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A spatial mismatch exists between regional climate models and conditions experienced
by individual organisms. We demonstrate an approach to downscaling air temperatures
for site-level studies using airborne LiDAR data and remote microclimate loggers. In
2012–2013, we established a temperature logger network in the forested region of
central Missouri, USA, and obtained sub-hourly meteorological measurements from a
centrally located weather station. We then used linear mixed models within an infor-
mation theoretic approach to evaluate hourly and seasonal effects of insolation,
vegetation structure, elevation, and meteorological measurements on near-surface air
temperatures. The best-supported models predicted fine-scale temperatures with high
accuracy during both the winter and growing seasons. We recommend that researchers
consider the scales relevant to specific applications when using our approach to
develop site-specific spatio-temporal models.

1. Introduction

The threat of anthropogenic climate change to biodiversity has prompted repeated calls
for spatial models that downscale climate conditions to scales experienced by organisms
(Ackerly et al. 2010; Dobrowski 2011; McMahon et al. 2011; Suggitt et al. 2011).
Models developed from regional weather station networks, e.g. using statistical inter-
polation methods, are not equipped to account for fine-scale microclimate variation in
complex landscapes (Daly 2006; Dimri and Mohanty 2007; Trivedi et al. 2008; Graae
et al. 2012). However, development of low-cost microclimate loggers and availability of
high-resolution spatial data have permitted researchers to develop landscape-specific
spatio-temporal models. For example, temperature logger networks have recently been
used to create relatively fine-scale temperature models for specific applications, includ-
ing predicting species distributions under projected climate scenarios or identifying
refugia (e.g. Ashcroft, Chisholm, and French 2009; Fridley 2009; Holden et al. 2011;
Shoo et al. 2011). Such models typically attempt to predict average high or low
temperatures for a given time period; models predicting temperatures for specific
times are rare (Chung and Yun 2004).

Whereas previous models have downscaled climate conditions to regional and land-
scape scales, climate warming is likely to affect microclimates experienced by individual
organisms during their daily activities. For example, fine-scale spatio-temporal variation
in air temperature and relative humidity can affect the physiology, activity patterns,
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resource selection and demography of numerous taxa (Huey 1991; Porter et al. 2000;
Jamieson et al. 2012; George, Thompson, and Faaborg 2015). Biologists often rely on
regional weather stations or physical models placed in habitats of interest to infer
conditions experienced by organisms (e.g. Cox et al. 2013; Bakken and Angilletta
2014). Despite their potential in predicting climate effects on biodiversity, fine-scale
spatio-temporal models have not been widely adopted for site-level studies (Potter,
Woods, and Pincebourde 2013).

Here, we used sub-hourly meteorological measurements and high-resolution spatial
data to develop a dynamic spatio-temporal model of near-surface air temperatures. Our
goal was to demonstrate how temperature logger networks can be used with remotely
sensed data to create accurate site-level models for fine-scale ecological applications.

2. Methods

The Thomas S. Baskett Wildlife Research and Education Center encompasses 917 ha in
central Missouri (38°44ʹ N, 92°12ʹ W; Figure 1) and is classified as Oak Woodland/Forest
Hills within the Outer Ozark Border ecological subsection (Nigh and Schroeder 2002).
The region consists of dissected limestone hills with elevation ranging from 166 m in
creeks and drainages to 261 m along ridges. Predominant cover types include mixed
deciduous forest interspersed with dense successional habitats and abandoned fields. From

Figure 1. Study area map showing the location of the MOFLUX site and remote temperature
loggers at the Thomas S. Baskett Wildlife Research and Education Center in Missouri, USA.
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1981 to 2010, the mean annual temperature was 12.56°C and the mean monthly tem-
perature ranged from −1.28° in January to 25.17° in July; mean annual precipitation was
108.25 cm (Missouri Climate Center 2014).

We collected weather measurements from the Missouri Ozark AmeriFlux site
(MOFLUX; http://ameriflux.ornl.gov/), which was centrally located within the study
area and included a 32 m tower equipped with meteorological and ecological instrumen-
tation. Weather data collected from the MOFLUX site included air temperature, relative
humidity, and direct and diffuse solar radiation (Table 1). All measurements were taken at
30 min intervals through the duration of the study.

We used airborne LiDAR data to derive spatial layers within a geographic informa-
tion system. We developed high-resolution (<10 m) elevation, canopy height, and
canopy cover models for the study area from data collected in March 2009 (Table 1).
The elevation model was used to derive a dynamic solar radiation raster (S) using the
equation

S ¼ H � Sdir þ Sdif (1)

where H represents a temporally specific hillshade raster, Sdir represents measured direct
solar radiation, and Sdif represents measured diffuse solar radiation. The radiation model
thus downscaled measured solar radiation to the complex terrain according to the angle of
the sun and light conditions at a given time. Programme FUSION and R packages insol
and raster were used for spatial analyses (Corripio 2014; Hijamas 2014; R Core Team
2014). Original LiDAR files and detailed metadata have been permanently archived and
can be accessed via the Missouri Spatial Data Information Service (http://www.msdis.
missouri.edu/).

We obtained air temperature measurements from an initial network of 100 temperature
loggers (iButton® model DS1021G, Maxim Integrated, San Jose, CA, USA) placed
throughout the study area. To ensure adequate representation of spatial covariates, we
established a random point grid across the study area such that temperature loggers were
at least 150 m apart (Figure 1). Each temperature logger was placed inside a solar shield

Table 1. Predictor variables included in candidate mixed models of the effects of spatial and
meteorological measurements on near-surface air temperatures.

Winter Growing season

Variable Description Source
Mean
value Range

Mean
value Range

Temp Air temperature (°C) MOFLUX 2.01 −18.23–26.09 21.61 2.04–37.22
RH Relative humidity (%) MOFLUX 66.45 17.83–100 71.34 21.85–100
Solar Solar radiation (W m−2) dynamic

model
103.03 8.26–893.67 187.84 2.00–1100.88

Height Canopy height (m) LiDAR 14.13 0–25.20 14.13 0–25.20
Cover Canopy cover (%) LiDAR 53.63 0–97.71 53.63 0–97.71
Elev Elevation (m) LiDAR 224.05 175.72–249.07 224.05 175.72–249.07
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and mounted 1 m high on the north side of a tree or a shaded wooden stake when trees
were absent. Solar shields were constructed from 15 cm sections of 7.62 cm diameter
PVC pipe. Temperature loggers were coated with Plasti Dip® (Plasti Dip International,
Blaine, MN, USA) and suspended inside solar shields to promote adequate airflow. All
temperature loggers took measurements every 3.5 hours from 1 June 2012 to 21 January
2014.

We used linear mixed models within an information theoretic approach (Burnham
and Anderson 2002) to develop separate predictive temperature models for the winter
(November–March) and growing season (May–September). Temperature logger mea-
surements were treated as the response variable and different combinations of the
corresponding spatial (LiDAR derived) and temporal (MOFLUX derived) covariates
were treated as predictor variables. Mantel tests did not detect spatial autocorrelation
among measurements taken during the same periods so we did not include a spatial
autocorrelation term in models. We included day of year as a random effect and data
logger within hour as a nested random effect in all models to account for non-
independence of measurements taken by the same data loggers and at the same times
and dates. We also included the air temperature measured at the MOFLUX site as a
fixed effect in all candidate models because our goal was to predict spatial temperature
variation that was not already explained by temperature measured at a single location.
Candidate models were evaluated using a multistep approach to reduce the number of
models fit. An initial comparison of the global model with day of year and hour as
quadratic fixed effects, without day of year, without hour, and with neither day of year
or hour indicated strong support for both temporal variables. Therefore, day of year
and hour were included as quadratic terms in all subsequent models. Next, we
evaluated all combinations of solar radiation, canopy height, canopy cover, and eleva-
tion as additive fixed effects. In addition, we evaluated all two-way interactions among
spatial variables. We included a global model that contained all variables and a null
model that contained only air temperature. Finally, we tested for two-way interactions
between day of year and spatial variables and hour and spatial variables. Candidate
models were developed a priori and ranked using Akaike’s Information Criterion and
model weights. We tested for overdispersion by calculating the ratio of the sum of
squared Pearson residuals to the residual degrees of freedom and assessed the overall
fit of each model to the data by calculating the marginal and conditional R2 (Nakagawa
and Schielzeth 2013). The marginal R2 indicates the proportion of variance explained
by the fixed effects alone, and the conditional R2 indicates the proportion of variance
explained by both the fixed and random effects. We used k-fold cross-validation to
evaluate each model’s predictive power (Boyce et al. 2002). We sequentially removed
each temperature logger from the data set and fit the model to the remaining data. We
then calculated Pearson correlations between the removed logger’s data and the model
predictions. Models were constructed in R version 3.0.1 on z-transformed data and
with package lme4 (Bates et al. 2014; R Core Team 2014).

3. Results and discussion

We omitted 23 temperature logger locations from analyses because they were either
damaged by rodents or lost. Of those remaining, we obtained 122,665 temperature
measurements. Temperature logger measurements were highly correlated (Pearson
correlation coefficient = 0.98) to MOFLUX temperature measurements, but tempera-
ture loggers ranged from 19.03° below to 14.58° above the MOFLUX temperatures in
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winter and 16.45° below to 14.28° above the MOFLUX temperatures during the
growing season. The ranges of temperature recorded across the study area varied
from 0.5° to 19.5° (mean = 5.30°) during the winter and 0.5° to 17.0° (mean = 5.19°)
during the growing season.

The best supported winter and growing season models included spatial and tem-
poral variables as additive fixed effects and two-way interaction terms (Table 2).
Variation in solar radiation is among the most important determinants of near-surface
temperatures (Geiger, Aron, and Todhunter 2009) and was included in our best
supported models. Canopy cover × hour and canopy cover × day of year interaction
terms were also included in the best models, reflecting daily and seasonal changes in
how forest cover affects temperatures. Forests act synergistically with other physio-
graphic factors to stabilize near-surface temperatures by buffering the ground against

Table 2. Estimated coefficients, standard errors (SEs) and 95% confidence limits (CLs) for the best
supported winter and growing season models of the effects of spatial and meteorological measure-
ments on near-surface air temperatures.

Winter Growing season

Parameter Coefficient SE
Lower

(95% CL)
Upper

(95% CL) Coefficient SE
Lower

(95% CL)
Upper

(95% CL)

Intercept 2.66 0.30 2.08 3.23 20.97 0.07 20.83 21.11
Temp 6.65 0.02 6.62 6.69 5.69 0.02 5.66 5.72
RH 0.27 0.01 0.24 0.30 0.35 0.01 0.33 0.37
Solar 0.03 0.02 −0.01 0.07 0.59 0.02 0.56 0.62
Height 0.00 0.02 −0.03 0.04 −0.30 0.06 −0.41 −0.19
Cover −0.03 0.02 −0.08 0.01 −0.14 0.05 −0.24 −0.03
Elev −0.21 0.03 −0.26 −0.15 0.10 0.04 0.03 0.17
Hour −0.06 0.16 −0.37 0.24 −0.37 0.05 −0.46 −0.28
Hour2 0.25 0.18 −0.10 0.60 1.03 0.07 0.90 1.17
DOY 0.67 0.15 0.38 0.96 0.10 0.03 0.05 0.15
DOY2 −0.75 0.16 −1.07 −0.43 −0.01 0.03 −0.06 0.05
Solar × height – – – – −0.35 0.02 −0.38 −0.31
Solar × cover −0.18 0.01 −0.20 −0.16 −0.02 0.02 −0.05 0.02
Solar × elev −0.07 0.01 −0.09 −0.04 – – – –
Elev × height 0.15 0.02 0.11 0.20 – – – –
Cover × elev −0.08 0.02 −0.12 −0.04 – – – –
Height × elev – – – – 0.10 0.02 0.06 0.14
Solar × hour 0.22 0.04 0.15 0.29 −0.55 0.03 −0.61 −0.48
Solar × hour2 1.28 0.05 1.18 1.38 1.89 0.07 1.75 2.03
Height × hour – – – – −0.01 0.04 −0.08 0.07
Height × hour2 – – – – 0.23 0.04 0.15 0.31
Cover × hour 0.07 0.01 0.04 0.09 0.06 0.03 0.00 0.13
Cover × hour2 0.08 0.02 0.05 0.11 0.21 0.04 0.13 0.29
Elev × hour −0.01 0.01 −0.03 0.02 0.00 0.02 −0.05 0.05
Elev × hour2 0.12 0.02 0.08 0.15 0.13 0.03 0.08 0.18
Solar × DOY −0.55 0.02 −0.59 −0.51 0.10 0.01 0.09 0.11
Solar × DOY2 1.03 0.02 0.99 1.07 0.18 0.01 0.17 0.19
Cover × DOY – – – – 0.08 0.00 0.07 0.09
Cover × DOY2 – – – – 0.01 0.01 0.00 0.02
Elev × DOY −0.18 0.02 −0.21 −0.14 0.06 0.00 0.05 0.07
Elev × DOY2 0.27 0.02 0.23 0.31 −0.01 0.01 −0.02 0.00

Note: DOY and hour represent day of year and hour of day, respectively.
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solar radiation during the day and retaining heat at night. The relative importance of
this buffering effect changes seasonally with the annual cycle of deciduous trees.

Surprisingly, our best supported models included elevation, despite the fact that
elevation varied by <75 m in our sampling grid. The inclusion of elevation in the best
supported models likely reflects that elevation was correlated to other climate forcing
factors that we did not measure. For example, soil moisture influences near-surface
temperatures (Fridley 2009; Geiger, Aron, and Todhunter 2009), and lower elevations in
our study area were located in drainages or closer to streams. In contrast, higher elevations
were located on dry ridges.

The models carried forward at each model selection step explained more than 95% of
the model weight in each candidate set. The final winter model yielded marginal and
conditional R2 values of 0.92 and 0.95, respectively, and a k-fold correlation coefficient
of 0.96. The final growing season model yielded marginal and conditional R2 values of 0.96
and 0.98, respectively, and a k-fold correlation coefficient of 0.98. Model predictions plotted
against measured values indicated very high predictive power across the range of tempera-
tures (Figure 2); outliers were clustered on the same dates, suggesting that specific weather
events affected model performance. Model predictions generally showed higher tempera-
ture variation in fields than forests and at higher elevations than lower elevations (Figure 3).

4. Conclusions

We used a low-cost temperature logger network to develop a dynamic high-resolution
spatio-temporal temperature model to be used in site-level ecological studies. By incor-
porating airborne LiDAR data and sub-hourly meteorological measurements, we demon-
strated that air temperatures can be predicted with high accuracy at scales experienced by
individual organisms. LiDAR technology is well suited for microclimate modelling
because it permits fine-scale characterization of terrain and vegetation structure across
broad areas (Vierling et al. 2008; van Leeuwen and Nieuwenhuis 2010). Microclimate
conditions are determined by numerous factors, including many that we did not measure
(Geiger, Aron, and Todhunter 2009). Depending on the specific application, models could
be further refined by accounting for additional variables. For example, we did not directly

Figure 2. Temperatures predicted by the best supported winter (a) and growing season (b) models
plotted against temperature logger measurements.
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account for cumulative effects of solar radiation over time. Our models might be improved
by including the sum of solar radiation at each location for a time period prior to when the
temperature was measured. Likewise, it would be straightforward to deploy additional
loggers that measure relative humidity or soil temperatures that vary spatially across the
study area. Researchers should consider local microclimate forcing factors and research
questions of interest when developing site-specific models. Nevertheless, we demon-
strated an approach for developing high-resolution spatio-temporal microclimate models
for fine-scale ecological applications.

Disclosure statement
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Figure 3. Predicted near-surface air temperatures made by the best supported winter and growing
season models at the Thomas S. Baskett Wildlife Research and Education Center in Missouri, USA.
Panels show downscaled temperatures and temperature ranges for (a) 16 February 2013, 17:00, (b)
24 December 2013, 06:30, (c) 17 March 2013, 15:00, (d) 10 August 2013, 20:00, (e) 3 May 2013,
05:30, and (f) 31 August 2013, 13:00. The depicted time periods coincided with the seasonal mean,
low, and high air temperatures measured at the Missouri AmeriFlux site.
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