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Abstract 
Topographic analysis of watershed-scale soil and hydrological 
processes using digital elevation models (DEMs) is commonplace, 
but most studies have used DEMs of 10 m resolution or coarser. 
Availability of higher-resolution DEMs created from light detec-
tion and ranging (lidar) data is increasing but their suitability 
for such applications has received little critical evaluation. Two 
different 1 m DEMs were re-sampled to 3, 5, and 10 m resolu-
tions and used with and without a low-pass smoothing filter 
to delineate catchment boundaries and calculate topographic 
metrics. Accuracy was assessed through comparison with field 
slope measurements and total station surveys. DEMs provided 
a good estimate of slope values when grid resolution reflected 
the field measurement scale. Intermediate scale DEMs were most 
consistent with land survey techniques in delineating catchment 
boundaries. Upslope accumulated area was most sensitive to 
grid resolution, with intermediate resolutions producing a range 
of UAA values useful in soil and groundwater analysis. 

Introduction
Topographic analysis using digital elevation models (DEMs) has 
become routine in soil and hydrologic sciences, and there has 
been considerable assessment of the effects of grid resolution on 
topographic metrics. Most watershed-scale studies examined 
resolutions of 10 m or coarser and tended to use DEMs covering 
thousands of hectares. For instance, when researchers examined 
slope computed from DEMs of different resolutions, they ob-
served that coarser DEMs generated lower values (e.g., Isaacson 
and Ripple, 1990; Jenson, 1991). Quinn et al. (1991) compared 
topographic wetness index (TWI) computed from 12.5 and 50 m 
DEMs and found higher values for the coarser DEM. Many other 
studies comparing topographic metric values computed from 
a range of DEMs reported lower slope, larger upslope accumu-
lated areas (UAAs), and higher TWI values for coarser DEMs (e.g., 
Hancock, 2005; Saulnier et al., 1997; Wolock and Price, 1994; 
Zhang and Montgomery, 1994). Variation in topographic metric 
values computed from DEMs of different resolutions is a result of 
discretization effects when the size of DEM grid cells is altered 
(which can affect the algorithm used to compute a topographic 
metric) and the loss of terrain detail (smoothing) that occurs 
through DEM coarsening (Gallant and Hutchinson, 1996).

Examination of soil and hydrologic variability of small 
headwater catchments may be enhanced by higher-resolution 
DEM data that has only recently become available through 

light detection and ranging (lidar) technology. Lidar-derived 
DEMs have been shown to be more representative of field slope 
measurements (Shi et al., 2012) and field-determined eleva-
tions (Vaze et al., 2010) than DEMs created using topographic 
maps. However, few studies have assessed variation in 
topographic metric values extracted from a range of high-reso-
lution (10 m or less) lidar-derived DEMs. Sorensen and Seibert 
(2007) coarsened a 5 m lidar-derived DEM to 10, 25, and 50 m 
resolutions and found median TWI values increased with DEM 
grid cell size. Vaze et al. (2010) noted changes in DEM-delin-
eated catchment boundaries across five lidar-derived DEMs as 
resolution decreased from 1 to 25 m.

While lidar-derived DEMs may represent field conditions 
better than topographic maps, their accuracy has been shown 
to vary depending on land cover class. For example, previous 
studies found elevation errors increased under forest canopy 
compared with open areas (Hodgson et al., 2005; Reutebuch 
et al., 2003; Su and Bork, 2006). Greater DEM elevation error 
associated with forest canopy may be related to a decrease in 
the number of lidar ground returns or off-terrain points incor-
rectly classified as ground (Hodgson et al., 2005).

Quinn et al. (1991) contended that the resolution of DEMs 
used in hydrologic modeling must reflect topographic features 
vital to the hydrologic response, suggesting that resolution of 
early DEMs was too coarse for accurate modeling of some catch-
ments. Two decades later, high-resolution DEMs may offer a lev-
el of topographic detail greater than that controlling surface/
near surface flow pathways. For instance, Bailey et al. (2014) 
found that a 5 m DEM resulted in UAA and TWI values that were 
better correlated with soil horizon thickness and groundwater 
fluctuations than metrics calculated from a 1 m DEM. Gillin et 
al. (2014) showed that digital mapping of soils based on DEM 
derived topographic metrics was possible with a smoothed 
DEM. To mitigate landscape roughness, a DEM may be coarsened 
to a lower resolution through resampling or cell aggregation 
(e.g., Band and Moore, 1995; Sorensen and Seibert, 2007; Wu 
et al., 2008) or smoothed through filtering (e.g., Lillesand and 
Kiefer, 2000; Walker and Willgoose, 1999). Filtered DEMs retain 
general topographic trends better than coarsened DEMs while 
reducing local roughness created by individual cells (Ham-
mer et al., 1995). Although filtering is a common technique for 
smoothing DEMs, evaluations of topographic metrics computed 
from filtered and unfiltered DEMs over a range of resolutions 
are limited (e.g., Hammer et al., 1995).

This study had three principal objectives. First, we com-
pared differences in shape and area of a catchment delineated 
from 1 m DEMs interpolated from lidar datasets, as well as DEMs 
aggregated from original 1 m resolution to coarser models (3, 
5, and 10 m resolutions) and treated with low-pass smoothing 
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filters, to determine what resolution/filter combination best 
reflected a field-surveyed catchment boundary. Second, we 
evaluated the accuracy of each lidar dataset and ability of 
lidar-derived DEMs to characterize topography and terrain 
features through comparison with field-determined slope mea-
surements and total station ground surveys. Finally, we exam-
ined variation in topographic metrics computed from DEMs of 
varying resolution to determine the effects of grid cell size over 
a range of high-resolution (10 m or less) DEMs. Overall, this 
study aimed to provide guidance for researchers utilizing lidar-
derived DEMs in watershed-scale soil and hydrologic analyses.

Methods
Study Location
The Hubbard Brook Experimental Forest (HBEF) (Figure 1), 
located in the White Mountains of New Hampshire (43°56’N, 
71°45’W), is maintained by the United States Forest Service 
(USFS), Northern Research Station and is part of the National 
Science Foundation Long-Term Ecological Research (NSF 
LTER) network. Watershed Three (WS3), the hydrologic refer-
ence catchment, is underlain by mica schist of the Silurian 
Rangeley formation (Barton et al., 1997) and partially covered 
by glacial till of varying thickness. Soils are predominantly 
Spodosols of sandy loam texture developed in glacial parent 

materials (Likens, 2013). Elevation ranges from 527 m to 732 
m. The western side of the catchment is characterized by 
steep spurs flanking intermittent and perennial streams, while 
the eastern side contains less well-developed drainage chan-
nels and areas of subtler topography. Bedrock outcrops are 
most common near the catchment boundary. The catchment 
is dominated by second-growth northern hardwood forest 
including sugar maple (Acer saccharum), American beech 
(Fagus grandifolia), and yellow birch (Betula alleghaniensis) 
with shallow-to-bedrock areas dominated by red spruce (Pi-
cea rubens) and balsam fir (Abies balsamea) interspersed with 
mountain white birch (Betula cordifolia). Understory vegeta-
tion is comprised mainly of patches of hobblebush (Vibur-
num lantanoides), a woody shrub, with scattered herbaceous 
plants. The forest was partially harvested from 1870 to 1920, 
damaged by a hurricane in 1938, and is not currently aggrad-
ing (Likens, 2013; Siccama et al., 2007).

Lidar Data Collection and DEM Interpolation
Two lidar datasets were evaluated. The first was obtained by the 
National Center for Airborne Laser Mapping (NCALM) in Novem-
ber 2009 as part of their Seed Proposal program, and the second 
by Photo Science, Inc. in April 2012 for the United States Forest 
Service White Mountain National Forest (WMNF). Both datasets 
were collected during leaf-off and snow-free conditions using 
an Optech GEMINI Airborne Laser Terrain Mapper and used to 

Figure 1. Map of Hubbard Brook Experimental Forest, WS3, and location within New England, United States.

Table 1. Lidar Data Collection Methodologies for Datasets Acquired from the National Center for Airborne Laser Mapping (ncalm) and the White Mountain 
National Forest (wmnf); Information Provided by Post-project Reports and Personal Communication with Representatives of ncalm and Photo Science, Inc.

Data Collection/Processing Method NCALM WMNF

Area of survey
Hubbard Brook Valley  

(about 42 sq. km)
western White Mountain  

National Forest (about 484 sq. km)

Approximate altitude above sea level 1600 meters 1800 meters

Swath width 400 meters 550 meters

Overlap 50% 30%

Classified file type/size LAS, 1000 m × 500 m tiles LAS 1.2, 2,000m × 2,000m tiles

Ground Return Density over WS3 only (ppsm = points per square meter) 3.27 ppsm 1.16 ppsm

Vertical RMSE 0.0720 meters 0.124 meters

Ground control stations 3 (Hubbard Brook Valley only) 37 (entire WMNF)
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interpolate a 1 m raster bare earth DEM from returns classified as 
terrain points by each respective organization. A comparison of 
lidar data collection methodologies is in Table 1.

Digital Terrain Analyses and GPS Data Collection
All digital terrain analyses were conducted using System for 
Automated Geoscientific Analyses (SAGA, version 2.1.0) and 
ArcGIS© (ArcMap, version 10.1) software. GPS data were col-
lected using a Trimble Geo XT 2005 GPS unit equipped with a 
Trimble Hurricane Antenna and differentially corrected using 
Trimble Pathfinder software and Continuously Operating Ref-
erence Station (CORS) data from the National Geodetic Survey 
to obtain approximately 1 m precision of horizontal positions.

DEM Aggregation, Filtering, and Sink Filling
Both the NCALM and WMNF 1 m DEMs were aggregated to 
coarser resolutions of 3, 5, and 10 m using mean cell aggrega-
tion to create eight DEMs. Mean cell aggregation was achieved 
by computing the mean value for a designated cell neighbor-
hood, then creating a single cell of the original neighborhood 
size and applying the mean neighborhood value. For example, 
to create a 3 m DEM from a 1 m DEM, the neighborhood size is 
nine cells (center cell plus eight adjacent cells). A 5 m DEM is 
created using a 25 cell neighborhood, and a 10 m DEM is cre-
ated using a 100 cell neighborhood. Then, a second version 
of each DEM was created by treating each DEM with a simple 
low-pass smoothing filter using a mean filtering technique 
for a total of 16 DEMs. Mean low-pass filtering computes the 
average elevation value in a 3 × 3 cell neighborhood moving 
window and applies that value to the cell at the neighbor-
hood center. Unlike cell aggregation, low-pass filtration does 
not change the size of the grid cells. Both cell aggregation and 
low-pass filtration are common methods of DEM smoothing, 
but a comparison of the effects of the two techniques on topo-
graphic metrics and catchment delineation applied in a soil 
and hydrological context is absent in the literature.

Finally, we applied a sink-filling algorithm developed by 
Wang and Liu (2006) to each DEM resolution/filter combina-
tion, which is common in hydrologic applications that require 
the derivation of flow direction and cell accumulation grids.

Watershed Boundary Delineation and Contour Line Generation
DEM-delineated catchment boundaries were established for 
each DEM resolution/filter combination using a differentially 
corrected GPS point collected at a weir defining the water-
shed outlet. The single flow direction algorithm (Jenson and 
Domingue, 1988) was used for flow direction during delinea-
tion. Each watershed polygon was buffered to a distance of 20 
m to mitigate edge effects during topographic metric computa-
tion. Contour lines with a 3 m contour interval were generated 
using the native 1 m DEM for each lidar dataset. Finally, each 
DEM was clipped to the corresponding buffered watershed 
boundary polygon. Watershed boundaries delineated from each 
DEM resolution/filter combination were assessed for differences 
in shape and area. DEM-derived watershed boundaries and ar-
eas were compared with a manually delineated boundary mea-
sured by compass and chain survey when HBEF experimental 
watersheds were first established in the 1950s. The boundary 
has been maintained and marked since establishment and was 
checked for consistency with the original survey by walking 
it with a Trimble Geo XT 2005 GPS unit in 2011. The field-sur-
veyed boundary was used a point of reference to compare with 
the DEM-derived watershed boundaries. Bearings and distances 
from the field WS3 survey were used to create a boundary 
shapefile with the weir GPS point used for georeferencing.

Comparison of Field and DEM Slope Measurements
We compared 75 field slope measurements with DEM-derived 
slope values. Percent slope was measured with a clinometer 5 m 
upslope and 5 m downslope from soil characterization pits and 

groundwater wells along the line of maximum slope. We col-
lected and differentially corrected GPS locations for each pit/well 
location. GPS accuracy of approximately 1 m was sufficient for 
locating pits and wells within one grid cell in the finest DEM ana-
lyzed. The steeper of the upslope/downslope clinometer mea-
surements was compared with DEM-derived percent slope values 
computed using the maximum slope algorithm (Travis et al., 
1975) from filtered and unfiltered 1, 3, 5, and 10 m resolution 
NCALM and WMNF DEMs. A scatterplot comparing field slope with 
difference between field and DEM slope was used to determine 
DEM resolution that best simulated field slope measurements.

Total Station Ground Surveys
Terrain features (boulders, hummocky topography, and fallen 
tree boles) can be considered part of the ground surface, but 
it is not well-understood whether lidar classification meth-
ods label terrain features as ground or whether interpolation 
algorithms smooth these features during DEM generation. We 
conducted elevation ground surveys at four locations in WS3 
in May and June of 2012 using a Sokia SET 610 total station to 
determine if the lidar-derived DEMs reflected terrain features. 
Survey sites incorporated diverse topography, terrain features, 
and vegetative cover. Three sites were located entirely under 
mature forest canopy (UpperK, LowerK, SO2) while a fourth 
site was partially located under mature forest canopy and 
partially in a rain gage area cleared of mature forest but with 
dense beech regrowth (RG5) (Figure 2). SO2 contained the 
greatest density of understory vegetation (primarily hobble-
bush) and terrain features, RG5 contained the lowest density 

Figure 2. Catchment hillshade map with total station survey sites, 
catchment outlet, dem-delineated catchment boundaries, and 
bedrock outcroppings (light grey polygons). Solid line represents 
the field-surveyed catchment boundary, the small-dashed line 
denotes the ncalm 1 m boundary, and the long-dashed line repre-
sents the wmnf 10 m boundary.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 May 2015 	 389



of understory shrubs but dense midstory beech saplings 
and minimal terrain features, and the K sites contained an 
intermediate density of vegetation and terrain features. At 
each site, the total station was placed directly over a point 
established as plot center and leveled to an XY planar accu-
racy of 10 seconds. Data were collected at 3 m intervals along 
transects established prior to each survey. Transect lengths 
varied depending on visibility through the understory, but 
generally ranged from 20 to 35 m. When a terrain feature was 
encountered, data points were collected adjacent to and on 
the feature, often resulting in greater point densities at these 
locations. Vertical (relative elevation), horizontal, and slope 
distances, as well as horizontal angle (azimuth in degrees) 
were recorded for each point.

Elevation values were extracted from the unfiltered/unfilled 
NCALM and WMNF 1 m DEMs to each survey point. Relative 
elevation differences between each benchmark and survey 
points indicated by each DEM were subtracted from the relative 
elevation differences between each benchmark and survey 
points indicated by the total station. The absolute value of the 
resulting values constitutes overall error. Finally, overall error 
was used to calculate Root Mean Squared Error (RMSE) as:

	 RMSE =
  

e

n
ii

n 2

1=∑
	

(1)

where ei are the errors or differences between the elevations 
of the total station survey locations and their correspond-
ing DEM elevations, and n is the number of survey points. 
RMSE offers a common empirical assessment of lidar-derived 
DEM accuracy (Raber et al., 2007). We compared RMSE values 
between sites, as well as for canopy versus no canopy and ter-
rain feature versus no terrain feature. A decrease in vegetative 
cover should correspond with lower RMSE caused by higher 
lidar ground return densities and fewer off-terrain features 
misclassified as ground. Greater RMSE for terrain features may 
indicate their omission from lidar-derived DEMs.

Topographic Metric Computation
DEMs were used to compute four topographic metrics com-
monly used in soil and hydrologic sciences: slope, planform 
curvature, upslope accumulated area (UAA), and topo-
graphic wetness index (TWI = ln(α/tanβ), where α = upslope 

accumulated area (UAA), and tan β = local slope; (Beven and 
Kirkby, 1979)). Slope was calculated using the maximum 
slope algorithm (Travis et al., 1975). Planform curvature was 
calculated using the equation described by Zevenbergen 
and Thorne (1987). UAA is a measure of the amount of area 
upslope of a given point on a landscape to which surface flow 
is attributable and was calculated using the triangular mul-
tiple flow direction algorithm (Seibert and McGlynn, 2007). 
TWI is a common metric used to simulate surface and shallow 
subsurface wetness of different points on a landscape relative 
to each other, particularly in hydrologic models (e.g., Niu et 
al., 2005; Tague and Band, 2001).  

To compare topographic metrics across DEM resolution/fil-
ter combinations, we generated random points for topograph-
ic metric value extraction. Point generation was constrained 
by a 20 m negative buffer polygon so that all points were also 
contained within each watershed boundary. To avoid spatial 
autocorrelation, we generated random points at a density 
of one point per 1,000 m2 using the mean area of all DEM-
delineated catchments for a total of 421 random points. Slope, 
planform curvature, UAA, and TWI values from each DEM 
resolution/filter combination were extracted to the random 
points. Boxplots were used to evaluate differences in topo-
graphic metric distributions across changes in DEM resolution 
and filtering. Additionally, UAA maps were created using the 
WMNF DEMs for unfiltered 1, 3, 5, and 10 m resolutions to dem-
onstrate how DEM resolution impacts UAA values.

Results
Watershed Boundary Delineation
Watershed boundaries were most similar to the 1950s field-
surveyed boundary when delineated from 3 m and 5 m reso-
lution DEMs, regardless of whether a filter was applied (not 
shown). The NCALM unfiltered 1 m DEM excluded a 1 ha region 
(approximately 2 percent of the total watershed area) in the 
southeastern portion of the watershed that was included in 
the field-surveyed boundary, while the WMNF unfiltered 10 m 
DEM included a 1 ha area in this same region that was exclud-
ed from the field-surveyed boundary (Figure 2).

Watershed areas were also compared for each DEM resolu-
tion/filter combination and with the field-surveyed boundary 
of 42.4 ha. Areas ranged from 41.4 ha (unfiltered NCALM 1 m) to 

Table 2. Catchment Area and Mean Topographic Metrics for Each dem Resolution/Filter Combination (lp denotes the Application of a Low-pass Filter); Mean 
Topographic Metric Values are Based on a Random Sampling of 10 Percent of 10 m Grid Cells that would Fit into Each Boundary; Area of the Field-surveyed 

Boundary is 42.3 ha

Lidar 
Dataset

DEM resolution/
filter

Area 
(ha)

Slope
(%)

Planform Curvature
(radians/m)

UAA
(m2)

TWI
(ln(m2))

NCALM 1m 41.4 30.6 2.8 188.2 4.3

NCALM 1mLP 42.3 29.0 0.9 161.3 4.8

NCALM 3m 41.9 28.9 0.4 571.1 6.4

NCALM 3mLP 42.1 28.5 0.1 790.5 6.6

NCALM 5m 42.1 28.8 0.4 1621.1 7.2

NCALM 5mLP 42.0 28.1 0.2 1594.1 7.3

NCALM 10m 42.2 28.4 -0.5 3286.9 8.2

NCALM 10mLP 41.5 27.4 -0.3 3410.8 8.5

WMNF 1m 42.4 30.2 2.4 173.6 4.4

WMNF 1mLP 42.3 28.8 0.9 201.8 4.9

WMNF 3m 42.3 29.3 1.4 858.8 6.4

WMNF 3mLP 41.8 28.4 0.0 937.6 6.6

WMNF 5m 42.3 28.6 -0.5 1668.7 7.2

WMNF 5mLP 42.1 28.0 0.1 1539.5 7.4

WMNF 10m 43.0 28.2 -0.2 2623.1 8.2

WMNF 10mLP 41.6 27.4 -0.6 3097.7 8.5
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43.0 ha (unfiltered WMNF 10 m) (Table 2). The mean of water-
sheds delineated using NCALM DEMs was 42.0 ha and the mean 
of watersheds delineated using WMNF DEMs was 42.2 ha. In 
general, coarse (10 m) and fine (1 m) DEMs tended to generate 
watersheds containing areas least similar to the overall means, 
while intermediate (3 m and 5 m) DEMs tended to generate 
watersheds containing areas most similar to the overall means 
(Table 2) and the conventionally surveyed boundary.

Comparison of Field and DEM Slope Measurements
The 1 m DEMs generated slope values most different from 
field measurements, with the exception of the steepest slopes 
(Figure 3). A one-way analysis of variance indicated no 
statistically significant differences (α = 0.05) between DEMs of 
the same resolution/filter combination derived from NCALM 
and WMNF lidar datasets, so for ease of visualization only 
NCALM scatterplot data are shown. Twenty-nine percent of 
the NCALM 1 m DEM slopes and 23 percent of the WMNF 1 m 
DEM slopes exhibited a difference from field slope greater 
than 10 percent. In general, difference between field and DEM 
slope values decreased with DEM coarsening. Filtering made 
no significant impact on DEM slope computation. A one-way 
analysis of variance comparing field slope measurements with 
DEM-computed slopes indicated no statistically significant dif-
ferences between the means (α = 0.05).

Total Station Ground Surveys
To determine if small scale terrain features were included 
when lidar returns were classified as ground points and used 
to interpolate a bare earth model, we compared RMSE for loca-
tions with and without terrain features. We also compared 
RMSE for the cleared rain gage area with RMSE for sites under 
mature forest canopy to determine the effects of canopy on 
lidar in a northern hardwood forest. In the rain gage clearing, 
the RMSE was 1.06 m for the NCALM DEM and 1.24 m for the 
WMNF DEM. Under canopy, the RMSE was 1.32 m for the NCALM 
DEM and 1.52 m for the WMNF DEM (Table 3). Locations on or 
adjacent to terrain features exhibited an RMSE of 1.49 m for 
the NCALM DEM and 1.66 m for the WMNF DEM, while locations 
without terrain features exhibited an RMSE of 1.03 m for the 
NCALM DEM and 1.18 m for the WMNF DEM (Table 3). RG5 had 
the greatest RMSE value when computed by survey site (Table 
3). Greater RMSE values were observed for both datasets at lo-
cations with terrain features versus non-feature survey points. 
In most cases, total station measurements yielded a greater 
relative elevation difference than the DEM between benchmark 
and terrain feature survey locations.

Topographic Metric Comparison
Boxplots were used to compare the distributions of topo-
graphic metric values computed for each DEM resolution/filter 
combination (Figure 4). A one-way analysis of variance indi-
cated no statistically significant differences (α = 0.05) between 
DEMs of the same resolution/filter combination derived from 
NCALM and WMNF lidar datasets, so for ease of visualization 
only WMNF distributions are shown. Filtering and DEM coars-
ening decreased slope variance and interquartile range (IQR). 
Slope IQR decreased from 17 percent to 7 percent (Figure 4a). 
Median planform curvature did not change with filtering or 
cell aggregation (Figure 4b). Planform curvature variance was 
consistently lower for the filtered version of each DEM resolu-
tion (Levene’s test statistic = 47.22, α = 0.05). The 3 m and 5 
m DEMs tended to produce planform curvature values with 
the narrowest distributions (Figure 4b). Median UAA values 
increased for both the NCALM and WMNF DEMs from 188 m2 
and 174 m2 to 3411 m2 and 3098 m2, respectively. UAA maps 
indicated that for finer-resolution DEMs the watershed was 
dominated by grid cells with small UAAs (Plate 1). As DEMs 
were coarsened, UAA values became larger, and median TWI 

Table 3. RMSE for Each Total Station Survey Site, Locations Under Mature 
Canopy and in the Rain Gage Clearing, and Locations With and Without Ter-
rain Features. Relative Elevation Differences between Total Station Survey 
Benchmark/Survey Locations and Corresponding dem Benchmark/Survey 

Locations were Used to Compute rmse

Site ID NCALM WMNF

LowerK 0.69 0.73

UpperK 0.73 0.71

SO2 0.77 0.98

RG5 1.84 2.07

Canopy 1.32 1.52

Clearing 1.06 1.24

Feature 1.49 1.66

No Feature 1.03 1.18

Figure 3. Field slope values measured using a clinometer for 75 
locations corresponding with soil pits and shallow subsurface 
wells were compared with the difference between field and dem 
slope measurements computed using the maximum slope algo-
rithm for ncalm 1, 3, 5, and 10 m dems.
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values also increased with filtering and coarsening from 4.1 
to 8.4 when calculated using the WMNF DEMs (Figures 4c and 
4d). The same overall increase in median TWI occurred for the 
NCALM DEMs. TWI distributions computed using the 3 m and 5 
m DEMs, regardless of filtering, exhibited the greatest similarity.

Discussion
Watershed Boundary Variation with DEM Resolution and Landscape 
Roughness
Each DEM generated a different catchment boundary. This was 
especially true for the unfiltered NCALM 1 m DEM, which ex-
cluded nearly 1 ha more area than the field-surveyed bound-
ary, and the unfiltered WMNF 10 m DEM, which included near-
ly 1 ha more area than the field-surveyed boundary (Table 2; 
Figure 2). The filtered 10 m DEMs from both datasets contained 
nearly 1 ha less area than the field-surveyed boundary. The 
area excluded or included for these four watershed boundar-
ies was chiefly located in the southeastern portion of WS3, 
which is characterized by little to no channel formation and 
no steep spurs compared to the rest of the catchment. Varia-
tion in catchment boundary and flow accumulation across 
DEM resolutions is consistent with previous observations (e.g., 
Quinn et al., 1995; Vaze et al., 2010). 

Such results demonstrate that care should be taken when 
using lidar-derived DEMs for watershed delineation, especially 

in regions where delineation of catchments is challenging 
due to subtle topography. Uncertainty in catchment area 
determination is a critical factor in evaluating catchment 
water and nutrient balances as the estimate of atmospheric 
precipitation inputs is dependent on this parameter. Yanai et 
al. (2014) evaluated sources of uncertainty in stream water 
flux in long-term catchment studies and noted that watershed 
area has not been critically assessed at well-known long-term 
catchment installations. DEM aggregation methods may not 
adequately preserve drainage features, which affect the delin-
eation process. An important consideration from a hydrologi-
cal perspective during DEM generation is maintaining relative 
elevation differences or drainage features (Ai and Li, 2010; 
Chen et al., 2012).

Agreement between DEM and Field Slope Values
DEM-computed slope values were similar to field-measured 
slope values, particularly for the 5 m and 10 m DEMs (Figure 
3c and 3d). In this study, field slopes were measured at a 5 
m scale, which helps explain why 1 m DEMs generated slope 
values least similar to field measurements. Such results dem-
onstrate that DEM resolution should reflect the desired scale of 
information intended for the application, e.g., operations and 
management decisions, erosion modeling, or soil mapping.

The tendency for slope values to become more intermedi-
ate (decreased maximum values and increased minimum 
values) with DEM coarsening is consistent with previous 

Figure 4. Box and whisker plots indicate variation in distribution of topographic metrics for wmnf: (a) slope, (b) planform curvature, (c) 
uaa, and (d), and twi. Median values are represented by the thick black line, boxes represent the interquartile range, whiskers extend 1.5 
times the interquartile range beyond the interquartile range box and contain approximately 99.3 percent of the data, and circles indicate 
points outside 99.3 percent of the data. Topographic metrics were computed for each dem and values were extracted to 421 random 
points generated inside the WS3 boundary.
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observations (e.g., Band and Moore, 1995; Sorensen and 
Seibert, 2007; Vaze et al., 2010). Slope values can be expected 
to become more intermediate when finer-resolution grid cell 
neighborhoods are averaged into larger cells through DEM 
coarsening. Our observation that the filtered version of a 
given DEM resolution exhibited a smaller variance than the 
unfiltered version for planform curvature suggests that low-
pass filtering has a greater impact on local surface roughness 
than DEM coarsening by mean cell aggregation.

Classification and Interpolation of Lidar Returns
Total station surveys resulted in greater RMSE for locations 
with terrain features, such as boulders or fallen trees, than for 
non-feature survey points. This suggests that either the lidar 

pulses tended to miss terrain features or, more likely, that DEM 
interpolation algorithms smoothed such features. This may 
present challenges for researchers interested in using DEMs for 
studies at the hillslope scale, or to evaluate processes depen-
dent on micro-topography. For example, hummocky terrain 
and large boulders may affect surface and subsurface water 
flowpaths, but our observations suggest that lidar interpola-
tion algorithms mitigate roughness from these terrain features 
during DEM generation. Researchers interested in micro-topog-
raphy may be able to utilize a DEM generated from unclassi-
fied lidar returns although our research suggested it could be 
difficult or impossible to distinguish boulders, hummocks, or 
fallen tree boles from low-lying vegetation.

Plate 1. UAA (m2) computed for: (a) 1 m, (b) 3 m, (c) 5 m, and (d) 10 m wmnf dems with 3 m contour interval. Thick black line denotes the 
calculated catchment boundary for each DEM.

(a)	 (b)

(c)	 (d)
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RMSE was lower in forest clearings than under mature 
canopy for both NCALM and WMNF datasets. This result is ex-
pected, as the density of lidar ground returns used during DEM 
interpolation should increase as vegetative cover decreases. 
Higher lidar ground return density facilitates the interpola-
tion of more accurate DEMs, and thus clearings are presumed 
to allow more accurate representations of the ground surface 
than regions with a canopy and therefore exhibit a lower 
RMSE. Greater RMSE for RG5 compared with other survey 
sites may have been caused by dense beech saplings. Young 
beech thickets have a higher leaf-area index (LAI) (Genet et 
al., 2009) and perhaps a more complex branch architecture 
than mature stands. Limbs can cause lidar pulses to reflect 
in a direction other than to the sensor resulting in spurious 
data points known as multipath errors. Furthermore, when a 
pulse encounters an object and records a return, there is a lag 
distance of approximately three vertical meters before another 
return can be recorded. Hobblebush and other herbaceous 
understory plants found in WS3 growing to about one meter 
in height did not appear to interfere with lidar accuracy. How-
ever, the midstory beech thicket likely increased multipath 
errors and decreased the number of recorded ground returns, 
resulting in reduced accuracy and/or misclassification of 
off-terrain features as ground. Overall, our results suggest that 
DEM elevation error under a mature forest canopy of northern 
hardwoods in leaf-off conditions and in steep terrain may 
include as much 0.3 m to 0.5 m more error in elevation com-
pared to open areas.

The two lidar datasets had different ground return densities 
in WS3; the NCALM dataset had a density of 3.27 ppsm while 
the WMNF dataset had a density of 1.16 ppsm (Table 1). Yet the 
datasets generated similar DEMs in terms of raw elevations, and 
the DEMs produced similar catchment boundaries, especially 
when coarsened to 3 m and 5 m resolutions. Furthermore, dis-
tributions of topographic metrics computed from filtered/un-
filtered coarser DEMs derived from the original 1 m resolution 
for each dataset were similar (Table 2; Figure 4). Density of 
nominal post-spacing has been shown to affect DEM accuracy 
(e.g., Aguilar et al., 2005; Hodgson et al., 2004; Hu et al., 2009) 
although several studies also indicated that in some situations 
lidar sampling density can be reduced by up to 50 percent 
with no degradation of DEM accuracy (Anderson et al., 2006; 
Liu et al., 2007). Denser post-spacing can be achieved using 
a higher pulse rate, lower altitude over-flight, narrower scan 
angle, or some combination of these variables (Raber et al., 
2007). The WMNF dataset contained lower nominal post-spac-
ing and was collected from a higher altitude than the NCALM 
dataset. Similarity of DEM elevations, computed topographic 
metrics, and delineated catchment boundaries for each dataset 
investigated in this study suggest that post-spacing, within a 
modest range of variation, may not be the most limiting factor 
to the quality of DEMs for such watershed studies.

Topographic Metric Variation with DEM Resolution
TWI distributions tended to increase with DEM coarsening and 
filtering, consistent with previous investigations of coarser 
(10 m and greater) DEMs (e.g., Quinn et al., 1991; Sorensen and 
Seibert, 2007; Wolock and Price, 1994) but extended to a finer 
scale in this study. Observed increases in median UAA values 
with DEM coarsening (Figure 4) area also was consistent with 
previous observations (Zhang and Montgomery, 1994). The 
large differences in mean TWI values (Table 2) computed from 
unfiltered 1 m and filtered 10 m DEMs derived from NCALM and 
WMNF lidar datasets, respectively, are significant from the per-
spective of the hydrological modeler. This disparity is equiva-
lent to approximately two orders of magnitude difference in 
simulated subsurface flow when following TOPMODEL theory 
(Beven and Kirkby, 1979) and using the hydraulic conductivity 
distribution with depth observed for WS3 (Detty and McGuire, 

2010). The parameterization of TOPMODEL and other hydro-
logic models is often independent of topography where it is 
static and taken directly from available elevation data. How-
ever, small differences (less than 10 m) in DEM resolution have 
implications for computed topographic metric values (e.g., 
the mean) that affect hydrologic quantities derived from such 
models.

Increasing TWI values with DEM coarsening appeared to be 
controlled by increases in UAA values. Minimum slope values 
increased and mean/median slope values decreased only 
slightly (Figure 2; Figure 4) with DEM coarsening and therefore 
cannot explain the observed increases in TWI values. How-
ever, UAA boxplots (Figure 4) and UAA maps (Plate 1) demon-
strated increasing values with DEM coarsening. Mean values 
varied over an order of magnitude from a low of 161 m2 for 
the NCALM filtered 1 m DEM to a high value of 3,411 m2 for the 
NCALM filtered 10 m DEM, and must therefore offset observed 
changes in minimum, mean, and median slope values when 
calculating TWI. Maximum slope value decreases, in addition 
to UAA increases, may at least partially explain TWI maximum 
value increases with DEM coarsening. 

UAA values computed from the 3 m and 5 m DEMs best dif-
ferentiated topographic variation seen on the catchment map 
with a 3 m contour interval (Plate 1). Summits and convex 
shoulder slopes aligned with smallest UAA values while 
drainages and toeslopes aligned with greatest UAA values, and 
backslopes aligned with moderate UAA values. In contrast, 
the 1 m DEMs generated small UAA values throughout much 
of the catchment, with much of the landscape in a variety of 
topographic positions having a UAA of <100 m2 (Plate 1) This 
may be due to fine topographic detail and surface irregulari-
ties, which our total station survey suggests are not well 
represented, that interfere with the computation of UAA. On 
the other hand, the 10 m DEMs generated UAA values >1,000 
m2 throughout many parts of the catchment, including some 
areas best described as planar backslopes (Plate 1). 

An example of the implications of variation in topographic 
metrics derived from varying DEM scale in our study area is 
provided by Bailey et al. (2014) who found that variation soil 
horizon sequences and thickness, and groundwater fluctua-
tions were best correlated with TWI and UAA values derived 
from 3 m to 5 m DEM resolution. Five soil map units were de-
lineated based on these hydropedological variations and oc-
curred at hillslope positions that can be predicted by interpre-
tation of the 3 m contour interval topographic map. Further 
investigation of topographic metrics calculated from DEMs at 
this scale is warranted as a digital soil mapping tool in this re-
gion and highlights the importance of careful consideration of 
DEM resolution used to compute topographic metrics, as small 
resolution differences can yield dramatically different results 
in metric values for a given point on a landscape. 

Conclusions
Total station surveys suggested that small scale terrain fea-
tures such as boulders and fallen trees are smoothed when a 
DEM is generated from lidar data, and that DEM elevation ac-
curacy increases in the absence of vegetative cover. However, 
even under mature forest canopy and in rough terrain, lidar 
still can produce DEMs useful for soil and hydrologic analyses. 
The similarities we observed in watershed boundaries, topo-
graphic metrics, and RMSE values computed from each set of 
DEMs suggest that differences in lidar collection methods and 
ground return densities we studied were not sufficient to cre-
ate tangible DEM accuracy differences. Methods for increasing 
accuracy also increase the cost of lidar acquisition and data 
processing/storage requirements. Our findings suggest that 
these costs can be reduced while generating DEMs as accurate 
as those developed with greater monetary and time inputs.
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While finer scale DEMs generated from lidar data may be 
necessary for some detailed soil and hydrology studies, in 
our study area, the highest possible resolution DEM was not 
the best tool as the preponderance of low UAA values across 
a range of topographic positions generated by the 1 m DEM 
were not suitable for soil horizon and water table comparison. 
DEM coarsening and filtration resulted in significant changes 
to UAA and TWI values. Given the importance of these metrics 
in hydrological research and watershed management, we 
recommend that DEM resolution for computing UAA and TWI 
be carefully selected based on prior observation and expert 
knowledge of the scale of features controlling the hydrologic 
response. Blindly using the highest resolution data available 
may hinder the progress of the effects of topographic relation-
ships in watershed research.
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