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Size-biased distributions arise in many forestry applications, as well as other environmental, econometric,
and biomedical sampling problems. We examine the size-biased versions of the generalized beta of the first
kind, generalized beta of the second kind and generalized gamma distributions. These distributions include,
as special cases, the Dagum (Burr Type III), Singh-Maddala (Burr Type XII) and Fisk distributions as well as
better-studied distributions such as the Weibull, lognormal, beta (of the first and second kind), gamma and
exponential. Our results indicate that specification and estimation of the size-biased forms of these distri-
butions can be viewed within a unified framework. This should facilitate broader application of size-biased
distributions in forestry sampling, modeling and analysis.

Introduction
Size-biased distributions arise naturally in a range of sampling
and modeling problems in forestry (Gove, 2003a). They also
occur in applications spanning domains including environmen-
tal sciences, econometrics, human demography and biomedical
sciences (Scheaffer, 1972; Patil and Rao, 1978). Suppose that X is
a variable of interest, such as tree diameter, andwewish to repre-
sent the distribution of X using a parametric model X ∼ f (x; θ). In
the ordinary case, this is usually straightforward andmoment- or
maximum likelihood estimators, as well as random variable gen-
erators, are available for a wide range of distributions. However,
if sample units are weighted or selected with probability propor-
tional to Xα , then the density is the so-called size-biased density
of order α (Patil and Ord, 1976; Patil, 1981):

f∗α (x; θ) = xαf (x; θ)∫
xαf (x; θ)dx (1)

For example, if f (x; θ) is the distribution of diameter at breast
height (DBH) in a forest stand, then the distribution of basal
area by diameter will be f∗2 (x; θ), because basal area of a tree is
proportional to DBH squared.
Gove (2003a) provides a review of applications of size-biased

distributions in forestry, in which geometric approaches to sam-
pling often induce size-biased distributions of order 1 (length-
biased sampling) or 2 (area-biased sampling). Perhaps the first
mention of size-bias sampling applications in forestry and wood

products was the example given by Warren (1975) related to
sampling wood cell cross-sectional area using a microscope.
A more recent application to wood products studies is found
in Svensson et al. (2007), where a sample of wood fiber length
samples from increment cores were recognized as arising from
length-biased selection. In field applications, size-biased distri-
butions can arise either because individuals are sampled with
unequal probability by design or because of unequal detec-
tion probability. For example, both line intersect sampling and
horizontal line sampling often induce size-biased distributions
of order 1, while horizontal point sampling of standing trees
(also known as prism sampling and Bitterlich sampling) induces
size-biased distributions of order 2 (Van Deusen, 1986; Gove,
2003a). Ducey and Valentine (2008) and Ducey (2009) sug-
gest other sampling approaches for standing trees that would
generate size-biased distributions of non-integer order with
α ≈ 1.6 and 2 ≤ α ≤ 3, respectively. Size-biased distributions
arise in a number of other social, environmental and biolog-
ical science applications. For example, many inferences from
on-site survey data involve size-biased distributions of order 1
(Moeltner and Shonkwiler, 2005). Length-biased sampling, which
induces size-biased distributions of order 1, also arises in link-
age mapping of genome scans (Terwilliger et al., 1997). Size-
biased distributions come into play when organisms occur in
groups, and group size influences the probability of detection
(e.g. Drummer and McDonald, 1987). Other applications, includ-
ing environmental applications, are suggested by Patil and Ord
(1976) and Patil and Rao (1978).
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Figure 1 Relationships between members of the generalized beta family, following McDonald (1984) and McDonald and Xu (1995). For symbols, see
Table 1.

A great deal of research on size-biased distributions has
focused on the question of form-invariance. A distribution is said
to be form-invariant under size-biasing if the size-biased distribu-
tion has the samemathematical form as the original distribution,
only with altered parameter values. If a distribution is form-
invariant that simplifies both estimation and simulation because
the same software that was used for the original distribution
can also be used for the size-biased distribution (albeit with
some attention to possible constraints on parameter values). In
a key paper, Patil and Ord (1976) demonstrated form-invariance
for size-biased distributions within the log-exponential family,
and Alavi and Chinipardaz (2009) provide generalization of those
results to additional weight functions. Other studies have tended
to focus on elucidating the relationships between single distribu-
tions and their size-biased counterparts, often focused on one (or
perhaps two) specific orders motivated by specific applications.
For example, previous work on size-biased distributions in forestry
has focused on theWeibull distribution, because of its long history
in modeling tree diameter distributions (Bailey and Dell, 1973).
Gove (2000, 2003b) presented results and useful formulae for
the size-biased Weibull under length- and area-biased sampling.
However, size-biased versions of some distributions that have
seen widespread practical use outside forestry, such as those of
Dagum (1977) and Singh and Maddala (1976), have seen limited
study (Ye et al., 2012). Because size-biased distributions arise so
commonly in forest sampling and modeling, understanding size-
biasing in these other distributions could make themmore useful
in the forestry context.
Here, we take up the generalized beta distributions of the

first and second kind and the generalized gamma, as devel-
oped by McDonald (1984). These families are extremely flexible
and include a great many familiar (and not-so-familiar) dis-
tributions as special cases. We show that these distributions
are form-invariant under size-biased sampling, with a specific
and simple mapping of parameters from their original forms to
their size-biased forms. Because these two distributions contain
a large number of other useful distributions as special cases,
our results lead immediately to simple mappings between all
these special cases and their size-biased versions (even when
those special cases are not form-invariant under size-biased sam-
pling themselves). Thus, the entire family of distributions can be

placed within a unified framework for estimation, inference and
simulation.

The generalized beta and gamma distributions
McDonald (1984) introduced two generalized beta distributions,
the generalized beta of the first kind (GB1) and of the second
kind (GB2), which contain numerous other distributions as special
cases (Figure 1, Table 1). The GB1 has probability density function
(pdf)

GB1(y; a, b, p, q) = |a|yap−1[1− (y/b)a]q−1

bapB(p, q)
(2)

for 0 < ya < ba, and b > 0, p > 0, q > 0. Here, B(x, y) denotes
the beta function, i.e. B(x, y) = ∫ 1

0 t
x−1(1− t)y−1 dt. The raw

moments of order h are given by

μ′
h = EGB1[yh] = bhB(p+ h/a, q)

B(p, q)
(3)

and are defined for p+ h/a > 0 (McDonald, 1984). As McDonald
(1984) and McDonald and Xu (1995) show, the GB1 includes sev-
eral widely used distributions as special or limiting cases, includ-
ing the beta of the first kind, inverse beta of the first kind,
Pareto and power, generalized gamma, uniform and unit gamma
distributions.
The GB2 has pdf

GB2(y; a, b, p, q) = |a|yap−1
bapB(p, q)[1+ (y/b)a]p+q

(4)

for 0 < y < ∞, with the same restrictions on parameters. The raw
moments of order h of the GB2 are given by

μ′
h = EGB2[yh] = bhB(p+ h/a, q− h/a)

B(p, q)
(5)

and are defined for −p < h/a < q. The GB2 includes many
more distributions as special or limiting cases such as the
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Table 1 Special cases of the generalized beta family

Symbol Distribution name Relationship

IB1 Inverse beta of the first kind GB1(−1, b, p, q)
UG(b,d, q) Unit gamma lima→0 GB1(a, b, p = d/a, q)
B1 Beta of the first kind GB1(1, b, p, q)
B2 Beta of the second kind GB2(1, b, p, q)
SM Singh-Maddala (Burr Type XII) GB2(a, b,1, q)
Dagum Dagum (Burr Type III) GB2(a, b, p,1)
Pareto Pareto IB1(q = 1) = GB1(−1, b, p,1)
P Power UG(q = 1) = B1(q = 1) = GB1(1, b, p,1)
LN(μ, σ2) Log-normal lima→0 GG(a, (σ 2a2)1/a, (aμ+ 1)/(σ2a2))
GA Gamma GG(1, β, p) = limq→∞ B1 = limq→∞ B2
W Weibull GG(a, β,1) = limq→∞ SM
F(u, v) F B2(v/u,u/2, v/2) = GB2(1, v/u,u/2, v/2)
L Lomax B2(p = 1) = GB2(1, b,1, q)
IL Inverse Lomax SM(a = −1) = Dagum(a = 1) = GB2(1, b, p,1)
Fisk Fisk SM(q = 1) = Dagum(p = 1) = GB2(a, b,1,1)
U Uniform P(p = 1) = GB1(1, b,1,1)
1
2N(0, σ

2) Half-normal GG(2, β,1/2)
χ2 χ2 GA(β = 2) = limq→∞ F = GG(1,2, p)
EXP Exponential GA(p = 1) = W(a = 1) == limq→∞ L = GG(1, β,1)
R Rayleigh W(a = 2) = GG(2, β,1)
1
2 t(df) Half-t GB2(2,

√
df,1/2,df/2)

LL Log-logistic L(q = 1) = IL(p = 1) = Fisk(a = 1) = GB2(1, b,1,1)

Symbols refer to Figure 1.

generalized gamma, Dagum (also known as the Burr Type III
and as the Kappa), Singh-Maddala (or Burr Type XII), lognor-
mal, Weibull, gamma, Lomax, F, Rayleigh (or Fisk), chi-square,
half-normal, half-t, exponential and log-logistic (McDonald, 1984;
McDonald and Xu, 1995).
Of particular interest because of its centrality in Figure 1 is

the generalized gamma distribution (GG), originally introduced by
Stacy (1962) with a slightly different parameterization. The GG
has pdf

GG(y; a, β, p) = ayap−1 e−(y/β)a

βap�(p)
(6)

and can be obtained from the GB1 in the limit as q → ∞ with
b = (p+ q)1/aβ, or from a GB2 in the limit as q → ∞ with b =
q1/aβ (McDonald, 1984). The raw moments of order h of the GG
are given by

μ′
h = EGG[yh] = βh�(p+ h/a)

�(p)
(7)

Size-biased generalized beta and gamma
distributions
Here, we derive expressions for the size-biased generalized beta
distributions of the first and second kind. We do so also for the
generalized gamma for the sake of completeness. Recall that an

equivalent expression of the definition in equation (1) is

f∗α (x; θ) = xαf (x; θ)
μ′
α

. (8)

Substitution of the relevant pdfs and moments into equation (8),
followed by algebraic simplification, leads directly to the following
results.

Size-biased generalized beta of the first kind

Substituting equation (2) for the pdf, and equation (3) for the
αth raw moment, into equation (8), we obtain the pdf of the
size-biased GB1 (SBGB1):

SBGB1(y; a, b, p, q, α)

=
[

B(p, α/a)
bαB(p+ q, α/a)B(p, q)

] [
ayap+α−1[1− (y/b)a]q−1

bap

]

=
[

B(p, α/a)
B(p+ q, α/a)B(p, q)

] [
ayap+α−1[1− (y/b)a]q−1

bap+α

]
.

Recalling that B(x, y) = �(x)�(y)/�(x+ y), substituting and sim-
plifying we obtain

SBGB1(y; a, b, p, q, α)

=
[

�(p)�(α/a)/�(p+ α/a)
[�(p+ q)�(α/a)/�(p+ q+ α/a)][�(p)�(q)/�(p+ q)]

]
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×
[
ayap+α−1[1− (y/b)a]q−1

bap+α

]

=
[
�(p+ q+ α/a)
�(p+ α/a)�(q)

] [
ayap+α−1[1− (y/b)a]q−1

bap+α

]

=
[

1
B(p+ α/a)

] [
ayap+α−1[1− (y/b)a]q−1

bap+α

]

= GB1(a, b, p+ α/a, q) (9)

and we see that the GB1 is form-invariant under size-biasing, for
all orders α > −ap, i.e. for all orders for which the corresponding
αth raw moment of the original distribution exists.

Size-biased generalized beta of the second kind

Substituting equation (4) for the pdf, and equation (5) for the
αth raw moment, into equation (8), we obtain the pdf of the
size-biased GB2 (SBGB2):

SBGB2(y; a, b, p, q, α)

=
[

B(p, q)
bαB(p+ α/a, q− α/a)

] [
ayap+α−1

bapB(p, q)[1+ (y/b)a]p+q

]

= ayap+α−1

bap+αB(p+ α/a, q− α/a)[1+ (y/b)a]p+q
.

Letting p′ = p+ α/a and q′ = q− α/a, and noting that p′ + q′ =
p+ q we have

SBGB2(y; a, b, p, q, α) = ayap′−1

bap′B(p′, q′)[1+ (y/b)a]p′+q′

= GB2(y; a, b, p+ α/a, q− α/a) (10)

and we see that the GB2 is form-invariant under size-biasing, for
all orders such that −ap < α < aq, i.e. for all orders for which the
corresponding αth rawmoment of the original distribution exists.

Size-biased generalized gamma

Substituting equation (6) for the pdf, and equation (7) for the
αth raw moment, into equation (8), we obtain the pdf of the
size-biased GG (SBGG):

SBGG(y; a, β, p, α) =
[

�(p)
βα�(p+ α/a)

] [
ayap+α−1 e−(y/b)a

βap�(p)

]

= ayap+α−1 e−(y/b)a

βap+α�(p+ α/a)

= GG(y; a, β, p+ α/a) (11)

and we see that the GG is form-invariant under size-biasing, for
all orders α > −ap, i.e. for all orders for which the corresponding
αth raw moment of the original distribution exists.

Special cases
Form-invariance of the GB1, GB2 and GG, and the simple map-
pings of parameters in equations (9)–(11), lead directly to
expresssions for the size-biased distributions of the special cases
listed in Table 1, some of which are form-invariant while others
map to other distributions within the generalized beta family.
These results are given in Table 2.
As Patil and Ord (1976) proved the lognormal, Pareto, gamma

and betas of the first and second kind are form-invariant under
size-biased sampling. To these we may add the inverse beta of
the first kind, unit gamma and χ2 distributions, which had not
previously been identified as form-invariant. Form-invariance is
useful in that it simplifies estimation and simulation of size-biased
distributions.
A small number of other special cases have previously been

identified in the literature. For example, Gove and Patil (1998)
had shown that the size-biased exponential is a gamma devi-
ate. Gove and Patil (1998) had also shown that the size-biased
Weibull of order 2, following a change of variables, was related to
the standard gamma deviate. From the results presented here,
we can clearly see that the size-biased Weibull (of any order for
which the size-biased distribution exists) is in fact a GG. Ye et al.
(2012) identify special cases of the size-biased GB2 and provide
equations for their moments but fail to identify the size-biased
GB2 as a GB2. To our knowledge, no previous study has been
made of many of the remaining special cases. As Table 2 shows
that most of these distributions map to either a GB1 or a GB2
under size-biasing. When this occurs, one or more constraints is
imposed on the parameters such that the number of free para-
meters is equal to the number of free parameters in the original
distribution.
A result given on McDonald and Xu (1995, p. 140) implies that

the CDF of either a GB1 or a GB2 can be obtained by a change
of variables using the incomplete beta function. Specifically, if
Y ∼ GB1(y; a, b, p, q), then X = (Y/b)a ∼ B1(x; b′ = 1, p, q). Like-
wise, if Y ∼ GB2(y; a, b, p, q), then X = (Y/b)a/[1+ (Y/b)a] ∼
B1(x; b′ = 1, p, q). Ready availability of the CDF greatly simpli-
fies working with grouped, censored or truncated versions of any
of the size-biased distributions discussed here. Moreover, if x is
the output of a competent B1 random deviate generator, then
y = bx1/a will be a GB1 random deviate, and y = b(x/(1− x))1/a
will be a GB2 random deviate. Thus, random deviates from all the
size-biased distributions whose original forms are GB1 or GB2 can
be generated easily, either in support of modeling or of Monte
Carlo approaches to inference.

Examples
Diameter distributions from horizontal point sampling

As noted above, horizontal point sampling of standing trees
(also known as prism sampling and Bitterlich sampling) induces
size-biased distributions of order 2 (Van Deusen, 1986; Gove,
2003a). The exponential distribution is often used to model
uneven-aged stands (Meyer, 1952; Leak, 1964), but perhaps
the most common model for tree diameter distributions is
the Weibull (Bailey and Dell, 1973). However, the Weibull can
only fit a restricted range in the skewness-kurtosis plane
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Table 2 Size-biased distributions for special cases of the generalized beta family

Symbol Size-biased pdf of order α Existence condition

IB1 GB1(−1, b, p− α, q) = IB1 α < p
UG(b,d, q) lima→0 GB1(a, b, (d+ α)/a, q) = UG(b,d+ α, q) α > −d
B1 GB1(1, b, p+ α, q) = B1 α > −p
B2 GB2(1, b, p+ α, q− α) = B2 −p < α < q
SM GB2(a, b,1+ α/a, q− α/a) −a < α < aq
Dagum GB2(a, b, p+ α/a,1− α/a) −ap < α < a
Pareto GB1(−1, b, p− α,1) = Pareto α < p
P GB1(1, b, p+ α,1) = P α > −p
LN(μ, σ 2) lima→0 GG(a, (σ 2a2)1/2, [a(μ+ ασ 2)+ 1]/(σ 2a2)) ∀α
GA GG(1, β, p+ α) = GA α > −p
W GG(a, β,1+ α/a) α > −a
F(u, v) GB2(1, v/u,u/2+ α, v/2− α) −u/2 < α < v/2
L GB2(1, b,1+ α, q− α) = B2 −1 < α < q
IL GB2(1, b, p+ α,1− α) = B2 −p < α < 1
Fisk GB2(a, b,1+ α/a,1− α/a) −a < α < a
U GB1(1, b,1+ α,1) = P α > −1
1
2N(0, σ

2) GG(2, β, α + 1/2) = GA α > −1/2
χ2 GG(1,2, p+ α) = χ2 α > −p
EXP GG(1, β,1+ α) = GA α > −1
R GG(2, β,1+ α) α > −1
1
2 t(df) GB2(2,

√
df, (1+ α)/2, (df − α)/2) −1 < α < df

LL GB2(1, b,1+ α,1− α) −1 < α < 1

Symbols refer to Figure 1 and Table 1.

(Hafley and Schreuder, 1977). Other distributions in the gen-
eralized beta family that have occasionally been used to
fit diameter distributions include the gamma (Nelson, 1964),
lognormal (Bliss and Reinker, 1964), beta (Clutter and Bennett,
1965; Lenhart and Clutter, 1971; Gorgosa-Varela et al., 2008) and
Dagum or Burr III (Lindsay et al., 1996; Gove et al., 2008). Li et al.
(2002) use a bivariate generalized beta distribution to model the
joint height-diameter distribution of trees, but the univariate ver-
sion of their distribution is not a member of the generalized beta
class explored here. Of these distributions, only the exponential
and Weibull have seen detailed attention to the size-biased form
(Gove and Patil, 1998; Gove, 2003b).
To illustrate fitting members of the generalized beta family to

horizontal point sampling data, we used data from theMendum’s
Pond parcel owned by the University of New Hampshire. The par-
cel includes∼76ha of forested land. In July, 2011, the parcel was
inventoried using a systematic grid of 70 horizontal point sam-
ples, with a basal area factor of 4.59 m2/ha and a minimum
measurable DBH of 5.08 cm. DBH was recorded to the nearest
0.25 cm. Overall, 531 live trees of 13 species were included in
the inventory, with a maximum DBH of 89.7 cm. Basal area of all
species combinedwas 34.8m2/ha, led by eastern hemlock (Tsuga
canadensis), eastern white pine (Pinus strobus), northern red oak
(Quercus rubra) and red maple (Acer rubrum).
We fit all the members of the GB2 portion of the generalized

beta family, except for the half-normal, χ2, Rayleigh and half-t.
Although in principle one could attempt a model fit recogniz-
ing the hierarchical nature of the data, we followed conventional
practice for illustrative purposes and treated each measured
diameter as an independent observation. All distributions were fit

using their size-biased versions of order 2 bymaximum likelihood,
with the distribution left-truncated at 5.08 cm. Asymptotic stan-
dard errors for the model parameters were calculated as the
square root of the diagonals of the inverse of the Hessian matrix
of the likelihood. Model fits were assessed using the Akaike Infor-
mation Criterion (AIC), with �AIC computed as the difference in
AIC between any given model and the best-fitting model (the
model with minimum AIC).
Results of the model fits are shown in Table 3. Three of

the distributions, the B2, Lomax and LL, did not converge despite
attempts to fit the model using multiple initial estimates of the
parameters, so no results are shown. Although several of the
models had competitive or at least plausible fits (�AIC < 10),
the best performer overall was the two-parameter Gamma. The
fit of the size-biased Gamma (i.e. the Gammawith parameters β,
p+ 2) compared with a histogram of the raw tree tallies, and of
the ordinary Gamma in comparison to a histogram illustrating the
estimated stand table from the tree tallies, is shown in Figure 2.
The size-biased Gamma fits the raw tally quite well. Some dis-
crepancy can be seen between the estimated stand table and the
original version of the Gamma in the smallest size classes. How-
ever, it is notable that while the estimates of trees per hectare in
the smallest classes are large, they are based on very few trees
and have a high sampling error. For example, the total number
of trees tallied in the smallest size class is only 13, on 70 plots,
and the estimate of density in that class has a standard error of
∼35 percent. Forcing the distribution to fit the smallest size
classes more closely would necessarily compromise the fit in
larger size classes. Those are associated with fewer trees per
hectare, but more basal area per hectare and tallied trees, and
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Table 3 Members of the GB2 and GG sub-families fit to a horizontal point sample tally of
531 trees from a forested parcel in New Hampshire

Distribution Parameters Log-likelihood AIC � AIC

GB2 a = 2.1472± 0.0178 −2112.607 4233.214 3.058
b = 60.4036± 1.2185
p = 0.7079± 0.0516
q = 7.1576± 0.0413

GG a = 1.1643± 0.1253 −2112.901 4231.802 1.646
β = 9.9859± 2.5578
p = 2.2184± 0.2555

SM a = 1.8162± 0.0878 −2112.645 4231.289 1.133
b = 77.0589± 2.7351
q = 11.2604± 0.7225

Dagum a = 6.6093± 1.2822 −2116.340 4238.680 8.523
b = 36.0052± 1.3386
p = 0.0726± 0.0234

Gamma β = 6.0790± 0.3071 −2113.078 4230.157 0.000
p = 3.2524± 0.1635

Weibull a = 1.5339± 0.1562 −2113.774 4231.548 1.392
β = 19.3953± 0.2837

Fisk a = 4.4867± 0.3928 −2161.312 4326.624 96.468
b = 20.8290± 0.6335

Exp β = 10.5001± 0.5991 −2144.502 4291.004 60.848

the estimates in those classes are therefore better constrained.
Indeed, the inefficiency of fitting assumed diameter distributions
to the stand table is a key reason why fitting the size-biased form
of the distribution to the empirical distribution of the tallied trees
is preferred (Van Deusen, 1986; Gove, 2000).

Piece length distributions from line intersect sampling

In comparison with diameter distributions of live trees, size distri-
butions of dead downed wood have not been as widely studied.
However, as Gove (2003a) notes,many probability proportional to
size methods exist for downed wood sampling, and these induce
size-biased distributions as well. For example, line intersect sam-
pling (LIS) samples downed wood with probability proportional
to piece length, so the distribution of sample lengths is the size-
biased distribution of order 1 for the original distribution in the
population. LIS is one of the most widely used techniques for
downed wood sampling, having been introduced over 50 years
ago (Warren and Olsen, 1964). For the theory of LIS, see de Vries
(1979); Kaiser (1983).
To illustrate fitting members of the generalized beta family to

LIS data, we used data from the U.S. Forest Service, Forest Inven-
tory and Analysis (FIA) program. FIA measures downed dead
wood on a cluster of LIS lines at a subset of its permanent plot
locations. For details of the FIA field protocol and associated esti-
mators, seeWoodall and Williams (2005). In addition to variables
such as diameter and decay class, the length of each tallied
piece is recorded to the nearest foot (0.3048m), with a mini-
mummeasured length of 3 ft (0.9144m). Note that the smallest
length class contains only pieces from 3 to 3.5 ft in length; all

Figure 2 Size-biased gamma distribution fit to a raw horizontal point
sample tally of 531 trees from a forested parcel in New Hampshire (top
panel), and the corresponding stand table (bottom panel).

other classes are obtained by simple rounding (e.g. the nomi-
nal 4 foot class contains pieces from 3.5 to 4.5 ft in length). We
obtained the LIS data for the states of Maine, New Hampshire
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Table 4 Members of the GB1 sub-family fit to line intersect sampling data on downed
wood piece length from the United States Forest Inventory and Analysis, for Vermont, New
Hampshire and Maine

Distribution Parameters Log-likelihood AIC � AIC

GB1 a = 0.0487± 0.0009 −9514.354 19034.708 2.004
p = 7.2814± 0.0590
q = 3.4762± 0.0198

IB1 p = 1.6826± 0.0117 −9711.505 19427.010 394.306
q = 1.7322± 0.0124

UG d = 0.4130± 0.0105 −9514.352 19032.704 0.000
q = 3.4752± 0.0296

Pareto p = 1.2805± 0.0047 −9796.922 19595.844 563.140

and Vermont from the FIA database, and combined these for
inventory years 2006–2010, resulting in data for 2657 pieces from
275 non-empty plots. Recorded piece length ranged from the
minimum (0.9144m) to 24.4m.
We fit selectedmembers of the GB1 portion of the generalized

beta family, including the GB1, IB1, UG, B1 and Pareto. All distribu-
tions were fit as size-biased distributions of order 1, by maximum
likelihood. Because of the unusual pattern of binning at the small
end of the length class range,we fit the discretized version of each
distribution, treating the probability associated with each length
class as the difference between the CDF at the upper boundary
of the class and the CDF at the lower boundary. All distributions
were left-truncated at 0.9144m, and the scale parameter b was
set so that the maximum length equaled the upper boundary of
the largest length class. Asymptotic standard errors for themodel
parameters were calculated as the square root of the diagonals
of the inverse of the Hessian matrix of the likelihood, and model
fits were assessed using the AIC.
Results of the model fits are shown in Table 4. The B1 did

not converge for this particular dataset. Strictly speaking, the
GB1 attained numerical convergence, but at very small value of
the parameter a, and at a log-likelihood that was slightly worse
than that of the UG, which is the limiting case of the GB1 as
a → 0. The UG, which has rarely if ever been used in forestry,
was the best-fitting distribution and (other than the GB1, which
converges on it) the only plausible distribution among those eval-
uated (�AIC < 10). The fit of the size-biased UG compared with a
histogram of the raw piece tallies, and of the ordinary UG in com-
parison to a histogram illustrating the estimated distribution of
piece lengths in the population, is shown in Figure 3.

Discussion and conclusions
Several studies have examined size-biased distributions, but
these studies have most often been restricted to one or a
few specific distributions (e.g. Scheaffer, 1972; Gove and Patil,
1998), have examined one or two integer orders of one or
two distributions (e.g Gove, 2000, 2003b; Correa and Wolfson,
2007), or have been concerned primarily with identifying form-
invariance (e.g. Patil and Ord, 1976; Alavi and Chinipardaz, 2009).

Figure 3 Size-biased unit gammadistribution fit to a raw tally of downed
wood lengths from line-intercept sampling in Vermont, New Hampshire
and Maine (top panel), and the corresponding estimates of relative fre-
quency in the original population (bottom panel). Note that abundance
in the smallest length class is depicted at double value in both graphs
because that class is only one-half its nominal width.

Conversely, more recent studies, including those of Priyadarshani
(2011) and Ye et al. (2012) examine the weighted GG and GB2,
respectively, with the size-biased form as a special case, but fail
to identify either of those distributions as form-invariant.
Here, we show that size-biased distributions arising from the

family of continuous distributions encompassed by the GB1, GB2
and GG as described by McDonald (1984) can be treated within
a unified framework. This unified framework should simplify esti-
mation, interpretation and simulation of size-biased distributions
within this family. As Patil and Ord (1976) showed, given certain
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regularity conditions, membership in the log-exponential family
of distributions is a necessary and sufficient condition for a distri-
bution to be form-invariant under size biasing. Therefore, the GB1,
GB2 and GG are all members of this family. However, neither the
generalized beta of McDonald and Xu (1995), which includes the
GB1 and GB2 as special cases nor their closely related exponential
generalized beta appear to belong to this family.
Although size-biased versions of individual distributions within

this family have previously been studied (Patil and Ord, 1976;
Gove, 2000, 2003b), size biased versions of some distributions
that are widely used in econometrics and other disciplines have
seen little study. Ye et al. (2012) enumerate the special cases
of the weighted GB2 under a flexible weight function, including
the Singh–Maddala (Singh and Maddala, 1976), Dagum (Dagum,
1977) and Fisk (Fisk, 1961), and givemoments for these when the
weight takes the form xα , but do not identify either the size-biased
GB2 or its special cases as being GB2 themselves. The Singh–
Maddala distribution, also known as the Burr XII (Burr, 1942), has
been widely used for modeling income distributions. The Dagum
distribution, also known as the Burr III (Burr, 1942) and the kappa
(Mielke, 1973), is less well known than the Singh–Maddala but
has also seen wide use for modeling income distributions. Kleiber
(2008) provides a recent review of properties, estimation, and
application for the Dagum with an emphasis on econometrics;
Lindsay et al. (1996) and Gove et al. (2008) employ this distribu-
tion for modeling tree diameter distributions. As Table 2 shows
that both the size-biased Singh–Maddala and the size-biased
Dagum are GB2 with restricted parameters. The Fisk distribution
was also developed for modeling wealth and income distribu-
tions. A special case of both the Singh–Maddala and Dagum, it
also called the log-logistic in survival analysis and environmental
applications (e.g. Bennett, 1983; Ahmad et al., 1988). Properties
of the length-biased Fisk were explored by Correa and Wolfson
(2007). In general, the size-biased Fisk is also GB2, with param-
eter restrictions combining those of the Singh–Maddala and
Dagum.
None of the size-biased distributions in Table 2 includes a shift

(or location) parameter, but for some applications the introduc-
tion of a shift parameter is important. Let Y ∼ g(y; [θψ]) be a
shifted version of a distribution X ∼ f (x; θ), such that Y ∼ f (y −
ψ; θ). Then the size-biased distribution of order α is

g∗
α(y; [θψ]) = yαf (y − ψ; θ)∫

yαf (y − ψ; θ)dy (12)

We can see that in general, g∗
α(y; [θψ]) �= f∗α (y − ψ, θ) because

the weight w = yα �= (y − ψ)α . Gove (2003b) demonstrates how
formulae for the size-biased Weibull of integer order can be
obtained by expansion using the binomial theorem. We specu-
late that approach will work equally well for the GB1 or GB2 and
their special cases.
Size-biased distributions have a wide range of potential appli-

cations (Patil and Rao, 1978), and the family of continuous distri-
butions represented by the GB1 and GB2 includes many special
cases with great flexibility (McDonald, 1984). We hope that a uni-
fied framework for the use of size-biased distributions within this
family will facilitate new work in this area.
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