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a b s t r a c t

We have demonstrated the use of an advanced Gaussian-Process (GP) emulator to estimate wildland fire
emissions over a wide range of fuel and atmospheric conditions. The Fire Emission Production Simulator,
or FEPS, is used to produce an initial set of emissions data that correspond to some selected values in the
domain of the input fuel and atmospheric parameters for the purpose of training the emulator. The
emulated emissions are found to be within ±5% of the FEPS simulated emissions, providing confidence in
the potential use of the GP-emulator for this and other similar applications. Cluster analysis for 1000
emulator-produced posterior samples spanning a wide-range of fuel and environmental conditions
suggest that the emulator not only produces valid results but also preserves the physical relationships
between the fire emission and the fuel and environmental conditions. Results show that the GP-emulator
could be used as an alternative to the simulations from the FEPS modeling system when four or more
input parameters related to fuel type, fuel moisture, and weather condition are allowed to vary. This
work also provides a conceptual basis for constructing a nation-wide emissions inventory based on a
trained GP-emulator representing the complex geographic distribution of fuel types and environmental
conditions.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A Gaussian-Process (GP) emulator is a Bayesian-based statistical
tool that treats a set of input and output parameters as indices to
stochastic Gaussian functions with a set of mean and covariance
values emerging from the input/output parameters. Examples of
other algorithms that approach the problem of interpolation or
prediction in a non-Bayesian framework could be linear/non-linear
regression models where a significant assumption of the relation-
ship between the input/output is made, or data-demanding artifi-
cial neural network algorithms. Rasmussen (1996) compared up to
7 different methods with large input/output datasets and
concluded that the Bayesian approach coupled with a Gaussian
process outperforms other traditional methods. For a complete
description of how a GP-emulator could be constructed, refer to
search, University of Canter-

wan.katurji@canterbury.ac.nz
Chiles and Delfiner (1999), Cressie (1993), Rasmussen andWilliams
(2006). Several recent studies have applied GP-emulator to com-
plex geophysical processes. Tokmakian and Challenor (2014) and
Tokmakian et al. (2012) have shown how GP-emulators could be
used to gain specific understanding of complex geophysical sys-
tems and interactions within these systems. They also demon-
strated how emulators, when trained with data from atmospheric
general circulation models (AGCM) and observations, become a
powerful tool to assess uncertainties related to the non-linearity in
oceaneatmosphere interactions. Holden et al. (2013) demonstrated
how an emulator could be used to give spatially and temporally
downscaled climate projections, while G�omez et al. (2012), for an
extra-terrestrial application, showed how the emulation of historic
galactic formation could help with the analyses of the current
observations of Milky Way-like galaxies. The advantages of fast
statistical models lie in the ability of producing large data sets
emulating the simulator while performing at a fraction of the
computational cost. An example of an application we have chosen
here is for fire emissions modeling.

Wildland fires, whether natural or human-ignited, have one
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thing in common, and that is the release of oxocarbons, hydro-
carbons, and particulate matter. Fire smoke can have profound
environmental impacts that range from degradation of visibility
(Shelby and Speaker, 1990; Toman et al., 2004), production of
regional haze and smog (van der Werf et al., 2010; Phuleria et al.,
2005) and alteration of ecosystem respiration and production
(Amiro et al., 2010). Smoke from large fires can affect local,
regional, and global climate by modifying the earth's radiative
balance and altering cloud and precipitation patterns (Oris et al.,
2013; Liu et al., 2014). In addition to its impact on natural envi-
ronments, fire smoke also poses a direct risk to human health
(Dennekamp and Abramson, 2011; Johnston et al., 2012). The
uncertainty in fire emissions comes not only from the misrepre-
sentation of fuel and environmental conditions, but also from the
different methods and assumptions used in fire emission models.
Various tools or models have been developed to aid in estimating
fire emissions. These models vary in their parameterizations and
assumptions and the scale at which they are applied (French et al.,
2011). These fire emission models are used to estimate emissions
from wildfires and prescribed burns for use in air-quality assess-
ment as well as in atmospheric dispersion models. One of the
major uncertainties arising from air pollution dispersion tools is
the accuracy of the emission sources at the ground level. The other
uncertainty comes from humidity and temperature that play a
major role in determining the dispersive characteristics of smoke
(Hoadley et al., 2003). Fire emissions are usually specified in nu-
merical and analytical models as a function of the size of the area
being burned, fuel characteristics including the amount and type
of biomass and its moisture content, a combustion efficiency, an
emission factor that relates the burned and emitted mass to the
biomass burned (Seiler and Crutzen, 1980) and weather condi-
tions such as near surface wind speed and atmospheric stability.
Uncertainties in each one of these factors contribute unequally to
the overall uncertainty of the estimated emissions. French et al.
(2011) compared 5 different widely used models and concluded
that despite the 25% range agreement amongst these models, the
largest uncertainty of carbon and particulate emissions comes
from the difficulty in quantifying the emissions during the smol-
dering process, the spatial variability of fuel loading (amount of
fuel per unit area) and weather conditions that determine the fuel
condition.

Given the large number of factors involved in specifying
emissions, a full understanding of the contributions from each
factor to the uncertainties of estimated emissions is difficult
because it requires a large number of tests and model runs.
Similarly, a complete understanding of the sensitivity of the total
emissions to individual factors and interactions of multiple factors
also poses a significant challenge. This challenge can bemet by the
use of statistical tools. In this study, we demonstrate the potential
use of a GP-emulator constructed for the Models and Data Anal-
ysis Initiative (MADAI: www.madai-public.cs.unc.edu) (O'Hagan,
2006; Oakley and O'Hagan, 2004) as an alternative to a large
number of simulations using a simulator, which in this case is the
fire emission model.

What we will show in this short contribution is a new area of
applications of a statistical emulator: the area of fire emissions
modeling. Fire emission models usually involve a large number of
input parameters and it is difficult to fully understand how the
interactions among the input parameters affect the emissions
output. We will show that the emulator, after being trained by
output data of simulated emissions and their corresponding input
parameters, can be used to easily expand the emissions database
to cover a wide variety of the fuel and atmospheric conditions,
thus enabling a better understanding of the dependency of fire
emissions to variations of the input parameters and their
interactions. In addition to improving the current understanding,
the outcome of this study will provide an alternative way of
specifying the emissions during a fire event without having to
actually run an emissions model, because the emulator itself has
been “trained” by the emissions model. The proven success of the
GP-emulator to emulate the FEPS model could also suggest a
conceptual framework that would allow for constructing a
geographic information system or GIS-based nation-wide emis-
sion inventory where fuel models (defined here by the fuel type
and environmental conditions) are very complex in their
geographic distribution and type.

2. Methodology

In this study, we aim to achieve a successful emulation of
wildland fire emissions. We will use a specific fire emissions dy-
namic simulator to produce a small dataset of input parameters
and emissions output values that will be used to train an emulator
to produce the desired emission products. The results from the
emulator will then be validated with a new set of simulated re-
sults based on the emulator's posterior, or newly produced,
samples.

2.1. The simulator

The numerical simulator used in this study for dynamically
relating fire emissions to the control input parameters is the Fire
Emission Production Simulator (FEPS) (Anderson et al., 2004),
which is used by many fire and forest managers in the U.S. to es-
timate fuel consumption and fire emissions and has been suc-
cessfully integrated into smoke modeling frameworks such as the
BlueSky framework (Larkin et al., 2009). Through a graphically
driven user interface, FEPS allows users to customize all input
variables (such as fuel loading, fuel moisture, consumption, fire
growth, hourlymeteorological data, etc) for their specific needs and
locations in order to calculate emissions for awide range of fuel and
environmental conditions. For fuel loading, the user has the flexi-
bility to choose from 5 natural fuel loading profiles (canopy, shrub,
grass, woody, litter), 2 slash fuels (broadcast and piles) and a duff
layer as an additional fuel profile, or choose from 24 predefined
National Fire Danger Rating System (NFDRS) fuel models
(Bradshaw et al., 1984). FEPS also allows the user to enter a time
varying meteorological field from surface weather stations or nu-
merical weather forecasts, including wind speed at transport
height, wind speed at the flame level, and an atmospheric stability
class of the ambient atmosphere. For fuel moisture, the user can
assign one of six moisture profiles for every fuel type. The output of
FEPS includes an emission rate report that contains carbon mon-
oxide (CO), carbon dioxide (CO2), methane (CH4), and 2.5-micron
particulate matter (PM2.5). A complete description of FEPS,
including its algorithms and equations, can be found in Anderson
et al. (2004).

For this study, FEPS is first used to produce emissions of CO, CH4
and PM2.5 with three input parameters, namely fuel loading (mass
or percent of fuel burned per unit area, pB), fuel moisture content
(FM), and wind speed (WS), for a fixed fuel type. The same FEPS
simulations are repeated for another fuel type, thus, increasing the
number of input parameters from three to four (the additional
parameter being pB of the new fuel type). By increasing the number
of input parameters (hence increasing the training parameter di-
mensions of the emulator), we aim to investigate whether this
process could improve the emulator results. For simplicity, the FEPS
simulations assume a fire that lasts for 1 h and burns 1 acre. The
burn areas are additive, i.e., the amount of emissions would double
if the areas burned double.

http://www.madai-public.cs.unc.edu


Table 1
Summary of the input/output parameters and values used in preparing the emulator training set from FEPS. Blue and green colors correspond to experiment 1 (three-input
parameter) and 2 (four-input parameter) respectively. pBf1 and pBf2 correspond to percent burn of fuel type 1 (broadcast) and fuel type 2 (shrub); FM and WS correspond to
fuel moisture and wind speed, respectively.

FM WS (ms�1) pBf1 (%) pBf2 (%)

Number of input parameter combinations to FEPS:
240 for exp1
432 for exp2

1 (very dry)
3 (moderate)
6 (very wet)

1, 5, 10, 20 5, 20, 40, 60, 80, 100
or
5 (step 5) to 100

5, 20, 40, 60, 80, 100

Output from FEPS PM2.5 (gs�1) CO (gs�1) CH4 (gs�1)

Max. (exp1, exp2) 154, 203 1905, 2506 90, 118
Mean (exp1, exp2) 50, 77 609, 936 29, 44
Std. deviation (exp1, exp2) 37, 44 455, 539 21, 25
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A summary of the simulated FEPS input/output is given in
Table 1. The parameters in Table 1 are then used to train the GP-
emulator. These parameters were prepared by running FEPS
driven by FM, WS, pBf1 and pBf2 as inputs and producing the
particulate and gaseous emissions as output. The sensitivity of
the emissions of the three output species, CO, CH4, and PM2.5, to the
changes in the input parameters is investigated using the large
posterior samples generated by the trained emulator.
2.2. The emulator

We used a GP-emulator trained by simulated inputs/outputs
from FEPS. The GP-emulator used in this study is part of the open
source statistical packages developed by the Models and Data
Initiative program (MADAI: www.madai-public.cs.unc.edu). The
statistical package tools and thorough documentation can be
downloaded fromhere (https://madai-public.cs.unc.edu/statistical-
tools/distribution-sampling-library). The trained GP-emulator can
Fig. 1. Flow chart showing the necessary steps needed for the emulation process. The colo
ulations for analysis. The blue numbers indicate the process sequence; using the simulato
validation process (number 5) of comparing a subset of posterior samples produced by the
and 6); and finally the usage of the emulator to produce data ready for further analysis (num
referred to the web version of this article.)
then be used as a surrogate to FEPS simulations and generate pos-
terior samples of which selected samples can be validated against
equivalent FEPS simulations.

The emulator is first trained by the FEPS output for selected
input parameter values described in Table 1. Once trained, the GP-
emulator is then used to produce 100 posterior samples (input and
output parameters). For validation purposes, FEPS is run again with
those 100 input parameters to produce a set of output parameters
representing ‘true’ emissions. The outputs in the 100 posterior
samples representing the emulated emissions are compared
against the ‘true’ emissions. Fig. 1 summarizes the necessary steps
involved in the emulation of the FEPS modeling system.

A total of 4 sensitivity experiments to GP-emulator tuning pa-
rameters are carried out to reach the best combination of control
setting parameters that produce the least relative bias between the
simulated and the emulated results. We have also advanced sys-
tematically from the emulation of one, two, three and four input
parameters to check for consistency or errors in the application.
r coding key shows the three major stages required prior to using data from the em-
r to produce a training dataset and train the emulator (numbers 1, 2, 3, and 4); the
emulator with the output from the simulator at the same sampling points (numbers 5
ber 7). (For interpretation of the references to colour in this figure legend, the reader is
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Fig. 2. (a) The co-variation of the emulated 100 posterior outputs, (b to d) the filled parameter space (star symbol, total of 1000 samples) produced by the trained GP-emulator with
432 training points (vertical straight-line points). The emissions from CH4 showed similar results and are not presented in this figure.
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3. Results and discussion

Fig. 2a shows the emulated 100 sample emissions of the three
species. The emissions for the three species vary consistently
among the sampling points. Fig. 2b shows three examples of
selected points used to train the GP-emulator (the vertical straight
lines) and the 1000 posterior samples produced by the trained GP-
emulator. The posterior samples fill in the space amongst the
training points and are shown to have a matching magnitude dis-
tribution depicted by the color intensity of one of the output
emissions (CO). These results reveal the basic function of the GP-
emulator, and that is to correctly interpolate between the training
points and provide a large number of new samples that could be
used for further analysis.

The emulator was developed with variety of applications in
mind and users are allowed to select parameters in order to opti-
mize the performance of the emulator for their specific application.
For this application, two emulator setup parameters related to the
order of the regressionmodel and the type of training algorithm are
found to have most influence on the emulation results. For the
experiment with three input parameters, the combination of a first
order regression model and the exhaustive training algorithm
appear to have yielded smaller bias compared to higher order
regression and the basic training algorithm (dark blue line of stat4
case in Fig. 3a). Still, the bias is large at ±20% for almost 90% of the
sampled data (Fig. 3b). However, a substantial reduction in the
overall bias is achieved by the introduction of the fourth input
parameter with at least 90% of the 100 validation points having a
bias within ±5% (light blue line of stat4 in Fig. 3b). Fig. 3b shows the
cumulative frequency of the bias where the mean bias of the four-
input parameter experiments was �0.8% with the standard devia-
tion of 4.4%. Increasing the input parameters from three to four by
including a new fuel type (with the parameter pBf2) improved the
emulation results substantially regardless of the regression models
and training algorithms used.

To fully explore the sensitivity of the three emission outputs to
the four input parameters (pBf1, pBf2, FM and WS), we have used
1000 emulator-produced posterior samples and clustered the
output by the k-means algorithm. The algorithm sorts the samples
into four different clusters as shown by different colors in Fig. 4. The
PM2.5 emissions are shown here, but the other two emission out-
puts produced similar results and only their means are presented in
Fig. 4. Naturally, the clusters are ordered based on their average
values that could be categorized as low, medium-low, medium-
ehigh, and high emission scenarios. The mean of each input
parameter that corresponds to every cluster is calculated and
shown in Fig. 4 (inside the color coded boxes). It is to be noted here
that these clusters and the corresponding mean values for the four
input parameters are a result of the GP-emulator output, not the
actual FEPS model output. These results show that pBf1 (a part of
slash fuel group in FEPS that produces more intense fires and
emissions) is correlated with the increase in emissions and has the
largest relative change between clusters compared to other input
parameters. The other fuel type pBf2 (that comes from the natural
fuels category in FEPS and produces less intense fires and emis-
sions) has weak influence on changing the emissions from one
cluster to the other. The results also show that the sensitivity of the
emission to fuel moisture is weak as indicated by the very little
change of mean FM values between the clusters. Wind speeds, on
the other hand, are correlated with the increase in emissions, but
the impact, judging by the relative change of the mean values be-
tween clusters, is not as strong as the input parameter pBf1. These
results, which reveal the true physical dynamics relating the input
parameters to the expected fire emissions, add more confidence in
the potential use of GP-emulator posterior samples as surrogates to
FEPS simulated emissions.



Fig. 3. (a) Relative bias (y-axis, (emulator-FEPS/emulator)*100) between the FEPS
simulated results for PM2.5 concentrations and the emulated results by the GP-
emulator. Four different GP-emulator settings were used (stat1 to 4: see figure
inset). (b) Cumulative frequency of the relative bias between the FEPS simulated and
GP-emulator emulated results. Both figures have a common legend shown in (a).

Fig. 4. A k-means cluster for 1000 posterior samples (four clusters) and the corre-
sponding mean (in brackets) output emission parameters and the associated mean of
the four input parameters of every cluster (inside the color coded boxes). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

M. Katurji et al. / Environmental Modelling & Software 73 (2015) 254e259258
4. Conclusion

We have investigated the performance of a GP-emulator driven
by a Bayesian framework to emulate the complex physical
interactions among several factors contributing to wildland fire
emissions. The emulated emissions for three species, CO, CH4 and
PM2.5, from wildland fire are within ±20% of the simulated emis-
sions when three input parameters (fuel loading, fuel moisture and
wind speed) are allowed to vary. The relative bias decreased to ±5%
when an additional input parameter, fuel type, is included. Further
analysis with 1000 emulator-produced posterior samples repre-
senting fire emission and input fuel and environmental properties
suggest that the emulator not only produces valid results, but also a
large dataset that preserves the relationship between the input and
output parameters. An example was provided by relating the
maximum emissions to the fuel type known to produce the highest
emission rates.

This study represents a pilot-investigation and a proof of
concept towards potential use of a GP-emulator to effectively
produce fire emissions that span a wide range of fuel and atmo-
spheric conditions. A trained emulator with fast statistical algo-
rithms is capable of producing a very large dataset of valid emission
results driven by a smaller set of simulated emissions and the
corresponding input parameter values. Although the primary
objective of this work is to conceptualize a framework that would
allow for constructing a GIS-based nation-wide emission inventory
where fuel models (defined here by the fuel type and environ-
mental conditions) are very complex in their geographic distribu-
tion and type, one could also allude to various other possible
objectives. This work also provides the preliminary results for
constructing automated look-up tables relating fire emissions to
fuel and environmental properties, which could then be coupled to
operational smoke and atmospheric dispersion models driven by
weather forecasts or observations. The emulator could also be used
to construct an ensemble of fire emission outputs not only driven
by one simulator (like FEPS) but with other emissions models. This
approach would allow for an uncertainty reduction (due to the
incorporation of a collection of fire emission model outputs) and
ensemble-based predictions facilitated by a GP emulator.

Although the approach adopted in this study emphasizes the
success of the proposed simple statistical methodology in tackling
complex environmental physical processes, a continuous case-by-
case validation process is necessary. We also recommend that the
number and size of training parameters be as large as possible
(limited by practicability). In theory, the more feedback processes
included in a physical system, the more the need arises to include
extra input/output training parameters. Unfortunately, there are no
guidelines on the relationships of the number of training parame-
ters required and the complexity of the physical process under
investigation.
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