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Introduction

Global climate change is widely regarded as a major con-
servation challenge because of its far-reaching effects on 
ecosystems (Bellard et al. 2012; McCarty 2001). Shifts in 
temperature and precipitation patterns can affect plants and 
animals by disrupting trophic interactions, for example, by 
decoupling the phenology of interdependent species (Traill 
et al. 2010; Van der Putten et al. 2010). Effects of climate 
change are often synergistic and act in conjunction with 
other factors known to affect populations. For example, 
temperature fluctuations associated with climate change 
can interact with landscape composition or predator behav-
ior to limit productivity of prey (Cox et al. 2013b; Morrison 
and Bolger 2002; Skagen and Yackel Adams 2012). Accu-
rately predicting and mitigating effects of climate change 
on threatened ecosystems will require an understanding 
of how proximate climate factors affect individual species 
that perform key ecosystem functions (Bellard et al. 2012; 
Traill et al. 2010).

Although generally understudied, snakes make an ideal 
model organism for understanding the effects of climate 
change on predator–prey interactions. Because snakes are 
ectotherms, their physiology and behavior are constrained 
by environmental conditions that are subject to climate 
warming (e.g., Aubret and Shine 2009; Weatherhead et al. 
2012). Where snakes are abundant they can potentially 
exert strong top–down effects on the behavior, population 
demographics, and evolution of prey species (Bouskila 
1995; Brodie et al. 2005; DeGregorio et al. 2014; Savidge 
1987). For example, in eastern North America, snake 
behavior has been recognized as a potential mechanism 
linking climate warming to songbird productivity (Cox 
et al. 2013a, b; Reidy et al. 2009; Sperry et al. 2013). Fur-
thermore, there is evidence that many snake species are 
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undergoing population declines, in part because of climate 
change, which may in turn affect ecosystem functioning in 
regions where snakes are the predominant predators (Gib-
bons et al. 2000; Reading et al. 2010).

Snake activity patterns are widely presumed to be 
influenced by seasonal temperature changes in temperate 
regions (Gibbons and Semlitsch 1987). Virtually all aspects 
of ectotherm physiology are constrained by body tempera-
ture, and snake behavior is therefore affected by ambient 
temperatures (Lillywhite 1987; Peterson et al. 1993). Snake 
activity patterns also reflect seasonal changes in reproduc-
tive behavior, predator avoidance, or resource selection 
(Gibbons and Semlitsch 1987). Seasonal or daily activity 
patterns have been documented for many snake species, but 
studies that isolate specific environmental factors from tem-
poral patterns have been surprisingly sparse. This paucity 
of information has resulted in part from the difficulty of 
studying snakes in the field; most information is based on 
anecdotes, museum collections, or capture rate data (e.g., 
Dalrymple et al. 1991; Krysko 2002). Radio-telemetry has 
permitted more rigorous analyses of snake movements and 
thermoregulation, but few studies have specifically linked 
activity patterns of individual snakes to ambient weather 
conditions (Howze and Smith 2012; Sperry et  al. 2013; 
Whitaker and Shine 2002).

Thermoregulation in snakes has been well studied in labo-
ratory and field experiments (Blouin-Demers and Weath-
erhead 2001b; Lelièvre et  al. 2011; Peterson et  al. 1993; 
Weatherhead et al. 2012). Thermal preferences for most spe-
cies are close to 30 °C, although snakes in temperate regions 
can tolerate a wider range of temperatures than those in 
tropical regions (Lillywhite 1987). The availability of opti-
mum environmental temperatures affects how much time 
and energy a snake must invest in actively thermoregulating 
compared to other activities. A snake must either thermoreg-
ulate more or become sedentary as temperatures depart from 
the optimum. A lowered metabolism may require less food 
and therefore less time hunting. Snakes can invest more in 
hunting or reproductive behavior when optimal environmen-
tal temperatures are more readily available (Peterson et  al. 
1993). Therefore, the availability of optimal environmen-
tal temperatures should affect snake activity patterns, with 
snakes moving more frequently when environmental temper-
atures permit them to achieve a body temperature near 30°.

Water balance is an important but often overlooked 
aspect of snake physiology. Snakes are susceptible to des-
iccation under dry conditions, and activity during warm 
periods can expose snakes to increased evaporative water 
loss (Guillon et al. 2013; Winne et al. 2001). Snake activ-
ity should therefore be positively related to precipitation 
or relative humidity, with less frequent movements when 
moisture levels are low, including under optimal thermal 
conditions (e.g., Daltry et al. 1998).

We used radio-telemetry and local weather data to 
model temporal activity patterns of western ratsnakes 
(Pantherophis obsoletus), a regionally important preda-
tor. Our goal was to investigate the relationship between 
snake behavior and weather variables that will be affected 
by climate warming. We tested various competing hypoth-
eses regarding weather effects on ratsnake activity patterns. 
Specifically, we predicted that movement frequency would 
increase with temperature and environmental moisture, 
and that weather conditions could be used to predict snake 
activity independently of temporal patterns.

Materials and methods

We used radio-telemetry to track 53 western ratsnakes from 
2010–2013 at the Thomas S. Baskett Wildlife Research and 
Education Center (38°44′N, 92°12′W) and Three Creeks 
Conservation Area (38°49′N, 92°17′W) in central Mis-
souri. This region has been the focus of several long-term 
bird nest predation studies, and the western ratsnake has 
been identified as the predominant nest predator (e.g., Cox 
et al. 2012; Robinson et al. 1995; Thompson and Burhans 
2003). Both study sites consist of mixed-hardwood forest 
interspersed with early successional red cedar (Juniperus 
virginiana) stands and old fields.

We captured snakes opportunistically or as they emerged 
from previously located hibernacula and surgically 
implanted radio-transmitters following standard methods, 
with isoflurane as the anesthetic (Blouin-Demers et  al. 
2000; Reinert and Cundall 1982). Transmitters [Advanced 
Telemetry Systems (ATS) models R1530, R1680] were 
always <3 % of the snake’s body mass. Snakes were given 
meloxicam (0.1  mg/kg) and enrofloxacin (5  mg/kg) and 
released within 3 days of surgery. With one exception, all 
snakes recovered from surgery and continued to exhibit 
apparently normal feeding and reproductive behavior dur-
ing the study (George et al. unpublished data). While it is 
likely that the transmitters affected the snakes, our methods 
were consistent with other snake telemetry studies (Weath-
erhead and Blouin-Demers 2004a). All methods were 
approved by the University of Missouri Animal Care and 
Use Committee (Protocol #6605). We located snakes with a 
handheld receiver and antenna (ATS models R410, R2000, 
13562, 13863) 4× per week during the morning, afternoon, 
evening, and after dark from April through September. 
Tracking times typically rotated on a weekly basis, and the 
order of snakes tracked rotated on a daily basis. We tracked 
snakes to within 1 m of their actual locations (i.e., we did 
not triangulate). We recorded UTM coordinates at each 
location (GPS error <10 m) and whether the snake was in a 
new location, the same location as when last located, or had 
returned to a previously used location. To avoid possible 
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GPS error in determining each snake’s movement status, 
the same field technicians typically tracked the same indi-
vidual snakes throughout a given field season. Therefore, 
technicians could visually confirm each snake’s move-
ment status independently of the GPS coordinates. In cases 
where snakes moved <10 m, we only classified snakes as 
having moved if they were located in a substrate different 
from the former location. For example, a snake using differ-
ent branches of the same tree for 2 consecutive days would 
be classified as not moved, whereas a snake that moved to 
an adjacent tree would be classified as moved. We calcu-
lated the linear distance moved and the elapsed time from 
the previous location. We only used locations <36 h apart 
in our analysis to minimize the likelihood of underestimat-
ing movements. Automated telemetry studies have dem-
onstrated that ratsnakes occasionally move and return to 
within tens of meters of their initial location within a short 
time period (Ward et al. 2013). Therefore, our distance per 
movement estimates may have underestimated actual dis-
tances moved by snakes. However, our tracking method-
ology permitted greater location accuracy than automated 
telemetry (<10 m) and therefore a lower error rate for short 
distances and of whether a snake changed locations. More-
over, we tracked snakes more frequently than has been 
done in most other non-automated snake telemetry studies.

We obtained weather data collected from the Missouri 
Ozark AmeriFlux site (MOFLUX; http://ameriflux.ornl.
gov/), which was located within 12 km of all snake loca-
tions. Measurements included air temperature at 1 m above 
ground, relative humidity, and total precipitation; all meas-
urements were taken every 30 min. For each snake we cal-
culated the mean air temperature, temperature range, mean 
relative humidity, and total precipitation for each time 
interval between snake locations. Whereas modeling opera-
tive temperature (Te; Peterson et  al. 1993) can provide a 
more accurate index of the local conditions available to a 
snake than air temperature, our goal here was to examine 
weather patterns rather than microhabitat variation.

We used generalized linear mixed models within an 
information–theoretic approach to evaluate relationships 
between weather and temporal variables and snake move-
ments (Bolker et al. 2009; Burnham and Anderson 2002). 
Ratsnakes have distinct home ranges and frequently return 
to specific locations throughout the active season and across 
years (Blouin-Demers and Weatherhead 2001a; Durner and 
Gates 1993). Thus, distance moved between relocations 
may be partially dependent on the spatial arrangement of 
habitat features within each snake’s home range. Therefore, 
we used frequency of movement rather than Euclidean 
distance as an index of activity in our models. We treated 
snake movement as a binary response variable (moved = 1, 
did not move =  0) and used a binomial distribution with 
a logit link function in our models. We included day of 

year and individual snake within year as random effects to 
account for non-independence of individuals’ movements 
in time. Elapsed time between each snake location was 
included as an offset term in the model. A multicollinear-
ity test prior to model fitting indicated weak pairwise cor-
relations between all covariates (r < 0.6). An initial com-
parison of the global model without year, with year as an 
additive effect, and a day of year × year interaction indi-
cated strong support for the interaction term. Therefore, 
day of year ×  year was included in all candidate models 
to account for these seasonal and annual effects. The 36 
candidate models included mean air temperature and dif-
ferent combinations of temperature range, total precipita-
tion, mean relative humidity, sex, and snout–vent length 
(SVL) as additive fixed effects. In addition, we evaluated 
interactions between day of year and sex, and linear as well 
as quadratic responses to air temperature and day of year. 
We included a global model that contained all variables, 
as well as a null model with only the intercept. Candidate 
models were developed a priori based on plausible hypoth-
eses, and models were then fit and ranked using Akaike’s 
Information Criteria (AIC) and model weights. We tested 
for overdispersion by calculating the ratio of the sum of 
squared Pearson residuals by the residual degrees of free-
dom and used the area under the receiver operating char-
acteristic curve (AUC) to assess overall fit of each model 
(Fielding and Bell 1997). We based inference on the top 
model because the next ten models added uninformative 
parameters that did not sufficiently contribute to the model 
likelihood to overcome the 2-point penalty for an additional 
parameter (ΔAIC < 2; Arnold 2010; Burnham and Ander-
son 2002). Statistical analyses were conducted in R version 
3.0.1 on z-transformed data and with package lme4 (Bates 
et al. 2014; R Core Team 2014).

Results

We obtained 2130 locations from April to September 
across 4  years from 36 male and 17 female snakes. SVL 
was 112.8 ±  2.7  cm (X̄ ±  standard error) for males and 
109.5 ± 2.0 cm for females. The total number of locations 
per individual was 47.2 ±  26.3 (X̄ ±  standard deviation) 
and ranged from 6 to 128. We tracked 33 individual snakes 
during 2 years and seven snakes during at least 3 years. The 
number of snakes tracked per year ranged from seven in 
2010 to 41 in 2012. Snakes were often sedentary and did 
not change locations on 51 % of the occasions they were 
tracked. When snakes did move, the mean distance moved 
per day was 120 m but ranged between 1.1 and 776.7 m.

The monthly mean temperature during the study period 
was 21.7  °C but ranged from 12.3  °C in April 2013 to 
28.9  °C in July 2012. Total precipitation was 67.8, 29.9, 
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24.5, and 46.0 cm during the period April–August in 2010, 
2011, 2012, and 2013, respectively. The study region under-
went a severe drought in 2012, with mean temperatures 2.8° 
above and precipitation 14.5 cm below the long-term aver-
age for the study period (Missouri Climate Center 2014).

The best-supported model included the variables mean 
air temperature, mean relative humidity, day of year × sex, 
and day of year × year interactions and had an AIC model 
weight of 0.1 (Tables  1, 2). The AUC was 0.71, which 
is commonly interpreted as “fair” model performance 
(0.5 = indistinguishable from random, 1.0 = perfect; Swets 
1988). The next ten models added total precipitation, tem-
perature range, and SVL, but these models were not well 
supported. Snake activity showed a quadratic response to 
temperature, increasing with temperature to approximately 
30  °C, and showed a linear increase with relative humid-
ity (Fig.  1). The response to day of year differed among 
years and between sexes (Fig. 2). Males were more likely 
to move earlier in the season than females, whereas females 
were more likely to move later in the season. In contrast to 
other years, snake activity was greatest in mid-summer in 
2010; in 2011–2013 snake activity declined from spring to 
summer, and in 2011 and 2013, it increased in late summer.

Discussion

We evaluated the relationship between western ratsnake 
activity patterns and weather and temporal variables. While 
the snakes in our study were generally inactive, individual 
snakes showed wide variation in daily movements. We 
found support for relationships between snake activity and 
air temperature, relative humidity, and day of year.

Seasonal activity patterns have been described in multi-
ple temperate snake species, including ratsnakes (Carfagno 
and Weatherhead 2008; Durner and Gates 1993; Gibbons 
and Semlitsch 1987; Sperry et al. 2008). However, previous 
studies did not attempt to isolate temporal patterns from 
other effects in a model-selection framework. We found 
support for both temporal and weather effects and demon-
strated the effect of each factor while holding the effects 
of other factors constant. Seasonal activity varied between 
sexes and among years, regardless of weather, but was gen-
erally highest in spring for males and highest for females 
in late summer. Seasonal differences between sexes likely 
reflect changes in mating behavior, which peaks in late 
May in Missouri. For example, male ratsnakes may exhibit 
longer or more frequent movements associated with mate 
searching in spring, whereas gravid females may remain 
sedentary (Bozinovic and Rosenmann 1988; Carfagno and 
Weatherhead 2008). The fact that tracking began in June in 
2010, after the peak in breeding activity, may explain the 
divergent activity pattern observed in this year. In addi-
tion to reproductive behavior, seasonal activity patterns 
could reflect changes in food resources or dietary patterns 
as snakes restore depleted energy reserves. For example, 
snakes might require less frequent movements after initially 
regaining mass lost during winter, or if prey populations 

Table 1   Summary of model-selection results from the best-ranked a 
priori candidate models of the effects of sex, body size, and temporal 
and weather variables on the probability of snake movement in Mis-
souri, 2010–2013

Quadratic terms and interactions include their constituent additive 
terms. The null model is also included for comparison. See “Appen-
dix” for the complete model set

AIC Akaike’s Information Criteria, Temp air temperature, RH rela-
tive humidity, DOY day of year, Precip precipitation, SVL snout-vent 
length

Model K ΔAIC wI

Temp2 + RH + Sex × DOY2 + Year × DOY2 20 0 0.1

Temp2 + Range + RH + Sex × DOY2  
+ Year × DOY2

21 0.27 0.09

Temp2 + Range + Pre-
cip + Sex × DOY2 + Year × DOY2

21 0.38 0.08

Temp2 + RH + Sex × DOY2 + Year  
× DOY2 + SVL

21 0.61 0.07

Null 3 68.23 0

Table 2   Estimated coefficients for the best supported model of the 
effects of sex, body size, and temporal and weather variables on the 
probability of snake movement in Missouri, 2010–2013

CI Confidence interval
a  Male = 1; female = 0

Parameter Coefficient Standard 
error

Lower 
95 % CI

Upper 
95 % CI

Intercept −1.21 0.27 −1.74 −0.68

Temp 0.35 0.08 0.20 0.51

Temp2 −0.11 0.05 −0.20 −0.02

RH 0.17 0.08 0.01 0.33

Sexa 0.25 0.16 −0.07 0.57

DOY 0.93 0.51 −0.06 1.93

DOY2 −0.80 0.41 −1.62 0.01

Sex × DOY −0.68 0.16 −0.99 −0.37

Sex × DOY2 −0.05 0.09 −0.23 0.12

Year 2011 −0.69 0.31 −1.29 −0.09

Year 2012 −0.17 0.28 −0.71 0.37

Year 2013 0.04 0.26 −0.48 0.56

Year 2011 × DOY −0.25 0.53 −1.29 0.78

Year 2012 × DOY −0.95 0.50 −1.93 0.03

Year 2013 × DOY −1.24 0.52 −2.25 −0.23

Year 2011 × DOY2 1.51 0.48 0.57 2.46

Year 2012 × DOY2 0.88 0.41 0.07 1.69

Year 2013 × DOY2 1.33 0.45 0.45 2.22
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Fig. 1   Predictions of the best 
supported model showing the 
effects of air temperature (a) 
and relative humidity (b) on the 
probability of snake movement. 
Estimates are reported for the 
range of temperatures recorded. 
For model predictions, year 
is held constant at 0.25, sex is 
held constant at 0.5, and other 
variables are held constant at 
their means. Dotted lines 95 % 
Confidence intervals (CIs)

Fig. 2   Predictions of the best 
supported model showing the 
effect of day of year on the 
probability of snake movement. 
Panels show estimates for males 
(a), females (b), and each of the 
4 years of the study (c, d, e, f 
2010, 2011, 2012, 2013, respec-
tively). For a and b, year is held 
constant at 0.25; for c–f, sex is 
held constant 0.5. All other vari-
able are held constant at their 
means. Dotted lines 95 % CIs
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increase as the season progresses (Aleksiuk and Stewart 
1971; Luis et  al. 2010). The different response to day of 
year among years likely reflects environmental factors 
that vary seasonally among years. For example, the long-
est seasonal decline in activity occurred in 2012, when the 
study region underwent abnormally high temperatures and 
a severe drought. While we did not find strong support for 
models that included precipitation, weather variables were 
measured during the time period of each snake movement. 
In contrast, day of year likely encapsulates broader pheno-
logical patterns, such as seasonal changes in soil moisture 
that affect prey populations via ecosystem productivity.

Snakes were twice as likely to move during periods of 
high humidity as in periods of low humidity. Water bal-
ance in temperate snakes has received sparse attention, 
despite evidence that moisture can affect activity patterns 
and habitat selection (Daltry et al. 1998; Howze and Smith 
2012; Moore and Gillingham 2006). Movement during dry 
conditions can increase evaporative water loss, potentially 
leading to desiccation (Guillon et al. 2013). Future studies 
of climate effects on temperate snake activity patterns and 
thermal ecology should likewise consider moisture availa-
bility, especially given that drought conditions are expected 
to increase in many temperate regions during the next cen-
tury (IPCC 2013).

As predicted, we found a quadratic relationship between 
temperature and snake movements. Snakes were more 
likely to move as temperatures increased, with the maxi-
mum probability of movement occurring near 30 °C. This 
result is consistent with findings from previous studies, 
including the optimal temperature range reported for most 
snake species (Lillywhite 1987; Weatherhead et al. 2012). 
Surprisingly, other researchers did not find a strong or con-
sistent relationship between temperature and ratsnake activ-
ity (Sperry et al. 2008, 2010). However, these latter studies 
used the mean distance traveled per day across all individ-
uals as a measure of snake activity, or mean temperature 
across longer time intervals as a temperature index. In con-
trast, we located snakes more frequently (<36  h between 
locations) and calculated weather variables for the exact 
time interval between each location for each individual. In 
addition, our modeling approach provided a more robust 
analytical framework, permitting us to account for variation 
among individual snakes while isolating the effects of indi-
vidual weather variables on snake activity.

While we found support for models that included tem-
perature, humidity, and day of year, our goodness-of-fit 
tests indicated a fair amount of variation that was not 
explained by our analysis. Snake activity is influenced by 
additional biotic and abiotic factors that were beyond the 
scope of our study. For example, we measured tempera-
ture at a single weather station, but operative temperatures 
available to individual snakes can vary widely based on 

local geography and habitat features, and individual snakes 
might have differing thermal requirements depending on 
body size or condition (Blouin-Demers and Weatherhead 
2001b; Peterson et  al. 1993). Moreover, the frequency of 
movement of individual snakes is likely to be dependent 
on prey availability and satiation levels (Mushinsky 1987; 
Wasko and Sasa 2012).

Snakes are regionally important bird nest predators, 
being in some cases responsible for more nest failures than 
any other cause (DeGregorio et al. 2014; Thompson 2007). 
The potential of ratsnakes to affect bird demography has 
prompted researchers to study ratsnake behavior in order 
to understand and potentially mitigate bird population 
declines (e.g., Stake et al. 2005; Weatherhead and Blouin-
Demers 2004b). Bird nest predation rates are high when 
snakes are more active or when air temperatures are hotter 
(Cox et  al. 2013b; Sperry et  al. 2008, 2012; Weatherhead 
et al. 2010), and snakes become more frequent nest preda-
tors when air temperatures increase (Cox et  al. 2013a). 
Albeit indirectly, our study provides a possible mechanism 
by which climate change could affect the demographics of 
birds and other prey species. However, in light of the inher-
ent variability of seasonal snake activity, we caution against 
specific long-term predictions.

Air temperatures in North America are projected to 
increase during the next century, and there is evidence that 
temperate snake populations can respond positively by 
adjusting activity patterns to optimize available tempera-
tures (IPCC 2013; Weatherhead et al. 2012). Future studies 
that incorporate spatiotemporal temperature and moisture 
variation as it relates to snake space use and resource selec-
tion could enhance our understanding of climate effects on 
snake ecology. Nevertheless, here we provide strong evi-
dence that temperature and relative humidity differentially 
affect the movements of an important predator.
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