, DN; Palmer and Grant 2010; Fig. 4). Thus, we demon-

strate how a measurement of only the digital signal from a
limited bandwidth detector can be used to derive a direct
measure of ground-leaving power flux density.

An ideal detector has a flat response across all wavelengths
within its passband. However, detectors approach this ideal to
different degrees and, thus, we include spectral response in

Eqn 1. We incorporate spectral response in calculated received
detector power for a sample of detectors (Tables 1 and 2) for
which spectral response meets the ideal to varying degrees (e.g.

Fig. 5). For all but one of the sensors we have experimentally
measured spectral response data and, for those sensors, the
Planck function is multiplied by wavelength-specific window
transmission which ranges from zero outside of the passband

(transmission is zero) to values that fluctuate above zero within
the passband (see Fig. 5). The KBr window sensor has a nearly
flat spectral response function within the passband and, for that

sensor, average transmission is used.

Validating estimates of total fire radiation

As a limited validation of our simulations, we compare their
results with estimates of fire radiation from dual-band radio-
metry (see Kremens et al. 2010 for background on dual-band

radiometry). Mid-wave infrared (MWIR) and LWIR sensors

Generate N random 
areal fractions, Af,

normalised to sum to 
unity 

Generate random 
temperatures, T, for

N sub-areas

Based on 
temperature generate
emissivity, ε, for sub

area Af
If T � 600 K,

0.5 � ε � 0.85
If T � 600 K,

0.05 � ε � 0.5

Fit a one-component
Boltzmann function
to sum spectrum.
Vary Tfit and εA,
emissivity-area 

product

Generate and sum N
Boltzmann spectra
using ε, T and Af

obtained above to get
a ‘summed spectrum’

Integrate the summed
spectrum over

several different
typical passbands to

obtain total power

Pick
number of

sub-
areas,

N

Fig. 3. Flow chart showing the major steps in the simulation whose results

are used in combination with raw detector output from limited bandpass

detectors to estimate total fire-radiated power.
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were positioned over small plot (8� 8 m) fires in mixed oak
litter and woody debris (for details, see Bova and Dickinson

2008 and Kremens et al. 2012). Specifications and detector-
reaching power for the sensors used in these experiments are
summarised in Tables 1 and 2. We compare peak ground-
leaving fire-radiated flux density (FRFD,Wm�2) and total fire-

radiated energy density (FRED, MJ m�2) estimated from dual-
band radiometry with estimates of the same quantities derived
from our simulation results and the raw output of limited pass-

band sensors.

Nadir-viewing, side-by-side MWIR and LWIR sensors were
placed 3.9 m above the ground and the voltage output was
logged at 10-s intervals. The LWIR (hereafter LWPSi-L1,
Tables 1 and 2) and MWIR (hereafter CaF2, Tables 1 and 2)

detectors have a linear response to the power that reaches the
detector through the sensor window (detector-reaching power).
It is the window composition and coatings that determine

passband and wavelength-specific (spectral) transmission.
Spectral response (a function of both transmission and detector
response) data were obtained from Dexter Research Inc.,

Dexter, MI, USA, (for the CaF2 window sensor) and Excelitas
Technologies Corp., Waltham, MA, USA, (for the LWPSi-L1
window sensor) and are shown in Fig. 5. The relationship
between detector voltage output (DN) and blackbody excitance

was determined using the near-extended source approach
wherein the blackbody is larger than the field of view of the
sensor (Palmer and Grant 2010). Total excitance (leaving the

blackbody, kW m�2) and excitance within the passband of
the sensor were calculated by integrating the Planck equation
(after accounting for sensor spectral response) over all wave-

lengths for each blackbody temperature:

LT ¼
Z1
0

2hc2l�5ðe hc
lkT � 1Þ�1

dl ð2Þ

Lband ¼
Z1
0

2hc2tðlÞl�5ðe hc
lkT � 1Þ�1

dl ð3Þ

where h is Planck’s constant, c is the speed of light, l is the

wavelength, T is the temperature for which the flux is calculated
and t(l) is the normalised bandpass response function for the
detector.

Detector-reaching radiance (W m�2 sr�1) is calculated from

excitance through division by p (Palmer and Grant 2010).

Table 1. Specifications for infrared cameras and single-pixel sensors for which we simulated detector irradiance

Spectrum name refers to the spectral response function. The detectors represent the bulk of commercially available detector systems (imaging and

point detectors). The CaF2, LWPSi, KBr and Sapphire detector spectral characteristics represent commonly used windows for thermopile detectors. The KBr

sensor was simulated with a flat spectral response that is close to the spectral transmission of the KBr window. Transmission (T ) is proportional energy

transmission through the sensor window in the waveband to which the sensor responds. Citation indicates study in which the sensors were used (see footnote).

For ease of comparison, the table is sorted by the rootmean squared error of the relationship between total and limited passband response to simulated fire pixels

(see Table 2)

Sensor name Transmission Citation Manufacturer Material Detector Spectrum name

KBr 0.92 – Dexter Research KBr Various NA

CaF2 0.60 1,2 Dexter Research CaF2 DR 2M CaF2 DC-6100 – U8

Sapphire 0.85 3 Dexter Research Sapphire ST60 DX-1001 DC-6216-U1

MW 0.60 2 Dexter Research CaF2 ST60 DX-0852 DC-6100-U8

LWPSiL1 0.70 1,2 Excelitas Silicon PE TPS334 DC-6188-L1

LW WASP 0.95 2 Phoenix Ge AR (lens) QWIP On file

LWPSiL2 0.70 2 Dexter Research Silicon ST60 DX-0852 DC-6186-L2

LWPSiW1 0.83 3 Dexter Research Silicon ST60 DX-1001 DC-6073-W1

1Kremens et al. 2012; use CaF2 and LWPSiL1 in dual-band combination on towers; 2Dickinson et al. 2014; use MW and LWPSiL2 in dual-band combination

on towers and, secondarily, CaF2 and LWPSiL1 in combination as above; 3Studies in progress use Sapphire and LWPSiW1 in dual-band combination on

towers.

Calibrate camera/radiometer in
laboratory using blackbody

references:
Pr � f(DN)

We now have a relationship
between radiated fire power
and camera response, DN:

Pt  � F(f(DN))

Simulate a fire pixel to get
radiated power Pt, and

compare with received power
Pr in sensitive bandwidth for

any detector:
Pt � F(Pr)

Fig. 4. The process for using simulations outlined in Fig. 3 and laboratory

calibration measurements to estimate total radiated power from wildland

fires using output from a limited bandwidth detector.Pr¼ power received by

the detector in its sensitive passband,Pt is the total power radiated by the fire

and DN is the raw digital count from the sensor (pre-corrected for offset and

nonlinearities, if necessary).
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Sensor-reaching radiance is expressed as follows respectively
for the LWPSi-L1 and CaF2 window sensor:

LLW ¼ 7:70DN þ 277:38

p
ð4Þ

LMW ¼ 7:56DN þ 127:38

p
ð5Þ

where DN is the digital number from the analogue-to-digital

converter in the detector system. Using detector-reaching radi-
ance instead of detector irradiance (analogous to excitance,
W m�2) allows us to ignore sensor height under the assumption

that as the field of view of the sensor increases, power flux
density per unit solid angle remains constant. This assumption
has not been tested for sub-pixel flames in wildland fires.

Having obtained the sensor-reaching irradiance from Eqns 4
and 5 above and the DN from the digitised output of the
detectors, we use the results of our simulations (that relate

sensor-reaching radiance to ground-leaving fire radiance) and
the assumption of Lambertian radiation from the fire to obtain
FRFD. Time integration of FRFD yields FRED.

Results

Graphical examples of the single-temperature fit applied to the
sum spectra are shown in Fig. 6, and mean and range of the pixel

temperature and emissivity-fractional area (eA) product of the
blackbody (Boltzmann) spectra that best fit simulated pixels
(along with the range in pixel aerial fractions and their tem-
peratures and emissivities) are given in Table 3. The eA product

emerges from the calculation of FRFD from dual-band data
(Kremens et al. 2010) and is reported here for convenience.
Total power of the summed spectra was closely related to power

derived from the best-fit blackbody pixel temperature (total
power¼ 448þ 0.999� blackbody power; root mean square
error (RMSE)¼ 103 W m�2). The power law fit between total
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The top figure shows transmission for a calcium fluoride window (the ‘U8’

transmission spectrum) measured by Dexter Research. The bottom figure

shows the transmission spectrum for a germanium window (the ‘L1’

spectrum). See Tables 1 and 2 for more details.

Table 2. Nonlinear regression parameters and fit between total radiance (LT, W m22 sr21) and radiance reaching a range of detectors through

a sensor window

Power cut-off points (50%) roughly describe spectral response, though measured spectral response is used in simulations. No correction for atmospheric

absorption is included in these relationships, which would be necessary for applying to airborne and satellite-borne sensors (Dickinson et al. 2014). All results

are based on 10 000 fire pixels for which 30 sub-pixel aerial fractions and their temperature and emissivity are chosen at randomwithin constraints (see text and

Table 3). Mean, minimum and maximum sensor-reaching radiance (W m�2 sr�1) from simulations are shown for each limited bandpass sensor. Nonlinear

regression parameters relate total ground-leaving radiance to a power of sensor-reaching radiance (e.g. Eqns 6 and 7). The table is sorted by the root mean

squared error (RMSE) of total predicted radiance. RMSE is also shown as a proportion of mean total radiance. Further summaries of the simulations are

reported in Table 3

Cut off (mm) Radiance (W m�2 sr�1) Power fit

Detector Lower Upper Mean Min Max b M RMSE (W m�2 sr�1) RMSE (proportion)

KBr 0.15 30.00 3683 1047 8397 1.0870 1.0000 1� 10�6 1� 10�10

CaF2 0.15 12.50 3557 957 8252 1.4130 0.9723 14.2 0.004

Sapphire 0.10 6.50 2679 604 6501 3.0868 0.9085 54.7 0.01

MW 3.00 5.00 1339 364 2984 3.0828 0.9958 71.8 0.02

LWPSiL1 5.50 20.00 1060 448 1967 0.4728 1.2972 245.8 0.06

WASP 8.00 9.20 189 85 341 3.2823 1.3535 286.8 0.07

LWPSiL2 6.50 20.00 608 285 1068 0.4601 1.4138 306.5 0.08

LWPSiW1 8.00 14.00 350 169 603 0.7710 1.4590 331.1 0.08
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radiance and radiance within a limited passband is described in
Table 2. The greatest RMSE was for detectors whose passband

was limited to the long-wave portion of the infrared spectrum
and thereby received a smaller fraction of total power (Fig. 7
and Table 2). As an example, in Fig. 8, the WASP long-wave

detector exhibits greater error (i.e. scatter around a fitted
regression trend) than the wide-band KBr detector. Regardless
of relative differences among sensors, RMSE as a fraction of the

mean of total power was ,10% for all sensors (Table 2).
We evaluated the validity of the simulations by using

simulation results to predict ground-leaving FRFD and FRED
from the raw output of LWPSiL1 and CaF2 limited passband
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temperature Boltzmann distribution. We show representative examples for
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varied the temperature (T ) and emissivity area product (eA) in this two-

parameter nonlinear fit to simulation results. Summed spectra yielded

22.1 kW m�2 (upper curves) and 6.9 kW m�2 (lower curves) representing

a case with significant flaming combustion within a pixel, and a case where

there is more hot background and less flaming combustion.

Table 3. Summary output derived from the simulations

Total radiance is derived from summed power over each ground sampling

area (i.e. pixel) obtained by summation of the blackbody spectral emissions

from all (n¼ 30) aerial fractions (see Figs 2–4). A nonlinear curve fit

procedure was used to determine the pixel temperature and emissivity area

product that best reproduced the summed spectra (e.g. Fig. 6). The mean,

minimum and maximum aerial fractions and emissivity and temperatures of

those aerial fractions across all 10 000 simulations are also shown

Variable Mean Minimum Maximum

Total radiance (W m�2 sr�1) 4003 1139 9127

Fit temperature (K) 1080 763 1230

Fit emissivity area product

(dimensionless)

0.16 0.06 0.27

Aerial fractions (proportion of unity) 0.03 6� 10�8 0.10

Emissivity of sub-pixel areas

(dimensionless)

0.39 0.05 0.85

Temperature of sub-pixel areas (K) 800 300 1300
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Fig. 7. Root mean square error (RMSE) for predicted radiance

(W m�2 sr�1) for simulations of the mid-wave and long-wave portions of

the electromagnetic spectrum and a series of common detectors (Table 2).

Radiance RMSE is from simulations with 30 fractional areas. Atmospheric

absorption is not included in these simulations.
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sensors and by comparing those FRFD and FREDestimates with

those derived from dual-band radiometry. Total ground-leaving
and limited passband radiance are calculated from simulation
results. Then, total ground-leaving radiance is related to limited
passband radiance at the detector by nonlinear regression. The

regression parameters were estimated separately for LWPSi-L1
and CaF2 sensors as follows:

LT ¼ bðLLW ÞM ð6Þ

LT ¼ bðLMW ÞM ð7Þ

where LT is total ground-leaving radiance (W m�2 sr�1) and
b and M are the parameters. The exponential model with an
intercept of zero was chosen over a linear regression on both

untransformed and log-transformed data because they showed
large errors in recovering near-background radiative flux densi-
ties. Ground-leaving FRFD is then calculated from radiance

FRFD ¼ LTp ð8Þ

The final equations for ground-leaving FRFD incorporate
parameters in Table 2 and combine Eqns 4 and 6 for LWPSiL1:

FRFD ¼ 0:473
10:147DN � 85:085

p

� �1:297
 !

p ð9Þ

and Eqns 5 and 7 for CaF2 sensors:

FRFD ¼ 1:413
7:212DN � 4:758

p

� �0:972
 !

p ð10Þ

No-intercept, linear regression slopes between FRFD esti-

mated from dual-band radiometry and FRFD estimated from the
raw output of limited bandpass detectors and Eqns 9 and 10
approach unity (Table 4 and Fig. 9). The small plot experiments

spanned a wide range in fuel consumption, peak FRFD and
FRED (Table 5). For neither sensor did slopes co-vary with peak
FRFD or FRED estimated from dual-band radiometry. Slopes of

the linear regressions between peak FRFD and FRED estimated
from dual-band radiometry and the same quantities estimated
from CaF2 and LWPSiL1 detector output and simulation results
also approached unity (Fig. 10).

Table 4. Average slopes relating ground-leaving fire-radiated flux

density (FRFD, W m22) measured by dual-band radiometry (e.g.

Kremens et al. 2010) and FRFD estimated from measurements

from two limited bandpass sensors and Eqns 9 and 10

Shown are the average slopes and their 95% confidence intervals estimated

from least-squares regression through the origin. Data are from n¼ 8

replicate burns from the 8� 8-m plot burn experiment described in Bova

and Dickinson (2008) and Kremens et al. (2012). Slopes would be unity

with perfect agreement between the methods of estimating FRFD. There

was no co-variation in these slopes with either peak FRFD or fire-radiated

energy density (FRED, MJ m�2) across the range in fuel consumption and

surface fire behaviour obtained in these experiments (Table 5). Example

slope calculations from a single replicate of the burn experiment are shown

in Fig. 9

Dependent variable Independent variable Average slope (þ/� 95% CI)

Dual-band FRFD LWPSiL1 FRFD 1.07 (þ/�0.16)

Dual-band FRFD CaF2 FRFD 1.16 (þ/�0.02)
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Fig. 9. Example relationship between ground-leaving fire-radiated flux

density (FRFD, W m�2) measured from dual-band radiometry and FRFD

estimated frommeasurements from limited bandpass sensors and Eqns 9 and

10 for the CaF2 and LWPSiL1 sensors (see overall results in Table 4). The

same sensors are used for both dual-band and limited passband estimates.

Data are from the replicate burn with the highest peak FRFD among n¼ 8

replicate experiments described in Bova and Dickinson (2008) and Kremens

et al. (2012). The slopes from this and the other replicates were used to test

for bias between estimates derived from single-bandpass data and dual-band

radiometry (Table 4 and Fig. 10).

Table 5. Mean and ranges of peak fire-radiated flux density (FRFD)

and fire-radiated energy density (FRED) measured from dual-band

radiometry for n 5 8 replicate burns from the 8� 8-m plot burn

experiment described in Bova and Dickinson (2008) and Kremens

et al. (2012)

Fuel consumption is calculated on an ash- and moisture-free basis. Results

from these experiments are also shown in Table 4 and Figs 9 and 10

Mean Minimum Maximum

Fuel consumption (kg m�2) 1.1 0.15 3.25

Peak FRFD (W m�2) 14 062 3760 21 157

FRED (MJ m�2) 4.73 0.38 10.10
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Discussion

The primary motivation for this work was to determine if we
could estimate, with reasonable error, the ground-leaving radi-
ant flux density from awildland fire given onlymeasurements in

a limited bandwidth. Using our simulations, we have derived
relationships between the signal from common limited band-
width detectors and ground-leaving radiant power from a fire.

Our results will be useful for future observations and also for
designing airborne fire observation sensors. Our simulations
(Fig. 8 and Table 2) suggest that total power will be an expo-
nential function of detected power across a range of detectors

that, unlike the KBr detector, sample a limited part of the
infrared spectrum. The close relationship between total power
calculated directly from the summed spectra and blackbody

power (estimated from the blackbody temperature that best
describes the summed spectra from each mixed-temperature
pixel) reflects dominance of pixel radiation by active combus-

tion. This relationship provides a potential means of using fire
model output to simulate remotely sensed wildland fire scenes.

Error arising from the relationship between total emissive
power and sensor-reaching power in a limited passband is

highest where the detector passband does not include the mid-
wave (,3–5 mm) or includes only a part of themid-wave (Fig. 7,
Table 2). Error increaseswheremid-wave radiation is not sensed

because the majority of emissive power from fires comes from
flames whose emissions peak in the mid-wave (e.g. Johnston
et al. 2014). Our simulations and Fig. 1 suggest that if a detector

is not sensitive to the mid-wave region of the spectrum the same
emissive power can arise from a range of combinations of
temperature, emissivity and fractional area within a mixed-

temperature fire pixel. Passband width has a less consistent
effect on error with the exception of the KBr detector whose
passband (0.1–30 mm) encompasses most of infrared radiation
from fires and exhibits the least error (Fig. 7).

Referring now to Fig. 8, we can begin to understand the nature
of the relationship between the total energy radiated by a fire and
the energy received by a limited bandwidth detector. The very

wide bandwidth ‘KBr’ detector (with nearly flat lens transmis-
sion) receives power from the fire at virtually all wavelengths of
importance, so the relationship between radiated power and

detectedpower is uniqueand linear.TheKBr system is insensitive
to the temperature of the source. It should be noted that a detector
of this bandwidth is not realisable in practice because the atmo-

sphere is opaque to many wavelengths at long standoff distances
(hundreds of metres) from the fire (Palmer and Grant 2010). The
response of a limited bandwidth detector, however, depends on
the source’s apparent temperature. The error in surface-leaving

radiance associated with the LWPSiW1 sensor in Fig. 8 is related
to effective temperature distribution in our simulations. The error
is least at high and low flux densities because there are fewer

ways to create these extremes of flux density. Intermediate levels
of radiated fluxdensity can be created inmanywaysusing various
combinations of temperature, emissivity and fractional pixel area;

hence the breadth of the error distribution.
In a limited validation exercise, we show that our simulation

results can be used to derive relatively accurate estimates of
FRFD (Table 4, Fig. 9), peak FRFD and FRED (Fig. 10). We

demonstrate this for oak litter fuels with added woody material
covering a wide range in fuel consumption. It should be noted
that in evaluating our simulation approach, we compare esti-

mates of FRFD, peak FRFD and FRED derived from simulation
results and measurements from limited bandpass long-wave
(LWPSiL1) and mid-wave (CaF2) sensors to estimates from

dual-band radiometry that employ data from the same sensors in
combination (Kremens et al. 2010). Estimates based on data
from the CaF2 sensor exhibited higher precision but lower

accuracy than data from the LWPSiL1 sensor and tended to
underestimate the result from dual-band radiometry. Less pre-
cision for the LWPSiL1 sensor would be expected because the
sensor has limited sensitivity to the mid-wave region of the

infrared spectrum. Regardless, linear regression slopes of
dual-band v. single-band estimates were close to unity for both
sensors, ranging from 0.93 to 1.18. Comparison of estimates

from independent sets of instruments would be a stronger test of
the approach. Also, more extensive validation should be carried
out involving other fuels, more intense fires, and other instru-

ments, particularly measurements from aircraft. Dickinson et al.
(2014) use our results to derive estimates of ground-leaving
FRFD from airborne LWIR data after accounting for (spectral)
atmospheric absorption of radiation.
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Fig. 10. Relationships between peak fire-radiated flux density (FRFD, top)

and fire-radiated energy density (FRED, bottom) measured from dual-band

radiometry and the same quantities estimated from single-band LWPSiL1

and CaF2 sensor measurements and simulation results. Sensor character-

istics are provided in Tables 1 and 2. Slopes and their 95% confidence

intervals (in parentheses) are shown. With perfect agreement between dual-

band and limited passband methods, slopes would be unity. Results are from

n¼ 8 replicate burns from the 8� 8-m plot burn experiment described in

Bova and Dickinson (2008) and Kremens et al. (2012).
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For our simulations, we have defined a unique relationship
between detected power and emitted power as shown by Eqns 9
and 10. In general we expect the form of Eqns 9 and 10 to remain

the same regardless of the receiver spectral bandwidth. This very
useful relationship means we can now estimate the total radia-
tive power produced by a fire using measurements from limited

bandpass instruments without resorting to in-fire (ground)
calibration instruments or other guesses on apparent tempera-
ture, emissivity or fractional area of the fire. Future studies may

examine various assumptions of our approach, including the
particular peak flame temperature and emissivity values that we
used, the extent to which hot gas emission violates the black-
body fire emission assumption, and the effects of violations in

the Lambertian radiator assumption (e.g. Freeborn et al. 2008).

Conclusions

Using a numerical simulation, we have determined functional

relationships between sensor-reaching flux density for limited
bandpass sensors and surface-leaving flux density for mixed-
temperature pixels characteristic of areas in and around wildland
fire flaming fronts. Radiation detected by limited bandpass

sensors relates closely to total ground-leaving radiation because
power emanating from wildland fire pixels is dominated by
high-temperature combustion. We believe these simulations to

be general. By modelling a wide range of combinations of
temperature, emissivity and sub-pixel fractional areas, these
simulations represent a wide range of fire behaviour parameters.

We do not restrict the areal fraction of the fire, and the simula-
tions can be run easily with any sensor spectral sensitivity.
Ignoring atmospheric interception of fire radiation, and confu-

sion resulting from reflected and upwelled light in sensor spectral
bands where solar radiation is present, error in total power esti-
mated from these relationships will be least for sensors that are
sensitive in the mid-wave infrared (,3–5 mm) region. The

simulations also indicate that the inherent error in these estimates
is at a minimum for both very low and very high sensor-reaching
power, because there are fewer ways in which a fire ‘scene’

can produce these two extremes of radiation at the sensor. Our
simulations suggest that error will be no greater than 10%of total
power even for long-wave detectors. We provide a limited

validation of the simulations from well-characterised surface
fires in 8� 8-m plots of mixed oak litter and woody fuels. Our
approach demonstrates a method of deriving quantitative esti-
mates of surface-leaving flux density using measurements from

limited bandpass sensors, an advance we believe the wildland
fire science community will find to be useful.
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